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Abstract

The effective sample size (ESS) is a metric used to summarize in a single term the amount of correlation in a sample. It is of particular inter-
est when predicting the statistical power of genome-wide association studies (GWAS) based on linear mixed models. Here, we introduce
an analytical form of the ESS for mixed-model GWAS of quantitative traits and relate it to empirical estimators recently proposed. Using
our framework, we derived approximations of the ESS for analyses of related and unrelated samples and for both marginal genetic and
gene-environment interaction tests. We conducted simulations to validate our approximations and to provide a quantitative perspective
on the statistical power of various scenarios, including power loss due to family relatedness and power gains due to conditioning on the
polygenic signal. Our analyses also demonstrate that the power of gene-environment interaction GWAS in related individuals strongly
depends on the family structure and exposure distribution. Finally, we performed a series of mixed-model GWAS on data from the UK
Biobank and confirmed the simulation results. We notably found that the expected power drop due to family relatedness in the UK
Biobank is negligible.
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Introduction
Genome-wide association studies (GWAS) have identified
thousands of genetic variant-trait associations, improving our
understanding of the genetic architecture of complex traits and
diseases (Visscher et al. 2017). Most published GWAS used linear
regression (LR) performed in samples of unrelated individuals
due to the fast computation of statistical tests and their well-
known analytical properties (Yang et al. 2011). These properties
also facilitate a range of secondary analyses based on GWAS
summary statistics, including meta-analyses (Sung et al. 2016),
fine-mapping (Yang et al. 2012), partitioning heritability (Gazal
et al. 2017; Finucane et al. 2018), and polygenic risk prediction
(Vilhjálmsson et al. 2015). The increase in very large cohorts con-
sisting of combined samples of unrelated and related individuals,
such as the UK Biobank (Bycroft et al. 2018), poses new challenges
to both GWAS and post-GWAS analyses. In this context, linear
mixed models (LMMs) have been established as an alternative to
LR that allows retaining related individuals (Loh et al. 2018), ac-
counting for cryptic relatedness (Tucker et al. 2014),
and conditioning on the polygenic signal (Yang et al. 2014).
Nevertheless, works on optimizing computational algorithms

and determining the analytical properties of LMMs are active
areas of research (Yang et al. 2014; Joo et al. 2016; Loh et al. 2018;
Pazokitoroudi et al. 2019). Among the parameters of interest, pre-
vious works briefly introduced the effective sample size (ESS), a
metric quantifying the size of an equally powered GWAS per-
formed in unrelated individuals by LR and proposed empirical
solutions to estimate the ESS (Yang et al. 2012; Gazal et al. 2017;
Loh et al. 2018).

In this work, we derive an analytical ESS estimator for samples
with related individuals and present three applications of our
estimator covering different study designs (unrelated/related
individuals), association models (LR/LMM), and parameters of in-
terest (marginal genetic/gene-environment interaction effects).
First, we quantify the impact of having related rather than unre-
lated individuals in a sample on the statistical power (Visscher
et al. 2008; Loh et al. 2018). Intuitively, having related individuals
results in lowering the power, as related pairs harbor overlapping
phenotypic and genetic information (Visscher et al. 2008), a situa-
tion previously discussed for sibships (Sham et al. 2000). Here, we
propose a general framework applicable to any study design.
Second, we revisit the impact of using LMMs in association
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studies of unrelated individuals, where the polygenic signal is

modeled as a random effect via the genetic relationship matrix

(GRM). Previous works focused on the distribution of test statis-

tics (Yang et al. 2011, 2014) and proposed empirically estimating

the ESS based on the ratio of the association chi-square statistic

between LR and LMM from the top variants (Gazal et al. 2017;

Loh et al. 2018). We show that this strategy should be used with

caution, and we discuss more robust alternatives. Third, we

tackle association studies of gene-environment interactions

(Aschard 2016) and examine how family resemblance in related

individuals affects the power of detecting the interaction effect

using an LMM. Related works empirically evaluated different

family-based designs to increase power (Gauderman 2002, 2003)

but provided analytical derivations for the interaction test only

for the LR model applied to unrelated individuals (Aschard

2016). Again, our analytical estimator fills this gap, covering

both LR and LMMs.
For ease of interpretation, we introduce the ESS multiplier as a

measure of relative power. It is defined as a ratio of the noncen-

trality parameters (NCPs) between an LMM and an LR model,

where the LR model is applied to a sample of unrelated individu-

als that is the same size. The manuscript is organized as follows.

We first derive approximations of the NCPs for LMM tests and

use them to further derive the ESS multiplier. We then demon-

strate the validity of our multiplier through extensive simula-

tions and analysis of real data in the UK Biobank (Bycroft et al.

2018). We finally discuss the influence of multiple factors on the

multiplier, including the family structure, the amount of genetic

variance explained, and distribution of environmental exposure

(when testing for gene-environment interactions).

Methods
Linear models
We consider an LMM and derive the Wald test statistic of associa-

tion between a genetic variant and a quantitative trait. We fur-

ther derive the LR statistic as a special case of LMM statistic.
Let N denotes the number of individuals, M denotes the num-

ber of genetic variants, y denote an N� 1 vector of an outcome

trait values, W denotes an N�M matrix of genetic variants and w

denote an N� 1 vector of the genetic variant tested, i.e., a column

in W. We assume that the vector y and the columns in matrix W

are standardized to have zero mean and unit variance, and there

are no other covariates. The effect of the variants on the outcome

y is then modeled using a multivariate normal distribution:

y � Nðwb;RyÞ (1)

where b is the standardized effect size, and Ry � covðyÞ is the

N�N covariance matrix of the trait across N individuals.
If the covariance matrix Ry is known, b can be estimated using

generalized least squares (GLS) (Lynch and Walsh 1998). The

Wald statistic is defined as s ¼ b̂
2
=varðb̂Þ, and it is compared to

the v2
1 distribution under the null hypothesis of no association:

b¼ 0. The LMM statistic is finally expressed as (Lynch and Walsh

1998; Chen and Abecasis 2007; Joo et al. 2016):

b̂LMM ¼
wTR�1

y y

wTR�1
y w

(2)

varðb̂LMMÞ ¼
1

wTR�1
y w

(3)

sLMM ¼
ðwTR�1

y yÞ2

wTR�1
y w

(4)

The LR statistic has a simpler form. Considering that Ry ¼ r2
r I

and w is standardized so that wTw ¼ N, and assuming r2
r � 1.

Since the vector y is standardized and the variance captured by
the genetic variant is negligibly small, the LR statistic can be
expressed as:

b̂LR ¼
wTy
wTw

(5)

varðb̂LRÞ ¼
r2

r

wTw
� 1

N
(6)

sLR ¼
ðwTyÞ2

r2
r wTw

� ðw
TyÞ2

N
(7)

Gene-environment interaction
To study the gene-environment interaction effect on a standard-
ized quantitative trait y, the linear model in Equation 1 is
expanded by including two N� 1 vectors: one vector d for
environmental exposure, and another vector v � w � d for the
gene-environment interaction obtained by element-wise multi-
plication of the two vectors w and d.

y � Nðwbþ dsþ vd;RyÞ (8)

where b, s and d denote the genetic variant, exposure, and inter-
action effect sizes, respectively. We again assume that all three
vectors of covariates are standardized to have zero mean and
unit variance, and there are no other covariates.

Under the assumption that two random variables of genotype
and environmental exposure are generated independently, the
standardized interaction effect d can be evaluated independently
from the two main effects b and s (Aschard 2016, Appendix C].
Thus, the test statistic for the gene-environment interaction can
be expressed as in Equations 2–4 by replacing w with v.

d̂LMM ¼
vTR�1

y y

vTR�1
y v

(9)

varðd̂LMMÞ ¼
1

vTR�1
y v

(10)

si
LMM ¼

ðvTR�1
y yÞ2

vTR�1
y v

(11)

Estimating trait covariance
The covariance structure of y is generally unknown, but
Equations 1 and 8 can be extended to further specify the covari-
ance components. The expression for y can be written as follows:

y ¼ wbþ
Xm
k¼1

rk þ e (12)

where m vectors of random effects, rk � Nð0;r2
kRkÞ, and residual

errors, e � Nð0;r2
r IÞ, are assumed to be mutually uncorrelated
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and multivariate normally distributed. The covariance of each
vector of random effects is parameterized with a constant matrix
Rk and scaled by the scalar parameter r2

k , referred to as variance
components. Marginalizing over vectors of random effects
from Equation 12 gives a multivariate normal distribution of y
with the following covariance:

Ry ¼
Xm
k¼1

r2
kRk þ r2

r I (13)

Both the fixed effect b and variance components r2
k and r2

r ,
are model parameters. Variance components are typically esti-
mated by restricted maximum likelihood (REML) (Lynch and
Walsh 1998), because the REML approach produces unbiased
estimates by adjusting for the loss of degrees of freedom due to
the fixed effect covariates. To compute the association test statis-
tic in Equations 4 and 11, we replace the true trait covariance
with its estimate:

R̂y ¼
Xm
k¼1

r̂2
kRk þ r̂2

r I (14)

Relative power and ESS
Under the alternative hypothesis, the NCP quantifies the statisti-
cal power for a given effect size b.

NCPb ¼ b2=varðb̂Þ (15)

Powerb ¼ 1� Fðv2
1;1�a;0j1;NCPbÞ (16)

where a is the type I error rate and Fðv2jdf ;NCPÞ is the cumulative
distribution function for the noncentral v2 distribution with df
degrees of freedom and NCP. The quantity v2

df ;1�a;0 is the inverse
of F or the quantile of the noncentral v2 distribution.

To introduce the concept of ESS, consider two association
study designs: one study is based on unrelated individuals and
effects are estimated using LR, and the other study is based on re-
lated individuals in families and the effect is estimated using an
LMM. Both studies have the same sample size N, and we are in-
terested in determining the power of the later design relative to
the former when testing a genetic variant with effect size b. The
ratio of the two corresponding NCPs offer a simple and interpret-
able metric that addresses this question. Plugging the variances
defined in Equations 3 and 6 into the ratio and approximating
varðb̂LRÞ with 1=N, we define the ESS multiplier as:

cb ¼
NCPb;LMM

NCPb;LR
¼ b2=varðb̂LMMÞ

b2=varðb̂LRÞ
�

wTR�1
y w

N
(17)

This metric cb quantifies the power of the LMM-based test
with the sample size N relative to a standard LR-based test with
the same sample size N. Conversely, the effective sample is de-
fined as ESS ¼ Ncb � wTR�1

y w. We note that the proposed ESS
multiplier is similar, in principle, to the previously proposed met-
ric of asymptotic relative efficiency (ARE) of two tests, say, one
likelihood and another, for estimating a parameter h: it is given
by the ratio of the inverse asymptotic estimates for the variance
of

ffiffiffiffi
N
p
ðĥ � hÞ (Kraft and Thomas 2000). In this work, we aim at

simplifying the numerator part of the ratio in Equation 17 using
approximations described in the next section.

Alternatively, empirical estimators of the ESS can be used
when the analytical form is unknown. For instance, consider two

association studies in a sample of unrelated individuals, one be-

ing performed with LR and the other one with LMM. Two recent

works proposed an empirical multiplier cs
b defined as the median

of the ratio of statistics computed by an LMM and an LR model at

Mtop top associated variants (Gazal et al. 2017; Loh et al. 2018). This

approach is relevant only under the assumption that the esti-

mates of b by LR and LMM at those top variants are approxi-

mately equal and, thus, cancel each other out in the ratio of the

test statistics. From Equation 17, a more obvious empirical esti-

mator cse
b can be built by deriving, over any random set of var-

iants, the median of the ratio of squared standard errors between

the LMM and LR model. We found that this strategy has been

used in at least one previous study (Yang et al. 2012). The two em-

pirical estimators are expressed as:

cs
b ¼median

i2Mtop

sLMM;i

sLR;i

� �
(18)

cse
b ¼median

i2Mrandom

varðb̂LR;iÞ
varðb̂LMM;iÞ

( )
(19)

Under the reasonable assumptions that the sample size is

large enough and all variables are standardized in the LR model,

the numerator in Equation 19 can be further simplified to 1=N,

thus, allowing to derive the multiplier from the LMM using sum-

mary statistics only.

Approximations
Given the definition of an NCP in Equation 15, we compute the

expected variance of the effect size estimate in Equation 3 by av-

eraging wTR�1
y w over genetic variants w and obtain an analytical

approximation for the NCP and power to detect a given effect size

b. A similar computation is performed for an NCP and power to

detect a gene-environment interaction effect size d by averaging

vTR�1
y v over interaction variables v. In particular, we approximate

quadratic forms from LMMs, wTR�1
y w and vTR�1

y v, by their mean

values, by treating w and v as vectors of random variables and

R�1
y as a constant matrix of linear transformation.

First, we introduce the covariance matrix of the genetic variant,

Rw � covðwÞ, that conveys the genetic relatedness or pedigree struc-

ture of individuals. For unrelated individuals, Rw is the identity ma-

trix. For related individuals in families, Rw is the expected kinship

matrix, Rw ¼ K, and can be determined from pedigree information.
Second, we note that the covariance matrix of the gene-envi-

ronment interaction variable, Rv � covðvÞ, can be derived from w

through the vector of environmental exposure, d, given in

Equation 8. Briefly, we replace the definition of v through ele-

mentwise multiplication of vectors w and d and introduce a ma-

trix E ¼ diagðdÞ. Treating E as a constant matrix and w as a

random vector, we obtain covðEwÞ ¼ ERwET. This expression can

be further simplified by defining a new matrix D and using the

Hadamard product operator:

E ¼ diagðdÞ
v � w � d ¼ Ew
Di;j ¼ Ei;iEj;j

Rv ¼ ERwET ¼ D�Rw

(20)

While the case of unrelated individuals with Rw ¼ I is trivial,

we denote a special kinship matrix KD for related individuals

when Rw ¼ K.

A. Ziyatdinov et al. | 3



KD ¼ D�K (21)

A numerical example of matrices E, D, K, and KD for nuclear fam-

ilies and binary exposure is provided in Supplementary material.
Third, we approximate the quadratic forms via their expected

values. If X is a vector of random variables with mean l and

(nonsingular) covariance matrix R, then the quadratic form is a

scalar random variable with the following mean.

EðXTAXÞ ¼ trðARÞ þ lTRl (22)

VarðXTAXÞ ¼ 2trðARARÞ þ 4lARAl (23)

Because the variables w and v are standardized, we obtain the

following approximations:

wTR�1
y w � EðwTR�1

y wÞ ¼ trðR�1
y RwÞ (24)

vTR�1
y v � EðvTR�1

y vÞ ¼ trðR�1
y RvÞ ¼ trðR�1

y ðD�RwÞÞ (25)

In this work, we consider several LMM-based scenarios with

particular structures of covariance matrices Ry, Rw, and Rv

(Tables 1 and 2). For each of these scenarios, we propose further

approximations of Equations 24 and 25 using known relation-

ships between the trace operator and eigenvalue decomposition

(Lynch and Walsh 1998) outlined in Supplementary material.

Data Simulation
We compared relative power across four GWAS scenarios

(Tables 1 and 2) with various study designs (unrelated or related

individuals in families) and using LR or LMM. When analyzing

unrelated individuals using an LMM and testing the marginal ge-

netic effect, we considered a single random effect, either a group-

ing factor (e.g., household) or a polygenic effect with a GRM (Yang

et al. 2014). In all the scenarios, the vector of trait y was standard-

ized, so that the sum of variance components in Ry (scalars r2
� )

was equal to 1. In simulations, the parameters r2
a; r2

g; r2
f , and r2

r

refer to the additive heritability in the family-based study, the

heritability explained by genetic variants in the study of unre-
lated individuals [i.e., the SNP-based heritability (Yang et al.
2014)], the variance explained by a grouping factor, and the resid-
ual variance, respectively.

We conducted multiple simulations for a quantitative trait
drawn from a multivariate normal distribution with the variance
components specified in Tables 1 and 2. In the power analysis
testing the marginal genetic effect, we simulated a single causal
variant and specified its effect size b explaining 0.1% of the trait
variance. In the power analysis testing the gene-environment
interaction effect, we specified d so that the (standardized) gene-
environment interaction term explaining 0.1% of the trait vari-
ance (standardized main genetic and environmental effects each
explains an additional 0.1% of trait variance). See Supplementary
material for more details.

When simulating related individuals, we generated data for
nuclear families with 2 parents and 3 offspring, if not specified
otherwise. Accordingly, the kinship matrix K was added as a com-
ponent of Ry for controlling the family structure in the trait co-
variance. A special matrix KI was also included in Ry when testing
the gene-environment interaction (Sul et al. 2016). Note that ma-
trices KD in Equation 21 and KI in ref. (Sul et al. 2016) are different,
although both are derived from the kinship matrix K. In simula-
tions of unrelated individuals with a grouping factor, each group
consisted of 5 individuals. Thus, the variance-covariance matrix
F is a Kronecker product of block and diagonal matrices, where
each block matrix is a 5� 5 matrix of ones.

Analysis of the UK Biobank
We first split the UK Biobank individuals into unrelated and re-
lated groups using the kinship coefficients estimated by KING
(Manichaikul et al. 2010) and additionally distinguished different
types of related pairs, as described in the original UK Biobank ar-
ticle (Bycroft et al. 2018) (Supplementary Table S2). For the analy-
sis of unrelated individuals in the UK Biobank, we performed two
LR- and LMM-based GWAS and then estimated the ESS multiplier
between the two studies (rows 1 and 4 in Table 1). We followed a
computationally efficient approach of low-rank LMM (Kang et al.
2010; Listgarten et al. 2011; Young et al. 2018), where the LMM has
a single random genetic effect with the GRM constructed on a
subset of the top 1000 SNPs, as described in another UK Biobank
application (Young et al. 2018). In brief, we ranked the SNPs by
their LR-based P-values, performed a clumping by PLINK 2.0
(Chang et al. 2015) with the default parameters, and selected the
top 1000 SNPs to build the GRM. We also applied the standard
leave-one-chromosome-out scheme (Yang et al. 2014; Young et al.
2018) and built per-chromosome GRMs when testing the SNPs. In
practice, we never built the GRM and always performed linear al-
gebra operations making use of the low-rank structure of the ge-
notype matrix (1000 columns), applying the Woodbury formula
for matrix inversion (Young et al. 2018). The analysis was restricted
to 336,347 unrelated individuals of British ancestry passing princi-
pal component analysis filters and having no third-degree or closer
relationships (Bycroft et al. 2018); 619,017 high-quality genotyped
autosomal SNPs with missingness<10% and minor allele frequency
>0.1% (Loh et al. 2018); and six anthropometric traits, including
body mass index (BMI), height, hip circumference (HIP), waist cir-
cumference (waist), weight and waist-to-hip ratio (WHR). To ac-
count for population structure, 20 principal components (PCs) were
included as covariates. We note that the low-rank LMM GWAS is
not the most powerful strategy (Yang et al. 2014) and a standard
full-genome GRM would lead to higher power. However, the latter
approach is extremely computationally demanding, and the low-

Table 1 Scenarios and covariance matrices for testing the
marginal genetic effect

Scenario Model Study design Ry Rw

Unrelated LR Unrelated r2
r I I

Families LMM Related r2
aKþ r2

r I K
UnrelatedþGrouping LMM Unrelated r2

f Fþ r2
r I I

UnrelatedþGRM LMM Unrelated r2
gGþ r2

r I I

The relationship matrices are as follows: K is the kinship matrix; F is the
group-membership matrix; G is the GRM.

Table 2 Scenarios and covariance matrices for testing the gene-
environment interaction effect

Scenario Model Study
design

Ry Rv

Unrelated LR Unrelated r2
r I diag(D)

Families LMM Related r2
aKþ r2

aiKI þ r2
r I KD ¼ D�K

Unrelatedþ
Grouping

LMM Unrelated r2
f Fþ r2

r I diag(D)

Unrelatedþ
GRM

LMM Unrelated r2
gGþ r2

giGI þ r2
r I diag(D)

The relationship matrices specific to testing gene-environment interactions
are as follows: KI is an interaction kinship matrix (Sul et al. 2016); GI is an
interaction genetic relationship (GRM) matrix defined similarly to KI.
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rank approach was sufficient to compare the relative performance

of the ESS multipliers.

Efficient computation
The calculation of the parameters in Equations 24 and 25

requires inverting the trait covariance matrix Ry. This step is

prohibitive in large datasets, so we have developed several solu-

tions to mitigate the computational burden. When Ry is dense,

we follow the low-rank LMM approach implemented in the cus-

tom R package biglmmz. Our package is built on the top of two R

packages bigstatsr and bigsnpr with statistical methods for large

genotype matrices stored on disk (Privé et al. 2018). When Ry is

sparse, we apply special linear algebra methods for sparse matri-

ces implemented in the R package Matrix; a similar approach

was recently proposed for biobank-scale association studies

(Jiang et al. 2019). In both analytical derivations and analysis of

family-based data, we make use of the block structure of rela-

tionship matrices whenever possible.

Data availability
The individual-level genotype and phenotype data are available

through formal application to the UK Biobank http://www.ukbio-

bank.ac.uk. The R package biglmmz, developed to perform low-

rank mixed-model GWAS and calculate the effective size multi-

plier, is available at https://github.com/variani/biglmmz. The

scripts to reproduce results of simulations and UK Biobank analy-

ses can be found at https://github.com/variani/paper-neff.

Results
Analytical estimators for the ESS multipliers
Consider a genetic variant w with effect b on a quantitative trait

y, where the covariance matrices of the trait and genetic variant

are denoted by Ry and Rw, respectively. We analytically derived

the ESS multiplier cb quantifying the relative power between the

LR and LMM tests across the four scenarios described in Table 1.

Using the approximation given in Equation 24 (Methods), the NCP

from the LMM and the multiplier can be approximated as fol-

lows:

NCPb;LMM � b2trðR�1
y RwÞ (26)

cb � trðR�1
y RwÞ=N (27)

We next expanded Equation 27 for each scenario in Table 1,

taking into account that Ry is a weighted sum of only two

components: a symmetric matrix and the identity matrix (see

Supplementary material). Using eigenvalue decomposition of

symmetric matrices K, F, or G and denoting eigenvalues with k�i ,

we obtain expressions of cb for each scenario in Table 1.

cbðFamiliesÞ � tr
�
ðr2

aKþ r2
r IÞ�1K

�
=N ¼

XN

i¼1

�
r2

a þ r2
r ðkK

i Þ
�1
��1

=N

(28)

cbðUnrelated þ GroupingÞ � tr
�
ðr2

FFþ r2
r IÞ�1

�
=N

¼
XN

i¼1

ðr2
f k

F
i þ r2

r Þ
�1=N (29)

cbðUnrelated þ GRMÞ � tr
�
ðr2

gGþ r2
r IÞ�1

�
=N ¼

XN

i¼1

ðr2
gk

G
i þ r2

r Þ
�1=N

(30)

The multiplier for the Families scenario can be further simpli-
fied if, for example, the study design is based on related
pairs such as full-sibling pairs. If s is the number of related pairs
within each family and r is the relatedness between pairs, then cb

is a function of s, r, and the variance components (see
Supplementary material).

cbðRelated pairsÞ ¼ 1
s

rsþ 1� r
ðrsþ 1� rÞr2

a þ r2
r
þ ðs� 1Þð1� rÞ
ð1� rÞr2

a þ r2
r

 !
(31)

We similarly derived the NCP parameter for power to detect
the gene-environment interaction effect d (Table 2). Given that
the covariance matrices of the trait and interaction variable are
Ry and Rv ¼ Rw

�D, respectively, and the matrix D is defined in
Equation 20, we obtain the following approximation.

NCPd;LMM � d2trðR�1
y ðRw

�DÞÞ (32)

cd � trðR�1
y ðRw

�DÞÞ=N (33)

We validated our approximations in Equations 26 and 32
through series of simulations for six cases: the test of marginal
genetic effect using LR in unrelated individuals (Supplementary
Figure S1); the test of marginal genetic effect using LMM in nu-
clear families of two parents and three offspring (Supplementary
Figure S2); the test of gene-environment interaction effect using
LR in unrelated individuals (Supplementary Figure S3); and the
test of gene-environment interaction effect using LMM with
either two or one genetic variance components in related individ-
uals (Supplementary Figures S4 and S5). For each case, we ran
1000 replicates with a quantitative trait simulated as a function
of the variance captured by genetic variant/environmental expo-
sure for sample size N of 100, 500, and 1000. We estimated six
parameters for each model: the effect size of tested variable,
its standard error, the corresponding test statistic, the residual
variance, the empirical ESS multiplier based on ratios of standard
errors cse

b , and the power of the test at a ¼ 0:05. We confirmed
that the proposed analytical ESS estimators cb and cd are valid
and aligned with the estimated model parameters.

Testing the marginal genetic effect
Power loss in related individuals: We first conducted a simulation
study to examined the relative power for the Families scenario
with Ry ¼ r2

aKþ r2
r I (Table 1), varying the heritability parameter

r2
a. For nuclear families with two parents and three offspring, the

ESS multiplier is strictly less than 1 at all values of heritability
and equal to 1 at extreme heritability values of 0 and 1 (blue lines
in Figure 1, A and B). The amount of power loss depend directly
on the structure of the matrices Ry and Rw ¼ K. For example, the
kinship matrix K for nuclear families with a greater number of
offspring leads to a greater loss, as K becomes denser
(Supplementary Figure S6). In study designs based on related
pairs, monozygotic twin pairs show a power loss of up to 50% at
r2

a ¼ 1, as expected, while the power loss for pairs of siblings or
cousins is only moderate (Supplementary Figure S7). The perfor-
mance of the multiplier for the Families scenario is quantitatively
described by Equation 27, in which the trace operator is applied
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to the product of two matrices R�1
y and Rw ¼ K. The decrease in

the ESS in this scenario can intuitively be associated to the
smaller off-diagonal term in the covariance matrix Ry as com-
pared to Rw (Figure 1C).

Power gain by reducing the residual variance: We then exam-
ined the case of unrelated individuals structured into groups
(the UnrelatedþGrouping scenario in Table 1), varying the
amount of variance explained by the grouping factor r2

f . In con-
trast to the power loss for the Families scenario across all values
of heritability, the power gain for the UnrelatedþGrouping

scenario compared to the Unrelated scenario is consistent and
increases as more variance is explained (Figure 1, A and B). The
observed increasing trend follows from Equations 27 and 29 if
one considers the trace operation trðR�1

y RwÞ and takes into ac-
count that Rw ¼ I. Thus, having individuals genetically unrelated
(Rw ¼ I) and explaining additional variance by a random effect is
equivalent to a reduction in the residual variance by including
covariates (Yang et al. 2014). We further note that two scenarios,
UnrelatedþGrouping and UnrelatedþGRM (Table 1), are concep-
tually identical, because the individuals are genetically

Figure 1 The relative power of detecting marginal genetic effect b. (A) The ESS multiplier cb is less than one for the Families scenario and greater than
one for the UnrelatedþGrouping scenario compared to the baseline Unrelated scenario. The amount of variance explained by the random effect (r2

a or
r2

f ) varies from 0 to 100%. (B) The power of detecting b increases with the sample size at different rates for the Unrelated, Families, and
UnrelatedþGrouping scenarios. The random effect and genetic variant explain 50 and 1% of trait variance, respectively. (C) The covariance matrices of
the trait and genetic variant Ry and Rw (used to compute cb) are depicted when 50% of the trait variance is explained by the random effect (denoted by *
on panel A).

Figure 2 The accuracy of two empirical multipliers (A) cse
b and (B) cs

b is evaluated against the analytical multiplier cb (red bars). Association studies of six
anthropometric traits are performed using LR and low-rank LMM in 336,347 UK Biobank unrelated individuals. The empirical multipliers are estimated
from the tests statistics of the top 1000 associated variants for each trait: all 1000 variants (dark gray bars) and a subset of 1000 variants (significant in
LMM, PLMM < 1� 10�5, and nominally significant in LR, PLR < 0.05) (beige bars). The error bars show the distribution of ratios of squared standard errors
(cse

b ) or test statistic (cs
b) between the LMM and LR models, denoting first to third quartiles.
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unrelated. This relationship implies that the observed trends in
Figure 1 for the UnrelatedþGrouping scenario are transferable to
the UnrelatedþGRM scenario. We confirmed this statement by
simulations under the UnrelatedþGRM scenario (Supplementary
material).

Modest power gain by a low-rank LMM in unrelated individuals
in the UK Biobank: When applying a low-rank LMM to 336,348
unrelated individuals in the UK Biobank, we achieved a modest
power gain, as expected, with a maximum of 1.2x for height
(Figure 2). The two multipliers cse

b and cb produce very close esti-
mates (Figure 2A) confirming the relevance and concordance of
both estimators. Small differences in estimates are explained by
applying the leave-one-chromosome-out (LOCO) scheme when
producing association summary statistics for cse

b , while the
results for cb in Figure 2 are based on the model with variants in
all chromosomes. These differences are not noticeable if both
multipliers cse

b and cb are estimated in the per-chromosome man-
ner (Supplementary Figure S15). The other empirical multiplier
cs

b, based on ratio of test statistics rather than standard errors,
underestimates the value of the multiplier consistently for all
traits (Figure 2B). The downward bias of cs

b is in agreement with
our simulation results for the UnrelatedþGRM scenario
(Supplementary material), where we showed that inclusion of
null variants into cs

b can bias the multiplier down to one. Even if
the assumptions underlying this estimator holds (see Methods),
the multiplier cs

b is expected to give much nosier estimates com-
pared to cse

b , because the ratios of squared test statistics have a
substantially wider distribution than the ratios of squared stan-
dard errors (the error bars in Figure 2).

Small power loss in related individuals in the UK Biobank: We
obtained estimates of the ESS multiplier cb for several groups of
related pairs in the UK Biobank: monozygotic twins, parent-off-
spring, full siblings, and second-degree relatives. For 68,910 close
relatives of up to the second degree, the maximum drop in the

ESS of 0.94x is observed at a heritability of r2
a ¼ 0:54. We addition-

ally derived the expected value of the multiplier stratified by
groups of related pairs when varying r2

a (Supplementary Figure
S8 and Table S3). Considering the impact of relatedness in the
whole UK Biobank sample, the 0.94x multiplier in related individ-
uals is scaled to 0.99x in a combined sample of unrelated and
related individuals.

Testing the gene-environment interaction effect
Power depends on the realized environmental exposure and variance
components: We explored the power gain for the Families and
UnrelatedþGrouping scenarios over the baseline Unrelated
scenario when testing the gene-environment interaction effect
(Figure 3). The frequency of binary exposure was fixed to 0.6 for
all three scenarios, but for the Families scenario, we additionally
fixed the exposure status in such a way that two parents were
unexposed and three offspring were exposed. Figure 3, A and B
shows that the ESS multiplier cd for the UnrelatedþGrouping and
Families scenarios is always greater than 1 and increases as
more variance is explained. This positive trend remains for the
UnrelatedþGrouping and UnrelatedþGRM scenarios with other
realizations of exposure, as the residual variance is simply
reduced and individuals are unrelated. Contrary to the
UnrelatedþGrouping and UnrelatedþGRM scenarios, the power
gain for the Families scenario was achieved through a particular
realization of exposure and covariance matrices Ry and Rv, as
shown in Figure 3C.

We next explored in more depth the relative power for the
Families scenario as a function of the exposure realization and
the interplay between covariance matrices Ry and Rv (Figure 4). In
particular, we considered all possible realizations of the binary
exposure variable within families and also varied the composi-
tion of variance components in Ry ¼ r2

aKþ r2
aiKI þ r2

r I while fixing
the total genetic variance, r2

a þ r2
ai ¼ 0:5. When the structure of

Figure 3 The relative power of detecting the gene-environment interaction effect d. The frequency of binary exposure is 0.6; the exposure status is fixed
for the Families scenario such that two parents are unexposed and three offspring are exposed. (A) The ESS multiplier cd is greater than one for both
Families and UnrelatedþGrouping scenarios compared to the baseline Unrelated scenario. The amount of variance explained by the random effects
(r2

a þ r2
ai or r2

f ) varies from 0 to 100%. (B) The power of detecting d increases with the sample size at different rates for the Unrelated, Families and
UnrelatedþGrouping scenarios. The random effects (jointly) and the interaction variable explain 50% and 1% of trait variance, respectively. (C) The
covariance matrices of the trait and interaction variable Ry and Rv (used to compute cd) are depicted when 50% of trait variance is explained by random
effects (denoted by * on panel A). The colored gradients in entries of matrices denote quantitative differences for positive values, while gray-colored
entries correspond to negative values. The ratio between r2

ai and r2
a is fixed to 0.1; both genetic and environmental variables also explain 1% of the trait

variance in addition to 1% of the interaction variable.
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Ry is fully defined by the kinship matrix K (r2
ai ¼ 0, Figure 4, left

panel), the multiplier is greater than 1.2 for all realizations of ex-
posure, and the greatest power gain of 1.38 is achieved when all
the offspring are either exposed or unexposed. With the increas-
ing contribution of the environmental kinship matrix KI into the
structure of Ry (r2

ai ¼ r2
a or r2

a ¼ 0, Figure 4, middle and right pan-
els), the multiplier approaches 1 and remains below 1 at r2

a ¼ 0.
This phenomenon occurs because the covariance matrices Ry

and Rv become similar in their structure, leading to a power loss.
This phenomenon is similar to the analysis of the Families
scenario when the testing marginal genetic effect (Figure 1,
Supplementary Figures S6–S8).

Conclusions
LMMs are being increasingly used in GWAS. While of great bene-
fit, the inference of mixed model parameters carries a much
heavier computational burden than standard LR models and
introduces substantial analytical complexities. Here, we intro-
duced the formula for the ESS, a synthetic measure that bridges
LR and LMMs. We showed how the NCP of mixed-model associa-
tion tests relates to the NCP of LR conditional on the trait covari-
ance and genetic relationship matrices. We further introduced
the ESS multiplier, defined as a ratio between NCPs of the two
tests, derived its expected value across various scenarios, and
linked it to previously discussed empirical multiplier. Our charac-
terization of the proposed multiplier covers common scenarios:
testing the marginal genetic effect in family-based studies and in
studies of unrelated individuals, as well as the extension to gene-
environment interaction studies.

Conceptually, the ESS multiplier compares a given mixed-
model GWAS to a virtual GWAS based on LR with a sample size
that yields the same power. This definition of the ESS leads to the
analytical form in Equation 17, where the ESS is a function of
only the variance of the estimated effect size varðb̂LMMÞ. There are
several connections to recent developments in mixed-model
methods for GWAS. First, the ESS estimator based on varðb̂LMMÞ is

expected to perform well because of the ESS definition, as shown
in the previous works (Yang et al. 2012). Second, the ESS multi-
plier is not quite the same as the scaling constant used to approx-
imate the test statistics by the modern mixed-model association
tools (Svishcheva et al. 2012; Loh et al. 2018; Zhou et al. 2018).
This scaling constant would be equal to our multiplier only in
studies of unrelated individuals. Third, our approximation of the
ESS in Equation 27 is derived using expectations of quadratic
forms and, thus, is linked to the randomized trace estimator re-
cently proposed for the LMM inference (Pazokitoroudi et al. 2019).

When post-GWAS methods of mixed-model GWAS summary
statistics rely on the reported sample size, we recommend using
the ESS multiplier to derive the ESS. Previous works have shown
that ignoring the correction by the ESS can produce misleading
results such as overestimation of heritability enrichment (Gazal
et al. 2017) and inaccurate fine-mapping of causal variants (Yang
et al. 2012). The correction is especially important when the
power boost by LMM is substantial (Loh et al. 2018). For example,
the linkage disequilibrium (LD) score regression (Bulik-Sullivan
et al. 2015; Finucane et al. 2018) explicitly includes the sample size
in its model, and the empirical multiplier in Equation (18) was
proposed for correction (Gazal et al. 2017). While the assumptions
underlying this approach seems reasonable, especially for large
powerful GWAS including numerous genome-wide significant
SNPs, our real data analysis suggests it should be used with cau-
tion. For some other methods, such as meta-analysis, correction
by the ESS multiplier is required when weighting the effect
estimates by the sample size. However, the inverse-variance
weighted approach implicitly solves the problem, as the variance
of estimates from the LMM carries on the information from the
ESS multiplier.

Since most GWAS designs to-date are composed predomi-
nantly of unrelated individuals, we expect the adjustment to the
ESS due to family relatedness in existing datasets to be modest.
For example, we estimated that the ESS multiplier in 68,910 re-
lated individuals of British ancestry in the UK Biobank is at most
0.94x. However, the proposed ESS multiplier is likely to have a

Figure 4 The relative power of detecting the gene-environment interaction effect d in nuclear families under different simulation settings. The ESS
multiplier cd is analytically computed (i) for all possible realizations of a binary exposure within a nuclear family with 2 parents and 3 offspring (dots in
each panel) and (ii) for different ratios between r2

a and r2
ai (three panels). The amount of the trait variance is jointly explained by the random effects r2

ai
and r2

a is fixed to 50%. The largest two values of the multiplier on the left and middle panels correspond to exposure realizations: exposed offspring/
unexposed parents and exposed parents/unexposed offspring.
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larger impact in the future for large-scale studies of founder pop-

ulations (Kim et al. 2020) and healthcare studies (Staples et al.

2018). Moreover, this work is of immediate interest for all post-

GWAS analyses using summary statistics from related individu-

als, providing guidelines and tools for accurately estimating the

ESS. Our framework also provides new perspectives for improving

the power of gene-environment interaction analyses through the

optimization of family-based designs. For example, we showed

that the power of gene-environment interaction screening can be

increased substantially by using nuclear families with exposed

offspring and unexposed parents. In principle, these results sug-

gest that the power from cohorts of related individuals can

be assessed before conducting actual GWAS screening of gene-

environment interactions.
There are still several methodological issues arising in GWAS

that are also relevant to our work. In particular, population strati-

fication continues to be a limiting factor in GWAS and can lead to

spurious associations and biased estimates of effect sizes (Jiang

et al. 2019; Sohail et al. 2019). Our analytical ESS results were de-

rived under the assumption of controlled population structure

and tested only in relatively homogeneous data from UK Biobank

individuals of British ancestry. As previously demonstrated

(Sethuraman, 2018), the structure in admixed populations can

substantially impact the estimates of genetic relatedness, and

further investigation is needed to determine the impact of popu-

lation structure on the analytical form of the ESS multiplier.

Nevertheless, we anticipate that the empirical multiplier based

on the ratios of squared standard errors remains relevant and in-

terpretable, as long as the GWAS results are unbiased and the

type I error rate is correctly controlled. Finally, we limited our

analytical derivations to quantitative traits, and future work is

needed to extend our results to binary traits under a liability

threshold model (Lee et al. 2011).
In conclusion, the proposed analytical multiplier offers a com-

prehensive framework that can be used to provide insights into

the statistical power of LMM as a function of the sample related-

ness and the variance explained by the genetic and environmen-

tal factors. It can also be used for post-GWAS analyses explicitly

requiring the ESS. Alternatively, the empirical multiplier based

on the ratios of standard errors is expected to work equally well,

providing a simpler and faster solution when individual-level

data is not available.
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