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Abstract The practice of virtual screening (VS) to identify chemical leads to

known or novel targets is becoming a core function of the computational chemist

within industry. By employing a range of techniques, when attempting to identify

compounds with activity against a biological target, a small focused subset of a

larger collection of compounds can be identified and tested, often with results much

better than selecting a similar number of compounds at random. We will review the

key methods available, their relative success, and provide practical insights into

best practices and key gaps. We will also argue that the capability of VS methods

has grown to a point where fuller integration with experimental methods, including

HTS, could increase the effectiveness of both.
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Abbreviations

ADME Absorption, distribution, metabolism, excretion

FBVS Fragment-based virtual screening

LBVS Ligand-based virtual screening

PHBVS Pharmacophore-based virtual screening

SBVS (Protein) Structure-based virtual screening

SSR Selection to superset ratio

TMVS Text-mining based virtual screening

VS Virtual screening

1 Introduction

Over the last decade, improvements in algorithms for molecular comparison and in

docking and scoring, in conjunction with the advent of affordable yet fast comput-

ing through clusters of relatively inexpensive processors have made VS a promising

strategy to identify novel leads to known and new targets. It is a highly cost-

efficient and relatively fast way to leverage limited information on a biological

target, namely a small number of compounds that are active against it, or its

structure determined to atomic resolution or both, to find additional leads. When

successful, this method can often identify leads that are of interest, as defined by the

key characteristics of potency, novelty, exploitability, selectivity, and ADME. As a
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strategy, the software and methods available can be used alone, or in combination

with more common high throughput screening (HTS) or fragment screening tech-

nologies. As this review will demonstrate, there is ample evidence to show that this

technology has been applied to targets in gene families for which inhibitors are

known, and to recently identified targets. Success, dependent on a variety of factors

and defined in as many ways, is variable, and controlled by what we have termed

the zeroth law of screening: If the compound is not in the screening collection, it
can’t be found. However, experience and the literature suggest that, if there are

inhibitors of modest potency or better present in the screening collection, a subset

may well be found by applied VS methods (Fig. 1).

VS refers to any computational filtering or statistical prediction applied to

cherry-pick compounds from a large database. The logical next step is to acquire

these compounds for experimental testing. An operational definition of VS, that it

is the exercise of ranking molecules by descending order of likelihood of relevant

biological activity, regardless of how that ranking is performed, captures the

essence of VS ([1], quoting [2]). The choice of ranking algorithm generally

depends on the information known on the target, knowledge of compounds active

in the relevant biological assay, how dissimilar the desired ligands need to be from

known bioactive molecules, and what percentage of the ranked database would be

selected for experimental testing. The smaller the percentage of compounds to be

tested, the more efficient the ranking algorithm needs to be to result in successful

hits from VS.

The most common VS method is a similarity-based (almost always executed

through the use of a fingerprint) or substructure-based search. These are so

integrated into medicinal chemistry practice that they are often overlooked as

being amongst the most common and effective VS methods. However, given one

or more active compounds, chemists invariably attempt to identify similar mole-

cules using substructure and similarity queries. Substructure and similarity searching

Novelty

Exploitability

ADME

Selectivity

Potency

Fig. 1 The desired attributes

of a lead molecule. Often,

molecules identified by any

screening strategy might

satisfy optimal criteria for

only a subset of these

attributes and most

laboratories would proceed

with a medicinal chemistry

campaign banking on

improving the rest in a

subsequent lead optimization

phase
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is often the unexciting but highly effective follow-up of a more complex virtual

screen that attempts to find new lead matter. Even when only a few analogs turn up

as initial hits, substantial structure–activity relationships of an entire series can

sometimes be gathered without requiring new synthesis. The continuing interest in

fingerprint-based methods is covered in more depth in the LBVS section of this

review and in several reviews in the literature [3–7].

The more challenging scenario arises when the need to identify new scaffolds or

series becomes the driver of the VS experiment. Often, the ratio of the number of

compounds selected for testing to the size of the database of compounds screened,

SSR (selection to superset ratio), is in the range of a thousandth or less. Success

(which could be 1% or more of selected compounds having relevant biological

activity) while selecting in such low SSR situations (small number of molecules

selected from a very large collection) has won VS the recognition as a distinct

function of computational chemistry that can deliver new leads to a drug discovery

effort complementing experimental methods like high-throughput screening (HTS).

Mostly such VS is done to select compounds from databases typically present in

medium to large pharmaceutical companies or compendia of commercially avail-

able compounds or combinatorially synthesized collections provided by vendors or

combinations thereof. A characteristic of such databases is the variable extent to

which different segments of chemical space are over or under represented.

VS methods to identify new chemical series can be broadly classified into three

classes:

1. Methods that rank compounds based on some measure of similarity to known

actives, based on 2D or 3D structure of the molecule (LBVS).

2. Methods that deduce a pharmacophore, an arrangement in 3D space of features

that contribute or detract from binding and look for its presence in the database

that is searched. This method places emphasis on features like hydrogen bond

donors, hydrogen bond acceptors, acidic or basic units and hydrophobic frag-

ments and opens the possibility of identifying unexpected scaffolds with

required features (pharmacophore-based VS or PHBVS).

3. Methods that utilize structural data of the target, generally identified by protein

crystallography, to look for molecules that complement the ‘‘binding site’’ through

favorable protein–ligand interactions (protein structure-based VS or SBVS).

The choice of method used is often facilitated or constrained by the information

available. In the absence of structural information on target, if one or more active

small molecules are known, LBVS or PHBVS are feasible. If no active compounds

are known, but an experimental or computational model of the protein structure is

available, SBVS can be considered. If both active compounds and target structure

are available, one or more appropriate methods can be applied, or multiple methods

combined.

There have been a number of very helpful reviews of aspects of VS in the

past few years. These have focused on either specific methods, or on the field as

a whole. Cramer has provided an interesting review of methods of lead-hopping,

concentrating on technologies applicable to find scaffolds very different from
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the initial scaffold known to be active [8]. This is especially useful if there is some

doubt as to whether a molecule from the current series can be developed with

sufficient chemical novelty to allow it to be patented. Jalaie and Shanmugasun-

daram have reviewed the state of the art prior to 2005 [9] as have Reddy et al. [10].

A review focused on LBVS has been published by Hert et al. [11]. Finally, a broad

and characteristically trenchant review has been provided by Klebe [12]. In this

review we will focus on advances and successes reported in the past 2 years, with

the perspective of practitioners of the art in two large pharmaceutical companies.

1.1 Benchmarking Virtual Screening Methods

Numerous researchers in academia and industry have worked to advance the

performance of VS methods. Many sets containing molecules active at a given

target mixed in with known or presumed inactives (better referenced as decoys)

have been created and have been used to demonstrate the performance of individual

methods, or compare the performance of multiple methods. Table 1 provides a

summary of many of these data sets, most of which are publicly available. A key

consideration is the choice of inactives/decoys present in these datasets. Ideally, the

physicochemical profile of the inactives/decoys should be matched to those of the

actives, thereby preventing the observed enrichment from being a surrogate for

property differences between active and inactive members. This is a consideration

because many scoring functions are somewhat correlated with the molecular weight

and lipophilicity of the ligands docked and scored.

Generally, performance of a method is often judged in one of two ways. The first

is the enrichment factor, enrichment for short, which is the ratio of the cumulative

number of actives in the top N% of the total number in the dataset to random

retrieval rate. Many early studies focused on the enrichment obtained when the top

10% of the dataset was screened. However, this is operationally unrealistic if

compound collections exceed 100,000 compounds, which is common in mid- to

large-sized companies. A more realistic test is the enrichment obtained in the top

Table 1 Reference data sets, and location as of 2008

Data set(s) Actives Link

Cox2 128 http://www.ncbi.nlm.nih.gov

Estrogen receptor 55

Gyrase B 55

Neuramidase 83

P38 kinase 55

Thrombin 67

DHFR 100

Factor Xa 100

ZINC Variable http://zinc.docking.org/

DUD 2,539 actives against

40 different targets

http://dud.docking.org/
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0.1–1% of the compounds ranked. Many papers now include 10%, 5%, and 1%.

This method unfortunately depends on the ratio of actives to decoys present in the

dataset and makes comparisons across datasets difficult.

Another measure, that is independent of the ratio of actives to decoys, is the

more comprehensive receiver operating curve and an enhanced version [13, 14] and

reduces the dependence of the success measure on the number of decoys in the set.

This also graphically demonstrates the enrichment as a continuum, plotting the

fraction of the actives retrieved (true positive retrieval) against the fraction of the

inactives retrieved (false positive retrieval) [15]. The first ratio is the sensitivity of

the method (fraction of compounds that are predicted to be active out of the total

true actives present in the sample) and the second is the specificity of the method

(the fraction obtained by subtracting from 1 the ratio of the true negatives to total

negatives which would be the ratio of compounds falsely predicted to be positive

out of all the inactives). The area under the curve, AUROC, is a measure of the

efficiency of the method. As the VS method gets better the area under the ROC

curve will approach 1. The method is better than random if the area is>0.5 and this

method allows comparison across datasets since the curve shape and area are

independent of the size of the dataset. Figure 2 shows a ROC curve reproduced

from a PubMedCentral Article, which also has a lucid account of this widely used

statistical method [16, 17].

The variety of test data sets has helped to broaden our understanding of how

different methods perform under a variety of circumstances. Notably, the enrichment

Fig. 2 A receiver operator characteristic curve reproduced from PubMedCentral http://www.

pubmedcentral.nih.gov/articlerender.fcgi?artid=1065080 and [16]
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in structure-based methods that utilize docking and scoring can be highly dependent

on the quality of the scoring function employed and how sensitive it is to small

errors which creep in at the docking step [18, 19]. Therefore, by testing perfor-

mance against a variety of targets, a more realistic assessment of a given technique

can be produced. This information allows the experienced drug hunter to better

tailor their VS experiment to the protein class. In recent years, there has been a

significant advance in the ease of availability of curated datasets publicly available

ZINC and DUD being notable examples [19, 20] that allow comparison of the

performance of different methods using active/decoy combinations available to all

practitioners of the art.

A key issue that arises in practice, is whether the experiment is biased toward

enrichment (most actives for the number of compounds screened) or novelty

(compounds identified are drawn from different chemical classes). Generally, any

protocol leading to a small number of compounds tested is biased toward enrich-

ment. In this case, the strategy can often involve multiple serial VS methods with

aggressive property filtering. With fewer experimental constraints, the computa-

tional chemist is afforded the luxury of fewer assumptions. For example, by

performing a pharmacophore-based VS, but not refining the data set by docking

into a known protein complex, compounds that might otherwise be excluded due to

a change in the active site might be found. Furthermore, the practice of inspection

generally aids in eliminating unrealistic binding modes or undesirable chemical

functionality [21]. This is done with the risk that the unexpected turns out to be true.

1.2 Database Creation

One big advantage of the VS experiment is that the compound screened need not be

available physically and possibly not exist at all. Generally, the enrichment avail-

able through VS is thought to be insufficient alone to justify de novo synthesis. An

exception to this rule is the practice of computationally screening a large combina-

torial virtual library, identifying potential actives and following up with combina-

torial synthesis of a smaller subset of the library [22–24]. As the enrichment offered

by VS methods improves and with sufficient synthetic capacity, this is an assump-

tion that could be challenged.

There are a number of commercial vendors who have made their compound

collections available in formats amenable to translation into databases that can be

screened with relevant software. Generally, starting from any standard format

(MDL Mol or SDF, SMILES), compounds can be converted into a format required

for database searching. For docking or 3D database searching, this also requires the

creation of one or more 3D conformations of the molecule, which are stored for

using by the screening software. Software such as CORINA [25], CONCORD [26],

OMEGA [27] and Catalyst [28] have procedures to convert 2D to 3D coordinates

and to generate a family of minimized conformers.
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One element of database generation that is a key consideration is whether to

expand the representative compounds to include alternative tautomers, protonated

and deprotonated forms of the molecule, and also to enumerate stereochemistry

fully if not specified in the input. Depending on the molecules in question and the

options considered, these can lead to a 10-fold increase in the size of the database to

be explored. However, such an expansion is necessary if methods are used that are

sensitive to such chemical precision (e.g., docking). For 3D similarity searching, it

is sometimes more efficient to consider various modifications to the query, leading

to multiple searches against a smaller database.

A further consideration when combining databases from multiple suppliers is

how to identify and deal with redundant compounds. Here, some method of

mapping multiple supplier information onto a single compound is needed for

efficiency. Generally, all information can be mapped, although some consideration

of cost and supplier reliability may allow a hierarchy of supplier information to be

applied.

1.3 Database Filtering

Formanypractical reasons, some element of filtering is often applied either at the point

of creating a subset of ‘‘chosen’’ compounds for VS, or to a VS hit list before ordering

compounds for testing. A number of property-based filtering criteria are available. By

far the most famous are the Lipinski rule of five criteria [29–31]. By reviewing the

computed properties of known oral drugs, a pattern emerged that suggested that an

orally absorbed drug had a molecular weight less than 500, fewer than five

hydrogen bond donating groups, fewer than 10 hydrogen bond accepting groups,

and a clogP less than five. Veber et al. [32] further proposed that intestinal

permeability decreased as the polar surface area (PSA) exceeded 140 Å2. Inspired

by these studies, a number of researchers demonstrated that the impetus of most

lead optimization efforts tended to add size and lipophilicity to the molecule, and

that the desired lead should be smaller and less hydrophobic than the eventual drug

[33, 34]. This work has caused a number of researchers to limit the size of the

ligands that are introduced into the ‘‘collections’’ of potential leads. From a practi-

cal perspective, these rules have considerable operational benefit, because they

limit the size and conformational complexity of the molecules assessed. This leads

to smaller databases, and less search time per molecule. Another filter which

addresses size complexity from an operational perspective is the number of rota-

tional bonds present in the molecule [35]. Prefiltering the collection to remove

molecules with more than 10 rotatable bonds is a common practice except in

specialized situations where there is prior knowledge that a long linear chain is a

necessity for biological activity.

Another assessment of drug-likeness is afforded by Jorgensen’s Qikprop family

of ADME models [36]. In addition to the individual predictions, Jorgensen has

proposed a rule-of-three. This proposes that a successful drug will have predicted
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solubility (log S) >�5.7, predicted pCaCO >22nm s�1, and less than seven

predicted primary metabolites. Qikprop will also provide an assessment of whether

the compound is considered similar to molecules in the training set for these

models. Given the uncertainties about applying any general model to a diverse set

of molecules, this might be a consideration later in the assessment phase of the VS.

It might also be used to prioritize the eventual experimental hits for experimental

ADME assessment.

Additional filtering options arise from considerations of potential toxicity. Davis

et al. [37] published an extensive list of chemical fragments that were proposed by

medicinal chemists to be either reactive or that might be linked to toxicity. Such

filters can remove unwanted or suspect functionality prior to testing to increase the

likelihood of a hit being attractive as a chemical lead. Hit lists can also be filtered by

any number of general QSAR models of ADME properties. While effective at

further reducing the numbers of compounds in a database or list of virtual hits, the

applicability of a general model on a compound from a series on which the model

was not trained is suspect, at best. Such models are best applied late in the process,

when some critical assessment of their validity might be attempted based on known

data or by comparison of the compounds in the hitlist to the training set of the

model.

2 Ligand-Based Methods

2.1 Introduction

Probably themost efficient ligand-based searchmethoddevised to date is the similarity

search based on chemical fingerprints. There is a wide range of ways of defining

‘‘features’’ that can be mapped as part of a fingerprint: atoms, atom pairs, chemical

functional group fragments and connected bond fragments [5, 38, 39]. These can then

be further generalized, either by atomic properties, atom type, interactions afforded

by the chemical features (e.g., hydrogen bond donor/acceptor/both), or various

topological and graph theory indices [40, 41]. The choice of information encoded

and the degree of generalization or abstraction can be tuned in an attempt to bias the

‘‘similarity’’ to match molecules with desired common attributes.

Clearly, within the conceptual framework described above, there is extensive

room for exploration in creating fingerprints and similarity measures to retrieve

molecules based on varying conceptions of ‘‘similarity’’ [42–44]. The simplest types

of fingerprint consist simply of features indices that map the presence or absence of

a small library of functional groups. The most well known and effective are the

MACCS keys. These were initially chemical feature indices, that we later used

successfully as a similarity metric.

A richer fingerprint description is provided by the Daylight [45, 46] or UNITY

(Tripos Inc., St. Louis) fingerprints. These incorporate a much broader range of

features, notably including connected bond path fragments up to seven bonds long.
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Additional commonly-used fingerprints offer alternative ways to encode path

lengths. The ECFP [47, 48] series of fingerprints used in Pipeline Pilot use a

different algorithm to code path lengths of four bonds (ECFP4) or six bonds

(ECFP6) or higher in length. If the atoms are genericized to a small number of

roles (e.g., hydrogen bond donors and acceptors), the topologically related family

of FCFP fingerprints [49] can be generated. These fingerprints have proven useful

in multiple roles including similarity searching, complexity analysis, and QSAR

model generation using Bayesian learning machines [50].

Another family of fingerprints available are the MOE pharmacophore finger-

prints accessible through software from the Chemical Computing group [51]. In this

system, the atoms are generalized into a smaller vocabulary of pharmacophore

features, after which the fingerprint is constructed based on connected paths.

Feature-based fingerprints should be noted for their inclusion of pharmacophore

feature types, and counts along with structural and property data into a single

fingerprint for VS [52–56]. One of these arises from the Leadscope hierarchical

classification of 64,000 scaffolds which has been converted into a fingerprint and

used in similarity analysis [57]. Another more customizable set is one put together

by Digital Chemistry software [58]. Here, a wide number of feature, path, and

generalized features can be created as a huge dictionary, and then a subset of bits

with the best characteristics for a given task can be chosen. Unlike many folded

fingerprints, this approach has the dual advantages of being able to tailor the

fingerprint to the task, and to map back the features set to the molecule.

The pragmatic beauty of the chemical fingerprint is that the more common

features of two molecules that there are, the more common bits are set. The mathe-

matic approach used to translate the fingerprint comparison data into a measure of

similarity tunes themolecular comparison [5]. The Tanimoto similarity index works

well when a relatively sparse fingerprint is used and when the molecules to be

compared are broadly comparable in size and complexity [5]. If the nature of the

molecules or the comparison desired is not adequately met by the Tanimoto index,

multiple other indices are available to the researcher. For example, the Daylight

software offers the user over ten similarity metrics, and the Pipeline Pilot as

distributed offers at least three. Some of these metrics (e.g., Tversky, Cosine)

offer better behavior if the query molecule is significantly smaller than the molecule

compared to it.

When used in the VS context, the fingerprints of both query molecules and the

database of molecules probed must all be computed. Generally, the fingerprints of

the database compounds are often precomputed and held as additional attributes for

each molecule. For each type of fingerprint and similarity metric, some similarity

threshold is often applied to limit the number of hits achieved. Because of a fair

amount of work early in the 1990s, the 85% similarity threshold is often applied

(Tc ¼ 0.85). However, this was first done in the context of Daylight fingerprints and

Tanimoto indices, and should not be extended to other systems without further

validation. For example, our own work suggests that similar molecules will still be

retrieved using a 70% similarity threshold with UNITY fingerprints. Researchers at

Leadscope [59] applied a 45% similarity threshold to comparisons using their
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proprietary fingerprints. Some validation is generally needed when considering a

new fingerprint and similarity metric combination.

A different approach to molecular similarity is offered by various descriptor sets

generated either from calculated physical properties (e.g., molecular weight, cLogP)

or more complex metrics derived from graph theory. An example of the latter are

BCUT descriptors developed by Dr. Robert Pearlman [60, 61]. This is currently

available as part of DiverseSolutions (Tripos Inc., St. Louis). These descriptors are

generally understood to encode the molecular hydrogen bond donating or accepting

nature, charge, or polarizability. Operationally, this metric has the advantage of

scaffold hopping in practice [62–64]. A variant of this approach is available from

the CCG MOE software as QSAR descriptors [51].

2.2 Case Studies

Given the relative simplicity of ligand-based methods, it is interesting to note that in

only comparatively few published reports of VS successes do the authors rely

primarily on ligand-based methods. Of these studies, most appear to combine an

interest in a given target with an interest in providing proof-of-concept for some

extension of chemoinformatic theory.

In Table 2 we highlight pertinent information from a number of studies. We did

not aim to be exhaustive, but rather to provide enough examples to provide a flavor

for the type of studies performed. Of the studies in Table 2, one element to note is

the small number of compounds tested in five cases. Despite starting with databases

that range from 37 K to 2.5 million compounds, most researchers end up actually

testing less than 100 in most cases and several hundreds at most.

An example of the value of VS based on descriptors alone is that of the

identification of inhibitors of 5-lipoxygenase by Franke et al. [73]. 5-Lipoxygenase

catalyzes the first transformation of arachidonic acid to leukotrienes that mediates

many inflammatory responses. It has also been proposed as a contributor to

atherosclerosis, cancer and osteoporosis. To seed their study, 43 known 5-lipoxy-

genase pathway inhibitors were used. The investigators chose the AnalytiConMegx

library of purified natural products as their database, which contained 1,298 com-

pounds at the time of testing and the Nat-X library containing 7,839 compounds

[74]. The CATS-2D topological pharmacophore-pair descriptors [75, 76] were

used, and 430 hits (10/query) were assessed visually for the novelty of their

scaffolds. Just 18 were tested, of which two showed activity in a cell-based assay.

Both hits were from a library of natural products derived from a-santonin. For each
hit, several close neighbors were selected for screening from the NAT-5 library.

Additional hits were obtained for both series. Since cell-based screening was

performed first, followed by receptor-based screens, some ambiguity remains as

to whether the hits – especially related to series 2, are genuine 5-lipoxygenase

inhibitors or act elsewhere in the pathway probed by the cellular assay.
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A second example of a VS exercise that was largely fingerprint-based was that of

Boecker et al., in search of novel series for dopamine D2 and dopamine D3 blockers

[65]. A set of known actives consisting of 472 dopamine D2 and D3 ligands was

assembled from the literature. The SPECS database of 230,000 compounds was

chosen from which to identify compounds. Two descriptor sets were calculated:

MOE2D [51] and CATS3D [77] for both query and database molecules. Neighbors

Table 2 Examples of ligand-based VS workflows

Target Notes Outcome Reference

Dopamine D2, D3 SPECS db (230 K),

NN, clustering,

SOM

9 D3 antagonists,

6 D2 antagonists

of 190 tested

[65]

Kir6.2/SUR1 K ATP

channels

ZINC db (65 K),

FLAP screening

to 1,913

compounds

3 hits of 32 tested [66, 67]

L-type calcium channels

(voltage-gated calcium

channels L-subtype)

Similarity to Diltiazem

and a second ligand.

ZINC db (�50 K

commercially

available subset

screened but most

filtered to achieve

desired PK profile

using VolSurf ). SHOP

similarity, and

feature-presence

filtering down to

36 compounds

7 hits 18 tested.

active in a

vasorelaxant assay

and some had

novel structures.

[67]

5-Lipoxygenase AnalytiCon Discovery

db, Similarity

based on 2D

CATS descriptors

18 hits/430 tested [68]

ICAM-1/LFA-1 Database of 2,500 K,

custom minifingerprints

based on pharmacophore

pairs

1 hit/25 tested [69]

Na/K ATPase ICB natural product

database (37 K),

QSAR, Chemfinder

similarity search

based on ouabain

4 hits/10 tested [70]

PDE1, PDE5 SPECS (88 K),

CART regression

trees based on 2-point

pharmacophores

7 hits/19 tested [71]

Mycobacterium

tuberculosis

Recursive partitioning,

similarity

to conceptual

virtual libraries

1 hit/4 tested [72]
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of the known actives were then identified using NIPALSTREE hierarchical cluster-

ing, hierarchical k-Nearest Neighbor analysis, and a self-organizing map analysis.

These analyses yielded 37, 144, and 52 neighbors respectively. These hitlists were

culled by considering druglike properties, the presence of an ionizable nitrogen

(a key pharmacophoric element) and novelty. Of 17 compounds eventually pur-

chased and tested, nine had potent (Ki <1 mM) D2 binding and six had potent D2

binding. The most interesting had dopamine D3 binding of 65 nM and was 13-fold

selective over D2. As a follow-on study, a pharmacophore model was built using

the MOE [51] software and the dataset of literature and recently identified mole-

cules. This was applied to the SPECS database, and four additional compounds

were ordered. The best had dopamine D3 binding of 65 nM and was mildly

selective over D2. All four had binding of<10 mM at either the D2 or D3 receptors.

An interesting example of the use of novel fingerprints developed by the

cheminformatics group at the University of Perugia and marketed by Molecular

Discovery Inc. is afforded by a paper describing the search for novel potassium

channel openers reported by Carosati et al. [66]. Compounds that open pancreatic

ATP-dependent potassium channels may help regulate insulin secretion in diabetes.

The ZINC database [16, 19] of 65,208 compounds (in 2005) was reduced to 1,913

compounds by applying pharmacokinetic filters. Molecular weight was restricted to

between 200 and 600 amu, and clogP to between 1 and 5. In addition, three Volsurf

[78] ligand-based models were applied to select compounds predicted to have good

absorption, limited blood-brain barrier penetration, and adequate cell permeation.

From this smaller pool of compounds, molecules were chosen that were similar to

six known potassium channel openers. This was accomplished by principal com-

ponents analysis of the GRIND [79] (grid-independent pharmacophore descrip-

tors), multivariate similarity of TOPP [80] (three-point pharmacophore-based

fingerprints) and pairwise superposition and scoring of FLAP [80] (four point

pharmacophore-based descriptors) were calculated for query and target molecules

and similar compounds identified. After inspection and selection, 3 compounds of

32 eventually purchased demonstrated Emax >100% when tested in channel pre-

parations. The paper highlights that each different type of descriptor used identified

different compounds, which were combined into the final set that was ordered.

A fourth example highlights the value of generating a predictive model of

activity from known SAR and then applying this model to a database of com-

pounds. Yamazaki and coworkers undertook this analysis to identify new classes of

PDE1 and PDE5 inhibitors for development as potential cardiovascular therapeu-

tics. Existing SAR for 130 compounds was initially used to train a CART recursive

partitioning model, with 10,000 diverse compounds selected from 88,000 SPECS

compounds used as an inactive background. One hundred and sixty eight descrip-

tors were calculated based on binned distances between pharmacophore pairs, and

an additional 12 physical property descriptors were added. The SPECS database of

compounds was searched using the derived model, although filtered to ca. 50,000

compounds by comparing the latest version of the catalogue with a 1998 version

and removing common (older) compounds. This was done to bias the compounds to

those likely to be available. One thousand eight hundred and twenty one putative
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inhibitors were identified using the CART model, of which 100 were selected by

diversity analysis. From these, 19 compounds were tested, of which 11 showed

>50% at 10 mM and 7 were of interest as dual PDE1 and PDE5 inhibitors.

3 Pharmacophore-Based Methods

3.1 Introduction to Methods

The notion of the ‘‘pharmacophore’’ has a long and successful tradition within

medicinal chemistry. Before the visualization of protein–ligand interaction brought

on by crystal structures, chemists working within a given series would – by trial and

error – identify those parts of the molecule most associated with a desired biological

activity [81-83]. Provided the pharmacophore remained constant, changes else-

where in the molecule might modulate activity but often ensured that potency was

retained with exceptions arising only when additional molecular fragments caused

serious disruption. This idea can be further generalized; if a pharmacophore is

satisfied by other functional groups, or by comparable groups or atoms arranged in a

spatially comparable way on another scaffold, then the two classes of molecules

might share similar biological activity. This precept – that even when 2D topology

might not suggest a common pattern of features, the presence of required pharma-

cophoric elements in desired spatial geometry is sufficient to provide relevant

biological activity – has powered and continues to power the contributions of

computational modeling and VS to drug discovery and design, and is well reviewed

in the literature and a few are included [84–89]. These ideas were then extended to

searching a database of 3D structures for ligands that matched a 3D pharmacophore

[90, 91]. These are the methods that are generally referred to by the ‘‘pharmaco-

phore-based VS’’ shorthand. Implicit in some of the discussion about pharmaco-

phore-based fingerprints above is that another use of the term ‘‘pharmacophore’’ is

for any scheme that refers to a collection several atoms or functional groups to

pharmacophore features without the 3D geometry being included. However, in this

section, we will tend to focus on methods and case studies in which a 3D pharma-

cophore method was applied.

The 3D pharmacophore, in its simplest form, is the presence and geometric

arrangement of a combination key elements, usually selected from hydrogen bond

donor/s, hydrogen bond acceptor/s, aromatic ring/s, and hydrophobic group/s. In the

absence of 3D structures of receptors complexed to ligands, the pharmacophore was

considered the major biologically relevant metric [88] that related molecular

structure to biological activity. However, as one could easily perceive, a collection

of descriptors, which capture the characteristic elements, the charges, hydrophobic

character and shape, can readily describe a 3D pharmacophore in finer detail. Such

descriptors were deployed in modeling and design under the general umbrella of 3D

QSAR and VS experiments were accomplished with a spectrum of variations

that ranged from a simple collection of pharmacophoric binding elements to
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multidimensional QSAR. These have been covered in many recent and almost

recent reviews and we include a large selection of them for the benefit of the reader

who wishes to explore applying those methods [7, 8, 92–103].

A number of very useful tools have emerged using methods that rely on shape

matching or surface similarity matching. These include the ROCS method from

Open Eye (www.eyesopen.com, [1]) and the Surflex-Sim [104] surface-matching

method developed by Jain and currently marketed through Tripos. The shape-based

method from Open Eye, called ROCS [105] has emerged as a frequently used tool

in the hands of industrial chemists [1]. ROCS relies on the conversion of a single

molecule in a putative bioactive conformation into a series of Gaussian grid

functions representing shape or atomic character. This probe is compared to similar

information coming from a precomputed database of stored conformations, and a

scaled similarity function is generated from either shape overlap or similarity of

atomic character. Recent publications highlight the need to employ both types of

information to ensure enriched screening lists [106]. This method is distinguished

by its speed, reasonably simple command-line interface, parallelization, and robust

behavior across multiple ligand classes.

The Surflex-Sim method operates significantly differently [104]. Each of the

molecules is surrounded by a set of ‘‘observer’’ points that characterizes the local

character of the surface and potential interactions. Two similar molecules will have

a common subset of comparable observer points. A optimal alignment occurs when

the differences in pharmacophore character and molecular surface inferred from the

observer points are minimized between two molecules. To speed up the algorithm,

large molecules can be fragmented into parts which are then compared, and then

tested for consistency. This feature also makes the method capable of identifying

alignments when one molecule is much smaller than the other.

An older but effective and widely used method is the Catalyst program from

Accelrys. Like ROCS, it operates as a VS tool against a database that contains a

precomputed conformational expansion for all ligands. Multiple conformations of

every compound are stored. It is distinguished by the ability to generate a 3D

pharmacophore based on hydrogen bond donating and accepting elements, hydro-

phobes, and optionally positively and negatively ionizable functional groups. If

trained on known ligands with three or more orders of magnitude of biological data,

a robust activity prediction equation can often be generated. This function can be

used as a scoring function in the subsequent VS experiment. Unlike a similarity

function, this type of function can penalize for features that are already known to

detract from biological activity. However, in the absence of such a scoring function,

Catalyst can operate in a similarity scoring mode. Effective variations of Catalyst

like functionality are also available from Computational Chemistry software from

Chemical Computing Group and Schrodinger.

A third and slightly older method available is the UNITY package from Tripos

Inc. This also relies on the user to identify pharmacophore features and spatial

arrangement. When multiple compounds and biological activity is known, this can

be used to focus on a limited number of features or to exclude specific volume from

the molecule. The compounds in the database are then compared to the query
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pharmacophore using a flexible directed tweak algorithm. In practice, some tuning

of tolerances and features are often necessary to achieve reasonable recall of

actives. Validation with known actives against a small, diverse background of

inactives is often recommended prior to a large-scale database search.

A complementary method that derives pharmacophores from a protein crystal-

lographic complex is Ligand Scout from Inte:Ligand, [107] (www.inteligand.com).

This method has a limited vocabulary of pharmacophore features that includes

hydrogen bond donors and acceptors (and extension points), normals to aromatic

rings, and hydrophobes. In practice, it has been used to convert the putative or

known binding sites into pharmacophore search queries, after which the pharma-

cophore information is transferred to software such as Catalyst or MOE. In valida-

tion studies, it is effective at reproducing relevant binding modes.

Most of the pharmacophore methods employ a set of features that include

hydrogen bond donors and acceptors, hydrophobic volume, sometimes excluded

volume, and also positive and negative ionizable groups. An alternative pharma-

cophore description is that of the Cresset software [108, 109] [www.cressetbmd.

com]. This software relies on using the extrema of the electrostatic potential, as well

as a description of hydrophobic regions, to create a database query. To improve the

quality of the electrostatic potential around the molecule, additional charge-bearing

features are included in the force field representation to reproduce delocalized pi

electrons better. The field pattern is then compared to a database of precomputed

field representations based on multiple conformations for each molecule. The

software offers options to generate a consensus pharmacophore from multiple

ligands and to align the molecules retrieve for visual inspection.

3.2 Case Studies

A number of recent examples of the use of pharmacophores as a primary VS

method have appeared in the literature. Table 3 provides a selection of these studies,

with outcomes listed. The databases searched range in size from 630 molecules to

1.7 million molecules. Of the studies shown in Table 3, the Catalyst software is the

method most often used, followed by UNITY and the FlexS superposition tool.

An excellent example of the ability of pharmacophore methods to search a large

database rapidly is afforded by the VS done by Schuster [110] and coworkers to find

antagonists of 11-b HSD. This enzyme catalyzes the conversion of 11 ketosteroids

to 11-b hydroxysteroids. Inhibition of glucocorticoid overexpression may be effec-

tive in treating metabolic syndrome, and inhibition may also have a role in treating

diabetes and muscle atrophy. Known selective 11-b HSD1 inhibitors were used to

train a model in Catalyst that contained a donor location, an acceptor location, and

four hydrophobes. The ability to retrieve inhibitors was tested both using the known

inhibitors against a random set of molecules (presumed inactive) and from the WDI

database of approximately 63,000 compounds. A second model was generated from

inhibitors that bound to both 11-bHSD1 and 11-bHSD2 andwas tested in a similar way.
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The 2 pharmacophore models were used to search a database of about 1.8 million

compounds assembled from 12 commercial databases. Hypothesis 1 returned

approximately 20,000 hits, which were aggressively filtered using the Catalyst

scoring function, lack of hit to a hERG pharmacophore, clogP <5, fewer than

five donors and ten acceptors. Fifteen compounds remained and were available for

Table 3 Examples of VS using primarily pharmacophore methods

Target Notes Outcomes Reference

11-b HSD Database of

1,700 K,

Catalyst –>31 hits

7 hits/30

tested

[110]

AR downregulating

agents (ARDA)

Maybridge (60 K)

and NCI (239 K)

6 hits of 17

tested

[111]

Catalyst –>41 hits

Alzheimer’s

tau protein

Maybridge database,

136 identified

2 hits of 19

tested

[112]

CoX-2 Maybridge

database (12.5 K)

5 hits of 8

tested

[113]

Catalyst search

followed by

GOLD docking

Chloroquine-

resistance

reversal agents

3D QSAR [114]

Fetal Hb

transcription

inducers

TFIT pseudoreceptor,

Similarity search of

630 candidate molecules

2 of 26 active [115]

Ginkgolides as

GABA modulators

Pharmacophore search

of 300 K structures

No hits of 31

tested

[116]

GR-Glucocorticoid

receptor

Commercial db (718 K)

filtered to 862,

searched by FlexS

One series [117]

Chalcones Chemical library probed

with pharmacophore

Ligands active in

vitro and in vivo

[118]

Mycobacterium

tuberculosis H37Rv

Pharmacophore selection

of 95 compounds from

a database of 15 K,

docking to further

reduce candidates

4 potent hits [119]

PPARg Maybridge db (62 K),

Catalyst

Novel series [120]

Pfmrk: plasmodium

falciparum

3D QSAR [121]

SIRT-2 Maybridge,

Leadquest dbs,

UNITY search

4 of 11 tested [122]

T-type calcium channel Maybridge (55 K)

and ion channel

inhibitor db (8 K),

Catalyst search

3 hits of 25 tested [123]
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purchase after filtering. The second hypothesis returned 107 hits, of which 15 were

chosen for testing. Seven of the 30 compounds eventually purchased inhibited the

activity of cell lysates by at least 70% at 10 mM.

A second study points out the need to develop a strategy consistent with the

computational tools being used. Ray et al. [117] performed VS based on 3D

similarity to three glucocorticoid receptor blockers. High glucocorticoid levels

may be linked to the psychotic symptoms of psychotic major depression.

A commercial database of 718,000 compounds was aggressively clustered and

filtered to 862 compounds. FlexS [124], a 3D similarity program, was then used

to assess the similarity of these molecules to three known glucocorticoid receptor

blockers. The filtering was needed as FlexS performs a flexible superposition and is

comparatively slow. Because one of the query compounds was racemic, both

enantiomers were built and used as query molecules. Conformational searches of

the query molecules identified low energy conformations for each. From these

searches, 123 compounds were identified, which were further narrowed to 18 by

inspection and supplier considerations. Of these, one compound was reported to

block the glucocorticoid receptor with a Ki of 4.5 mM. Two rounds of similarity

searching identified more potent analogues, the best of which had a Ki of 16 nM in

in vitro screening. This demonstrates the need to match the database to the

computational capacity availability, the implicit value of inspection, and the

value of follow-up similarity searching to rapidly fill out SAR.

A third study demonstrates the value of using a pharmacophore obtained from the

binding site of a protein complex. Tervo and coworkers [122] used the UNITY

software to create two pharmacophore hypotheses based on the docking of three

known sirtuin-2 histone deacetylase inhibitors. Sirtuin-2 is believed to be essential

to the mitosis of some cells and may play a role in fat storage, some cancers, and

possibly Alzheimer’s disease. Based on the docked poses, a pharmacophore con-

taining two hydrophobic locations, a donor atom, and one of two possible acceptor

atom sites was defined, as well as regions of excluded volume. Lipinski filtering

was applied, with the donor atom limit reduced to three and the acceptor atom limit

reduced to seven. Flexible searches of the Maybridge and LeadQuest libraries were

performed, which resulted in 34 compounds. These were reduced to 32 compounds

by applying the Volsurf [125] permeability model. Further inspection led to the

purchase of 11 molecules. Of these, four showed IC50 inhibition of <200 mM in in

vitro testing.

4 Receptor Structure-Based Methods (SBVS)

4.1 Introduction to Methods

The genomic era continues to transform itself into the proteomic era [126].

A number of entities ranging from pharmaceutical companies to publicly funded
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academic research groups have been solving the crystal structures of many genes,

and tackling ever more complex crystallographic challenges [127, 128]. For many

families of drug targets there is now one or more crystal structures available of the

target itself or a close homolog or ortholog.

The elegance and promise of the availability of structure for ligand discovery –

that once we have an apo site in atomic resolution, we can find molecules that bind

tightly to it by generating a very large number of virtual complexes, followed by

scoring, ranking and selecting the very best – has been a holy grail of structure-

based discovery ever since Irwin (Tack) Kuntz and colleagues came up with a

program called Dock roughly two decades ago [129] that could identify molecules

from the Cambridge Crystallographic Database that could fill a given protein site.

Much has happened in the last two decades and a recent review, interestingly with

the same researcher being the first author, gives a picture of the state of the art

[130]. In the intervening 20 or so years, at least 50 docking programs and their

variants have been developed. Docking has come of age and docking software

available can in most cases reliably and quickly reproduce observed crystallographic

binding modes of protein–ligand complexes with RMS variations approaching the

experimental error in the crystallographic experiment that characterized them. With

robust docking tools and fast, cheap and plentiful computing power, it is a surprise

that SBVS has not replaced experimental screening. In practice, however, several

published and unpublished success stories notwithstanding, this still stays a chal-

lenge, to the point that successful SBVS is not as routine as one could have expected

it to be per our outlook from a decade ago [131]. This is despite vigorous develop-

ment of docking methods and scoring functions by the computational chemistry

community for well over a decade chronicled in the representative set of citations

here [21, 36, 132–142].

Part of this disconnect between expectations and performance in SBVS origi-

nates from the way protein–ligand interactions are quantitated to arrive at selecting

the best pose of the small molecule in the receptor site rapidly, or the way the

‘‘docking problem is solved.’’ These make approximations in correctly describing

the entropy change upon binding, and free energy components such as free energy

of solvation, in order to sample and evaluate rapidly a substantial number of

conformations including multiple poses for each conformation of the small mole-

cule in the receptor, assuming the receptor is held rigid, which is common in SBVS

applications. When applied to the problem of choosing the correct docking pose for

the same molecule, the changes in solvation and entropy tend to become negligible

from pose to pose, leading to substantial success in selecting the best pose from

amongst a set likely of the docked poses. This is only a generalization and can be

influenced by the nature of the binding site, in terms of whether it is a site that

deviates to the extremes of hydrophobic or hydrophilic character, whether there is

potential for less or more protein movement, and whether the ligand in question has

more or less rotatable bonds [135] resulting in one or more docking programs being

better than another for a particular combination of receptor and ligand. In addition,

most docking programs generate a series of poses that are relatively closely spaced

in their ‘‘docking score’’, the pseudoenergy function used by the docking software
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to differentiate between poses of the same molecule in a given receptor site. The top

ranked pose, the pose with the best ‘‘docking score’’ might often actually be less

similar to a crystallographically observed binding pose compared to a lower ranked

pose and could be seen to be one with less binding energy when evaluated with a

more accurate scoring function. This seemingly small error in choice of the best

pose of a single molecule gets magnified and becomes substantial when the best

docked poses of different molecules are compared, partly due to the breakdown in

the comparability of the approximations in solvation and entropic terms across

different ligands which can lead to incorrect rankings [171–174]. One could venture

to say that a consensus SBVS view today would be that the inability to rank a

database of ligands in order of their potential for binding to a given receptor site has

more to do with our inability to score the binding affinity of a series of ligands in

their predicted pose reliably than our ability to predict a reasonably accurate

binding pose [175]. To that extent, one of the strategies proposed for effective

SBVS is to generate a set of poses for a large collection of molecules rapidly using a

well approximated but fast ‘‘docking function’’ and then rank with a more thorough

but slower energy evaluation to rank molecules [176]. Extensive and continuing

effort has focused on generating better scoring functions that better capture free

energy differences between molecules, but can still operate fast enough to be of use

to a high throughput docking experiment [175–178]. Results of head to head

comparisons of docking and scoring using multiple docking scoring software

frequently suggested that different scoring functions could be more effective for

different receptors and this led to the drive towards consensus scoring functions

[179–182].

Given that the focus of this chapter is SBVS and not a treatise on docking

protocols, we give here a very brief and less than comprehensive coverage of

docking algorithms and some of the commonly used docking software. For SBVS

applications, the two most relevant pieces of information on the docking software

would be the speed of the docking software and quality of pose(s) obtained.

A number of packages are available, many of which have been applied to

structure-based VS experiments and with success. Among the earliest attempted

were incremental construction approaches, wherein the program attempts to

exhaustively position the largest fragment in as many locations as possible with

the active site, followed by adding subsequent fragments with suitable torsions.

DOCK, FlexX, Hammerhead, and eHits are amongst the software that use this

approach. Monte Carlo approaches to sampling the pose and conformation of the

ligand are used by QXP, ICM, and PRODOCK and these tend to be slower.

Evolutionary algorithms that improvise on preferred poses are used by docking

software like GOLD, EP Dock and FITTER. GLIDE software uses a rough

sampling initially and follows with a refined search using a more sophisticated

scoring scheme. Surflex-Dock also performs a rough docking simulation to obtain

seed poses which are refined further with a more rigorous scoring scheme. By

using sequential docking simulations of varying rigor, the sampling approximately

mimics the outcome of a more intensive search. Most of the docking software

mentioned could be used to dock anywhere from a few hundred to 10,000 mole-
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cules in reasonable time and depending upon availability of processing power and

parallelizability of the application, could screen up to 100,000 molecules within

days. If the task is to dock millions of molecules, then it becomes faster to

precompute a set of conformations for each molecule and limit docking to posi-

tioning the rigid ligand in the active site of the receptor. The FRED software from

OpenEye used in conjunction with Omega, the conformer generator also available

from OpenEye, takes this approach. Flexibase/FLOG also share the precomputed

database approach.

With so much docking software to choose from, the SBVS practitioner is left

with limited guidance in choice of docking and scoring options not to mention the

critical postprocessing that has to bring the followed up hitlist to less than a hundred

if the ligands or to be acquired through purchase for testing, and possibly a few

thousand in a pharma setting. To that end, several studies have been published over

the years that compare a subset, usually the most commonly available, docking and

scoring applications, in a head-to-head comparison using datasets containing

known hits and decoys for receptors where structural information is available and

the enrichment could be studied carefully [106, 135, 173, 174, 176, 183–185]. If

nothing else, these highlight the significant variation in performance of any package

based on subtle variations in decisions about database construction, choice of data

sets (both of active molecules and inactive decoys), program settings, and protein

systems. In practice, most users rely on docking and scoring packages readily

available to them, rather than try to find/use THAT ONE package that always

works. The enrichment or the efficiency of the VS effort becomes more and more

stringent as the proportion of compounds screened approaches 1% or less of the

database of compounds screened. In these instances, for increasing the chances of

success, one needs more than a protein structure, computing power, and software.

Additional knowledge of the binding preferences of the active site in question can

easily outstrip incremental advantages provided by one software over another and

visual inspection and/or consensus approaches can aid in weeding out false posi-

tives effectively [21, 134].

The convenient shorthand in the community is that SBVS approaches are limited

by ‘‘inadequate scoring functions’’. This is partly true, because in an SBVS experi-

ment, due to the need for speed, the scoring functions do not perform a rigorous free

energy calculation, and they will remain limited. Sampling, especially in situations

where the ligand in question is increasingly complex with multiple rotatable bonds,

can also be an issue. A significant other limitation is that generally only one protein

structure is used, and held rigid. Movements of side chains or entire domains will

not be modeled correctly and the extent an active site moves in response to a given

ligand can be largely dependent on receptor mobility and ligand-dependent in

addition to that. The resulting scores, whether fortuitously good or bad, will not

be of the correct docked mode. In the latter case, even if appearing highly ranked in

a hit list, this may be filtered out when inspected. Fortunately, there have been

several attempts at addressing limited side chain mobility at least for situations of

medium throughput and SBVS is becoming practical with inclusion of protein

mobility [176, 186–190].
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4.2 Case Studies

The study by Agrawal and coworkers [191] demonstrates key features in

performing a structure-based VS. They searched for inhibitors of DNA primase

from E. coli, an essential enzyme for bacterial reproduction with distant human

homologs. Although a crystal structure of the DNA primase catalytic domain is

available (1DDE) [192], this alone provides little insight into the most productive

binding site. The GRID [193] software was used to identify three putative binding

sites. The database to be searched was constructed from the catalogues of

20 vendors, and filtered to remove reactive functional groups, compounds with

more than eight rotatable bonds, cLogP less than 5, and MW between 275 and 500.

This resulted in a database of approximately 500,000 molecules. Representative 3D

conformations were generated, protonated, and minimized. For each of the three

sites identified, grids were generated with a 16-Å bounding box and a 20-Å

enclosing box. Glide docking was performed, and the top 2,500 compounds as

defined by the Glide SP score were inspected individually for feature complemen-

tarity, and correct ionization. A short list of 79 inhibitors was created, of which 68

were available for purchase. Of these, four inhibitors inhibited primase with an

IC50 less than 100 mM.

A study by Alvesalo [194] and coworkers provides an interesting contrast in

terms of methods and highlights some subtle considerations. In this case, they

attempted to develop antimicrobial agents against Chlamydia pneumoniae. They
chose to target dimethyladenosine transferase, but, because no crystal structure was

available, chose to screen the structure of Bacillus subtilis RNA methyltransferase

(1QAO) [195] as a surrogate. A database was constructed of molecules available

from Specs and Maybridge, and contained 300,000 compounds after filtering for

undesirable chemical groups. The database was docked into the protein binding site

using FlexX [196], after which the top 2,000 molecules were inspected. From this

set, 33 molecules were purchased. Of these, eight demonstrated >50% inhibition at

50 mM in a cell assay and represented two series of interest. This demonstrates that

the use of a surrogate protein is viable if no exact crystal structure to the target of

interest is available.

A VS study by Furci [197] and coworkers highlights the use of a third docking

program, DOCK, against heme oxygenase from Neisseria meningitides, a Gram-

negative pathogen. Heme oxygenase is an essential enzyme for heme utilization by

the bacteria and blocking its function should arrest bacterial growth. The protein

complex including heme (1P3T) [198] was subjected to molecular dynamics

simulations with the heme removed to identify four suitable apo structures into

which to dock the ligands. A database of 800,000 molecules was assembled from

the supplier catalogues of Chembridge, Chemdiv, Maybridge, and SPECS. Com-

pounds were docked into a single protein conformation to identify 50,000 mole-

cules using the DOCK software. A second round of docking into all four
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representative protein conformations obtained from the molecular dynamics simu-

lation allowed narrowing to the top 1,000 compounds (based on best docking score

to any of the 4 protein conformations). This list was further narrowed by clustering

and inspection, with 153 compounds being purchased for testing. Of the 153

compounds obtained, only 37 were soluble in DMSO or buffer, and of these, 10

interfered with the fluorescence polarization-based assay. Of the 27 tested, 8 exhib-

ited inhibition of heme oxygenase with Kd values ranging from 12 to 240 mM. This

study demonstrates the value of a sequential VS strategy, and also the way in which

experimental considerations (i.e., compound solubility) can limit the overall impact

of a VS study.

An example of a sequential docking strategy using different software is provided

by a VS for CDC25 phosphatase inhibitors by Montes and coworkers [199]. CDC25

phosphatases play an important role in initiating cell cycle events; blockade may

lead to useful anticancer effects. The structure of CDC25B (pdb code 1CWT) [200]

was prepared for VS by adjusting the protonation states of various residues in the

putative binding region. The 2005 release of the Chembridge database was filtered

to remove compounds with undesirable reactive groups, leaving approximately

313,000 compounds. Up to 50 conformations per molecule were generated and

the FRED software was used to dock the database into CDC25. The top 50,000

compounds were then redocked with full ligand flexibility using Surflex. The

docked poses were then scored using either a receptor-specific Surflex function or

with a receptor-specific function generated by LigScout. The top 450 molecules

from each list, and the molecules that appeared in the top 3,000 molecules of both

lists (total 1,500) were tested for enzyme inhibition. Of these, 99 showed at least

20% IC50 at 100 mM, with the most potent having an IC50 of 13 mM and showing

inhibition in a HeLa cell assay. Overall, a number of interesting series were

obtained, and the authors note the importance of consensus scoring in choosing

their most active molecule.

5 Hybrid Workflows

As seen from the case studies described in the previous sections, many investigators

use multiple complementary methods to reduce and refine their hit lists to manage-

able numbers. Often, an inspection step is included, which places a de facto upper

bound to the size of the hitlists that are reviewed.

In this section, a number of case studies (Table 5) in which different types of VS

methods are combined into a hybrid workflow. Often these combine a fast, ligand or

pharmacophore-based method with a later docking method. The latter is useful at

the inspection stage as it allows the molecule to be reviewed within the context of

the protein binding site. A poor binding pose can be an indicator of a poor fit.

Furthermore, possible interactions outside the scope of the molecules used to train

the ligand-based method can be identified.
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5.1 Case Studies

An informative example of a hybrid workflow applied to HIV reverse transcriptase

is provided by Barreca and coworkers [212]. Nonnucleoside reverse transcriptase

inhibitors (NNRTI) bind to HIV reverse transcriptase and block viral replication. In

this study, the Ligand Scout software was used to create a Catalyst pharmacophore

from the protein complex of reverse transcriptase and Janssen R185545 [213]

(1SUQ). This pharmacophore was used to search the World Drug Index (WDI,

67,000 molecules) and the Chemicals Available for Purchase (CAP, 1.7 million

compounds). The molecules retrieved by the Catalyst pharmacophore with a fitness

score greater than 3.0 included 521 from the WDI and 11,273 from the CAP.

After filtering using Lipinski conditions, 9,345 remained. These were docked

using Glide with SP scoring, and the best 1,000 hits were inspected individually.

Interesting, novel compounds were evaluated for availability using the substructure

capabilities in the Scifinder software, and six compounds were ordered and tested.

Of these, five showed significant activity, with potency ranging from 0.2 to 4 mM.

A second study by Hartzoulakis et al. [204] also provides an example where the

use of multiple methods facilitates an efficient search strategy. The target in this

case was dimethylarginine dimethylaminohydrolase, an enzyme that modulates the

nitric acid pathway in endothelial function, and may also control a cardiac risk

factor. A bacterial ortholog from Pseudomonas aeruginosa may also contribute to

pathogenicity in cystic fibrosis. A database of 308,000 commercial compounds was

filtered to keep compounds with cLogP between �2 and 5, molecular weight less

than 650, five or fewer hydrogen bond donors, ten or fewer acceptors, and ten or

fewer rotatable bonds. This removed about 43,000 compounds. A reciprocal Near

Neighbor clustering was used to select 35,000 compounds. These were docked into

the active site of the DDAH enzyme from Pseudomonas aeruginosa [214] (1H70)

using the FlexX software. The top 1,000 compounds were rescored using a combi-

nation of scoring methods, and the top 200 were inspected. Of the 109 selected, 90

were available and tested, of which three were interesting molecules, the most

potent of which had an IC50 of 17 mM. This is an example in which clustering was

used to reduce the number of compounds that were docked to a number consistent

with the capacity of the FlexX program and their computing resources.

As an example of the utility of combining pharmacophore models and docking

to select ligands from very large databases, the VS of Liao and coworkers [207] of

HIV integrase offers an excellent example. In this case, the ChemNavigator data-

base containing approximately 13.5 million compounds was searched. Thirty

Catalyst pharmacophores were generated from known HIV integrase inhibitors,

and all were used to search the database, resulting in about 235,000 hits. After

filtering using Lipinski conditions and deduplication, the resulting 167,000 com-

pounds were docked into a model of HIV integrase. The docked poses of the 1,500

top scoring compounds were inspected visually. After additional ADME models

were applied and availability assessed, 88 compounds were obtained for testing.
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Of these, eight compounds were assessed as active, with IC50 in their primary assay

ranging from 37 to 780 mM.

6 Fragment-Based Virtual Screening

Many a pharmaceutical scientist would have at one time or another looked at a

competitor’s patent compound and looked for ways to find a lead that retains the

activity of the competitor’s compound but looks different enough not to infringe on

the competitor’s patent. A common strategy in such situations is to replace fragments

in the molecule with isosteric fragments. These fragments could be small amounting

to a few atoms or pieces that are over 100 Da or more in molecular weight. The FBVS

discussion here is of fragments/substructures and does not pertain to fragments that

are composed of five atoms or less. With increasing need in pharmaceutical research

to have leads derived frommore than one chemical class for a given target, to serve as

a backup in case of unexpected failure of the lead candidate in the clinic which is

attributable to compound class, researchers are sometimes looking to imitate their

own compounds with a sufficiently different scaffold. FBVS is very similar to this

strategy with a small twist.

FBVS presumes that all fragments of a tight binding ligand do not bind with the

same ligand efficiency. While this is nothing new, in that computing properties of

molecules using properties of their components is a very common occurrence in

computational chemistry, fragment-based design successes in the recent literature

[215–217] have given strong support to the notion that tight binding ligands can be

obtained by starting from very ligand efficient albeit weak binding fragments and

growing to larger ligands with high affinity when the added fragments are chosen

with care so as not to compromise ligand efficiency significantly. When two

fragments with affinity for a receptor are linked without restraining the ability of

the fragments to bind to their respective preferred site on the receptor, the combined

affinity is the sum of their binding affinities [218, 219].

For this to work, one has to have one or more seed ligands with at least moderate

to high potency against the receptor. The more potent the seed ligand, the better.

The molecule is then logically broken to fragments, typically at retrosynthetic

bonds or if synthetic issues are not a key criteria, at rotatable bonds. Automated

methods that take advantage of such fragmentation followed by piecewise similarity

based retrieval followed by assembly have been reported [42, 220]. In cases where

structural information is available for how the ligand binds to the target receptor,

one could run energy computations to find the receptor affinity of the various

fragments and weight the substructures and get better retrievals [221]. The rest of

the VS is very straightforward. Two-dimensional similarity, pharmacophoric simi-

larity or shape and electrostatic similarity could be used to find new fragments. The

new fragments are linked together in an n � n matrix and tested for relevance by

passing through a 2D similarity filter (to the seed molecule) or pharmacophore or

protein–ligand interaction energy scoring filter (where structure is available, using
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docking and scoring) and other relevant filters. The resulting hits that look attractive

enough could be synthesized or ordered for testing based on availability and

synthesizability considerations and could also be used as idea generators.

The applicability of such VS in combination with tools available include situa-

tions where portions of any molecule need replacement with bioisosteric fragments.

In this regard, BROOD software [105] and MOE [222] provide automated tools for

fragment removal, replacement, and minimization to relieve any strain in the

molecular assembly step and provide a database of fragments(isosteres) that

could be enhanced in custom fashion by an enterprise as well. These software

allow facile FBVS in 3D. Since this software has become available within the last

2 years, there seem to be a dearth of use cases in the published literature. However,

anecdotal reports indicate that these are being used regularly in industry and the

Websites of these two vendors provide adequate information for the inquisitive

reader.

6.1 Case Study

Rummey et al. [223] searched replacements for the pyrrolidine present in their

DPP-IV inhibitor searching a 10,000-molecule subset of small primary aliphatic

amines extracted from the available chemical directory and visually inspected the

top 500 of them. Four were selected for testing and two of them were novel hits.

Considering the power of these methods to retrieve novel molecules, it is only a

matter of time before more successful reports are available.

7 Text-Mining as a Novel Virtual Screening Tool

‘‘Can I use Google to find other molecules that have similar properties as my

molecule?’’ could be an innocent question posed by someone new to computational

chemistry. The irony of it is that all information about molecules are present in

publications that are predominantly text, yet, the most powerful text-mining tool

cannot retrieve it for us, at least at the present time, unless the molecular query is a

simple name like glucose or pyrrolidine. To the present-day scientist, this might

look something of an impossibility only if the person does not stop to think for a

moment that the question would have hardly been comprehended by the average

person only a decade ago. Text mining and natural language processing (NLP) a

decade ago was not what it is today [224].

To a computer scientist, VS is nothing but another text mining, only the bits and

bytes stored that contain molecular information adopt a format quite different from

natural language and without adequate warning cannot be quickly interpreted. It is

not that modern day text does not contain text that is not natural language, but that

they are adequately flagged and do not stop the NLP software. For example,
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hyperlinks do not read like natural language but they are adequately flagged and are

properly processed. In the case of chemical structures, the material to be searched,

the algorithms, used and retrieval techniques are geared towards structure percep-

tion and manipulation although the information is still stored and operated on as bits

and bytes. This limitation exists because molecular information is not expressed in

natural language in an easily perceptible form, and where we do express them, in

patents for example, it is so convoluted that very few people attempt to read and

decipher the chemical structure or composition by reading the IUPAC name

detailed in a patent. Everyone reaches for a translator, nowadays inevitably the

appropriate software, that could translate the name into the familiar chemical

structure form. Unfortunately the one line smiles representation of a molecule did

not come into vogue soon enough and computing facilities did not exist to encour-

age the broad range of scientists to represent every structure to be associated with its

smiles in written documents with appropriate flags to enable software to interpret it

correctly.

7.1 Current Limitations

One of the greatest limitations of searching for molecules is the fact that the

database is finite. Several forms of text similarity are a part of the strategies used

by people not trained in science and those easy similarity search strategies are not

available to the scientist searching through molecules. Unless the database is

prepared in a specific format and made available, searching cannot proceed. Search

results are curation dependent and associations are limited by curation capabilities

and subject to errors and biases introduced at the point of curation [224]. To give a

simple example, if the curator errs and associates a wrong number with a molecule

structure in the main database, regardless of how many other documents carry the

correct information, people will repeatedly extract the wrong information because

the association cannot be deciphered using NLP from other corporate documents.

The rate of publishing is exploding, and curation is limiting. Imagine entering the

smiles string for a molecular fragment in Google and get 300 references all discussing

various pieces of information about it! Imagine replacing one of the carbon with an

asterisk and seeing many analogs and information about them as well.

7.2 The Rewards of Storing Molecular Structures in NLP
Searchable Form

Screening brings back a rich variety of information, not just what the curator put in

the database. Suddenly a chemist can read everything about a molecule ever

printed, not just what someone decided to associate it with. Distant associations –

A related to B and B related to C might mean A related to C– will become apparent.
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Chemical structural information is one of the missing pieces in the great effort to

bring biomedical research into the realm of twenty-first century information extrac-

tion and knowledge discovery paradigms. Proteins, genes, diseases, and chemical

compounds constitute the major entities extracted in the biomedical domain. The

ability to read structure information and substructure information and their associ-

ation to other entities could have a major impact on toxicity information in

particular and ADMET data in general.

7.3 Potential Long Term Solutions

How do we do it? Every 2D structure reference created in the future should have a

hyperlink to a canonical smiles string. Smiles readers should be freeware so when

mousing over the molecule reference, the structure pops up. Start representing

structures today and 15 years from now, our 2D VS efforts will look very different.

Themain added advantage will be that the data associated with every structure will be

available for natural language processing software from which to process and extract

information. Structures themselves can be searched in unforeseen ways. This will

bring information about molecules in an unprecedented fashion to the average reader.

7.4 Potential Short Term Solutions

There are few short term solutions that we can think of. The technology for

accessing publications underwent a dramatic makeover in the last decade, moving

from predominantly paper to predominantly electronic through a coordinated set of

efforts from publishers and consumers (in this case scientific research users) alike.

A study of how such a transition was successfully handled could provide clues on

how to make it happen.

8 Summary

VS continues to be a growing area, fueled by the dramatic increase in affordably

priced computing capability, and the development of better algorithms and soft-

ware. Its position as a cost-effective alternative to high-throughput screening, the

traditional engine for lead identification for pharmaceutical discovery, is bound to

rise, despite the technology advancements in screening through ultrahigh through-

put methods, miniaturization, and automation. This is partly due to the high cost of

personnel and reagents, both of which are needed in larger supply for HTS

compared to VS. However, as the field stands today, one would be very justified

in stating that VS is nowhere near replacing experimental screening methods and

this is mostly due to the inconsistency of success in finding leads using VS. Many
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factors, the target itself and the information available to prime the VS effort being

the major ones, the technique, the software and the expertise of the screener being

the minor ones, influence the success rate. This continues to be a fast growing field,

and the recent trends and progress in identifying the major challenges and addres-

sing them effectively both at the scientific and algorithmic levels bodes well for the

future of this method.

8.1 Virtual Screening Strategy

There has been considerable debate within the community and in the literature

about the relative merits of ligand-based vs protein structure-based screening. In

principle, the protein-based screen should provide the broadest access to novel

chemotypes that could interact with the relevant binding site. The 2D ligand-based

methods are often best at retrieving hits chemically similar (same or highly related

scaffold, comparable pendant groups) to the query molecules. There have been

efforts to develop measures of chemical similarity based on 2D graphs alone that

better generalize the hits retrieved to compounds that include dissimilar but accept-

able alternative scaffolds. However, these approaches tend to retrieve a large

number of false positives; setting a similarity threshold to include these more

dissimilar-but-acceptable hits often leads to the inclusion of far more dissimilar-

but-unacceptable hits, leading to less enrichment. A third option has been the

emergence of 3D similarity methods. These appear to provide a compromise

leading to a balanced retrieval of both analogues and compounds containing

alternative chemical scaffolds [1, 106].

Optimal strategy rests in balancing a mix of techniques and shaping the workflow

for a given VS based on the information available, the perceived strengths and

limitations of various techniques, and the time and effort needed. Clearly, in the

absence of a protein crystal structure or acceptable homology model, ligand-based

screening is the obvious option. At the other extreme, in the absence of known

ligands, a protein-based screen could be contemplated. When one or more protein

crystal structures are available, as well as a number of ligands that have been

identified either from the literature or by some previous experimental effort, a priori,

the all-out approach would be to bring to bear all available techniques to the

problem. However, ligand-based screening often requires less preparation and less

analysis of results, thus being sparing of the computational chemist’s time and first

one to get results out. Protein-based screening generally requires more time to

prepare and validate the simulation, and to analyze the results, often including visual

inspection to ensure that docked modes are acceptable. The choice of strategy then

requires a balance between the enrichment that is expected, the anticipated novelty

of the hits, and the time and effort available to invest in the effort.

As general guidance, we would suggest the following guidelines:

1.
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Include VS in a lead discovery strategy whenever possible. Computational VS is

low cost. It is typically performed by a single scientist who employs multiple

processors, typically LINUX clusters now available at commodity prices. Of the

many resources needed in the drug discovery process, processor time belongs in

the inexpensive category. VS also brings considerable benefit. Many of the

methods available offer some enrichment over purely random screening, and

often offer significant enrichment.

2. Test a substantial number of compounds. VS methods generally offer enrich-

ment, but most ranked hit lists contain a significant proportion of false positives.

Hitlists should be scaled to 1–5% of the compounds in the virtual library

screened. In many real world situations, the computational chemist is being

asked to choose lists of compounds representing 0.1% or less of the compounds

screened (e.g., the ‘‘best 100’’ of 100,000 compounds). Typically, VS methods

have been validated considering 1%, 5%, or 10% of the total number of

compounds in the VS collection. By following up on more compounds, one

increases the probability of impact from VS.

3. Include a 3D ligand-based method. In our internal efforts across two companies,

we arrived at the same conclusion as the Merck researchers [106] that a 3D

similarity method appears to offer a good balance between effort expended and

the number and novelty of hits generated.

4. Automate. Much of the human effort in VS arises at the point of combining

various hit lists, followed by scoring and selection. The more this can be

automated, the more efficient the VS experiment becomes.

5. Integrate. An effective strategy is to view VS as an approach to identifying

chemical matter that is complementary to wet methods. This opens up potential

symbiosis between the VS benefiting from the HTS, or alternatively, HTS

benefiting from early hits identified by VS. Such a complementary view cannot

be overemphasized given that the role of VS in drug discovery is often looked

upon as competitive with high throughput screening or focused subset screening.

However, the lower cost and faster completion times should make VS acceptable

even with lower enrichment numbers. The savings in cost and time to obtain a

hitlist of active compounds can be significant if additional factors like the cost

and time of adaptation of an assay for HTS purposes, compound depletion in the

collection due to HTS, level of false positives from HTS created by mechanical

and measurement errors are considered.

6. Whenever possible, inspect the hitlist. Within the literature, there is a surprising

number of instances in which small numbers of compounds were ultimately

ordered. This inevitably requires individual inspection of compounds. In this

situation, applying all relevant simulations and any hypotheses based on prior

knowledge about key features are key contributors to higher enrichment. Where

it is possible to order a larger VS hitlist for testing, some additional tolerance in

favor of serendipity is beneficial. (For example, lowering the VDW radius of

ligands or proteins to allow for possible protein motion or just ignoring small

steric clashes.)
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