
Citation: Zhang, L.; Reddy, N.; Khoo,

C.S.; Koyyalamudi, S.R. Structural

Characterization and In-Vitro

Antioxidant and Immunomodulatory

Activities of Polysaccharide Fractions

Isolated from Artemisia annua L.

Molecules 2022, 27, 3643. https://

doi.org/10.3390/molecules27113643

Academic Editors: Mohamed

L. Ashour, Nawal M. Al Musayeib,

Fadia S. Youssef and Lesław Juszczak

Received: 7 May 2022

Accepted: 31 May 2022

Published: 6 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Structural Characterization and In-Vitro Antioxidant and
Immunomodulatory Activities of Polysaccharide Fractions
Isolated from Artemisia annua L.
Lin Zhang 1,2, Narsimha Reddy 3,*, Cheang Soo Khoo 4 and Sundar Rao Koyyalamudi 5,6

1 Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China;
yyszl@wjw.beijing.gov.cn

2 Beijing Institute of Chinese Medicine, Beijing 100010, China
3 School of Science, Parramatta Campus, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
4 Wentworth Institute, 302-306 Elizabeth Street, Surry Hills, NSW 2010, Australia; khoo2031@gmail.com
5 Institute of Endocrinology and Diabetes, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia;

sundar.koyyalamudi@health.nsw.gov.au
6 Discipline of Paediatrics and Child Health, The Children’s Hospital at Westmead, The University of Sydney,

Sydney, NSW 2145, Australia
* Correspondence: n.reddy@westernsydney.edu.au; Tel.: +61-02-9685-9925; Fax: +61-02-9685-9915

Abstract: Arimisia annua L. is an important anticancer herb used in traditional Chinese medicine. The
molecular basis underpinning the anticancer activity is complex and not fully understood, but the
herbal polysaccharides, broadly recognised as having immunomodulatory, antioxidant and anticancer
activities, are potential key active agents. To examine the functions of polysaccharides from A. annua,
their immunomodulatory and antioxidant potentials were evaluated, as well as their structural
characterization. The water-soluble polysaccharides (AAPs) were fractionated using size-exclusion
chromatography to obtain three dominant fractions, AAP-1, AAP-2 and AAP-3, having molecular
masses centered around 1684, 455 and 5.8kDa, respectively. The antioxidant potentials of the isolated
polysaccharides were evaluated by measuring radical scavenging activities against DPPH• (2,2-
diphenyl-1-picrylhydrazyl radical), ABTS•+ (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid
radical ion), and the OH• (hydroxyl radical). AAP-1 displayed high antioxidant activities against
these radicals, which were 68%, 73% and 78%, respectively. AAP-2 displayed lower scavenging
activities than the other two fractions. Immunostimulatory activities of AAPs were measured using
mouse macrophages. The three polysaccharide fractions displayed significant antioxidant activities
and stimulated the production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). AAP-1
showed significant immunostimulatory activity (16-fold increase in the production of IL-6 compared
to the control and 13-fold increase in the production of TNF-α) with low toxicity (>60% cell viability
at 125 µg/mL concentration). Preliminary structural characterization of the AAPs was carried out
using gas chromatography (GC) and FTIR techniques. The results indicate that AAP-1 and AAP-2 are
pyranose-containing polysaccharides with β-linkages, and AAP-3 is a β-fructofuranoside. The results
suggest that these polysaccharides are potential candidates for immunotherapy and cancer treatment.

Keywords: Arimisia annua L.; polysaccharides; immunomodulatory; FTIR; antioxidant

1. Introduction

Artemisia L. (Asteraceae) is one of the largest and most diverse genus of plants, consist-
ing of more than 500 species and is mainly found in Asia, Europe and North America [1].
Many of these plants are widely used for medicinal purposes [1,2], such as treatment
of cancer, malaria, hepatitis, inflammation and infections caused by fungi, bacteria and
viruses [3].

Traditionally, Artemisia annua (Asteraceae) is an alternative source of nutrients for
humans and livestock and is found in the northern parts of China [3]. The stems were also
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traditionally used in Chinese medicine for preventing malaria and enhancing immunity in
patients [4–11]. A. annua also displayed anticancer activities against various tumors in vitro
and in vivo, as well as exhibiting significant synergistic effects with several clinical anti-
tumor medicines [6,12]. Several bioactive compounds have been isolated from A. annua,
which include sesquiterpenoids, flavonoids, coumarins, triterpenoids, steroids, phenolics,
purines and lipids [7,13–18]. The plant gained even greater attention after Professor Youyou
Tu won the Nobel Prize in 2015 for discovering the antimalarial sesquiterpenoid, artemisinin
from A. annua [4,5].

Natural polysaccharides are ideal candidates for developing novel anticancer agents
due to their biological activities [19–25]. However, limited scientific literature exists on
polysaccharides isolated from Artemisia [26,27]. Polysaccharides isolated from A. apiacea
displayed significant immunomodulatory and anticancer activity [28], polysaccharide
(ASKP-1) from A. sphaerocephala exhibited immune enhancing capacity [29], and an inulin-
type fructan from A. japonica displayed significant anti-arthritic effects [30]. There are a few
recent studies on polysaccharides from A. annua [26,27]. A water-soluble polysaccharide
extract was reported to display significant anti-tumor activity, which inhibited HepG2
cell growth by inducing caspase-dependent mitochondrial apoptosis and inhibited NF-κB
p65 [27]. The homogeneous polysaccharides from A. annua displayed significant anticom-
plement activities [26]. To the best of our knowledge, there is limited study involving
polysaccharides from A. annua in modulating the immune system.

Preliminary studies carried out in the authors’ laboratory strongly indicated that
A. annua has good potential as a source of immunomodulatory and anticancer polysac-
charides [31]. The study involved hot water extraction of crude polysaccharides from
several Traditional Chinese Medicinal (TCM) herbs, and evaluation of their biological
activities with a view to identify the best herbs for further detailed study. The study [31]
indicated that A. annua was the herb of choice for the isolation of pure polysaccharides and
to study their immunomodulatory potential. This paper describes the aqueous extraction
and fractionation (based on molecular weight) of polysaccharides from A. annua and the
evaluation of the antioxidant and immunomodulatory activities of each fraction. Appropri-
ate modulation of the immune system and reducing oxidative stress by the polysaccharides
are key considerations when formulating anticancer treatment protocols. Hence, we have
evaluated the immunomodulatory and antioxidant potentials of these polysaccharides.
Structural characterization of these polysaccharides has also been carried out to further
understand their structure–activity relationship and mechanisms of action.

2. Results and Discussion
2.1. Fractionation and Purification of Polysaccharides from A. annua

Polysaccharides were extracted from A. annua (AAPs) and fractionated by Sepharose
CL-6B size-exclusion chromatography. The detailed procedure for the extraction of polysac-
charides and their fractionation is shown in Figure 1 [21,32]. Three fractions were selected
based on the total sugar profile of the fractions (Figure 2) obtained by the phenol-sulfuric
acid method. These crude polysaccharide fractions were designated as AAP-1, AAP-2,
and AAP-3. The profile presented in Figure 2 also gives the protein profile of the fractions
(Red trace). AAP-1 displayed the highest sugar content and the other two fractions had
relatively low sugar content.

The results for carbohydrate and protein contents in each of the fractions are presented
in Table 1. Highest carbohydrate content was observed in AAP-1 (51.8%), followed by
AAP-3 (26.3%) and least carbohydrate content was observed in AAP-2 (21.9%). Using
the calibration curve obtained from the analysis of dextran molecular weight standards
(Figure 3), the average molecular masses of the three fractions, AAP-1, AAP-2 and AAP-3
were determined. The molecular mass of AAP-1 was relatively large, with an estimated
average of 1684 kDa, followed by AAP-2 and AAP-3 at 455 and 5.8 kDa, respectively
(Figure 3). Table 1 shows the total sugar, protein and monosaccharide content of the three
fractions. AAP-1 consists mainly of arabinose (33.35%), glucose (8.69%) and galactose
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(30.92%), whereas AAP-2 is made up of arabinose (36.02%), glucose (22.16%), mannose
(18.17%) and galactose (16.07%) and AAP-3 is mannose (53.08%) and glucose (46.92%). It
should be noted that the reduction of fructose yields mannitol and glucitol during GC
sample preparation [30,32,33], so it is possible that AAP-3 might be 100% fructose. This
aspect is discussed along with the FTIR results. AAP-1 and AAP-2 consist primarily of
glucose, galactose, mannose and arabinose.
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Table 1. Sugar composition of polysaccharide fractions isolated from A. annua.

AAP-1 AAP-2 AAP-3 *

Protein (%) 29.57 10.95 9.32
Carbohydrate (%) 70.43 89.05 90.68

Monosaccharide (% ratio)
Rhamnose (%) 9.67

Ribose (%)
Fucose (%)

Arabinose (%) 33.35 36.02
Xylose (%) 7.67

Mannose (%) 1.44 18.17 53.09
Galactose (%) 30.92 16.07
Glucose (%) 8.69 22.16 46.92

Unknown (%) 8.26 7.58
* It should be noted that the reduction of fructose yields mannitol and glucitol during GC sample preparation. It
is therefore likely that AAP-3 is 100% fructose.

2.2. FTIR Spectroscopic Characterisation of Active Polysaccharides

Figure 4 presents the FTIR spectra of A. annua polysaccharides (AAP-1, AAP-2 and
AAP-3). The spectrum of AAP-1 showed peaks corresponding to β-glycosidic linkage
(914–891 cm−1) (Figure 4a) [21,34,35]. The spectrum of AAP-1 also showed three strong
absorption bands at 1017.51, 1047.01 and 1074.10 cm−1 (corresponding to C-O stretching
vibrations related to glycosidic linkage), indicating the presence of pyranose sugar in
AAP-1 [21,34,35]. The rest of the vibrational bands conform to a polysaccharide struc-
ture. The broad band centered at 3394.25 cm−1 corresponds to the hydroxyl stretching
vibrations of the polysaccharide and the peak at 2934.07 cm−1 belongs to C-H stretching
vibrations [21,35]. These observations lead to the conclusion that AAP-1 contains pyranose
sugars with β-glycosidic linkages.
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Figure 3. Calibration curve for the determination of molecular weights of polysaccharides from
A. annua based on the elution volume and the molecular mass of standard dextran series of T2000
(2000 kDa), T450 (450 kDa), T150 (150 kDa), T70 (70 kDa), T40 (40 kDa), T10 (10 kDa) and glucose
(180 Da) (Note: Kav = (Ve − Vo)/(Vt − Vo), Vo is void volume, Vt is total volume and Ve is
elution volume).
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The spectrum of AAP-2 (Figure 4b) has a peak at 914 cm−1, indicating the pres-
ence of β-glycosidic linkage [21,35]. The three strong absorption peaks in the range
1025–1072 cm−1 (corresponding to C-O stretching vibrations related to glycosidic link-
age) indicate the presence of pyranose sugar [21,35]. The broad band centered at 3339 cm−1

corresponds to hydroxyl stretching vibrations and the peak at 2944 cm−1 belongs to C-H
stretching vibrations. These observations confirm that AAP-2 contains pyranose sugars
with β-glycosidic linkages.

The FTIR spectrum of AAP-3 (Figure 4c) is distinctly different compared to that of
AAP-1 and AAP-2. In particular, the region between 815–1025 cm−1 shows different
structural features for AAP-3. The peaks at 873 and 815 cm−1 indicate the presence of
α- as well as β-glycosidic linkages [21,35]. Two strong absorption peaks in the range of
1000–1100 cm−1 (corresponding to C-O stretching vibrations related to glycosidic linkage)
indicate the presence of furanose sugars in AAP-3 [21,35]. It is important to note the
absence of pyranose sugars in AAP-3 (as there are only two strong absorption bands
in the range of 1000–1100 cm−1). These spectral features together with the GC findings
strongly indicate that AAP-3 is a fructan (Figure 4c) [21,35]. The broad band centered at
3280.6 cm−1 corresponds to hydroxyl stretching vibrations of the polysaccharide and the
peaks at 2929 and 2889 cm−1 belong to the C-H stretching vibrations. These observations
indicate that AAP-3 mainly contains furanose sugars with α- and β-glycosidic linkages.
These findings together with the results presented in the author’s preliminary paper [32]
for LCP-2 indicates that AAP-3 may be a β-fructofuranan. It will be interesting to study the
detailed structure of AAP-3 using NMR spectroscopy. This was not possible in this study
as the size exclusion separation gave a very small quantity of this fraction.

2.3. Antioxidant Activities of AAPs

The results of the free radical scavenging capacity of these polysaccharide fractions
are presented in Figure 5. The three fractions displayed significant DPPH• and ABTS•+

radical scavenging capacities (Figure 5A,B). The most active fraction against DPPH• was
AAP-1 (68%) at a concentration of 1000 µg/mL, and the least active was AAP-3 (47%)
at 1000 µg/mL. The trend against ABTS•+ radical was similar to AAP-1, displaying 73%
activity, whereas AAP-3 was 59% at 1000 µg/mL concentration. The EC50 value for
DPPH radical scavenging activity of AAP-1 was about 426 µg/mL, followed by AAP-2
(845 µg/mL) and AAP-3 (1392 µg/mL). The EC50 value for ABTS radical scavenging
activity of AAP-1 was about 392 µg/mL, followed by AAP-2 (553 µg/mL) and AAP-3
(798 µg/mL). The hydroxyl (OH•) radical scavenging abilities of the polysaccharides are
presented in Figure 5C. AAP-1 showed extremely high OH• scavenging activity (more than
70%), followed by AAP-2, whereas AAP-3 was the least active at 1000 µg/mL concentration.
The EC50 value for the hydroxyl (OH•) radical scavenging ability of AAP-1 was about
630 µg/mL. However, the antioxidant activities of the polysaccharides are lower than the
activity of ascorbic acid (Figure 5).

Literature reports indicate that various factors can influence the antioxidant capacities
of botanical polysaccharides [34,36,37]. Major factors that contribute to enhanced activity
are (i) higher average molecular weight (more than 90 kDa) for antioxidant activity [37],
(ii) presence of β-glycosidic linkages [32,37], (iii) presence of large quantities of glucose,
galactose, rhamnose and arabinose within the polysaccharide structure [34,36,37], and
(iv) presence of protein or peptide conjugation to the polysaccharide chain increases the
radical scavenging ability [21,37].

The results presented in this research are in good agreement with those reported in the
literature [34,36,37]. For example, AAP-1 with highly significant antioxidant activity has
(i) high average molecular weight (Figure 3), (ii) contains β-glycosidic linkages (Figure 4a),
(iii) has protein conjugation (29% protein content) and (iv) contains glucose, galactose,
rhamnose and arabinose (Table 1).
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Figure 5. Antioxidant activities of polysaccharide fractions of A. annua. (A) DPPH free radical
scavenging activity of the AAPs. (B) ABTS free radical scavenging activity of the AAPs. (C) Hydroxyl
radical scavenging activity of the AAPs. Results are the mean ± SD of three separate experiments,
and all the results were compared with the standard (ascorbic acid).

2.4. Immunomodulatory Effects of Polysaccharides from A. annua

Immunomodulatory activities of the three isolated polysaccharide fractions were
determined by the treatment of RAW 264.7 macrophages with AAPs, and the results for
the production of TNF-α and IL-6 are presented in Figure 6.
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Figure 6. Effects of A. annua polysaccharides on murine RAW 264.7 macrophages. (A,C): represent
interleukin 6 (IL-6) production and (B,D): represent tumor necrosis factor-α (TNF-α) production.
* Statistical difference for the positive control (LPS treated group) and the samples was significant,
n = 3, p < 0.05. ** Statistical difference for the positive control (LPS treated group) and the samples
was significant, n = 3, p < 0.03.

The results from Figure 6 show that the AAPs have highly significant immunomodu-
latory activity as indicated by increasing IL-6 and TNF-α production in a dose-dependent
manner (Figure 6). As can be seen from Figure 6C,D, the immunostimulatory activities
of AAP-1, AAP-2 and AAP-3 increase sharply when the polysaccharide concentration is
greater than 15 µg/mL. Excellent immunostimulatory activities are observed for AAP-1 at
125 µg/mL as indicated by: (i) an over 16-fold increase in the production of IL-6 compared
to the control (untreated macrophages) (Figure 6C) and (ii) a nearly 13-fold increase in the
production of TNF-α (Figure 6D). Immunostimulatory activities of AAP-2 at 125 µg/mL
had: (i) a nearly 8-fold increase in the production of IL-6 compared to the control (un-
treated macrophages) (Figure 6C) and (ii) a nearly 10-fold increase in the production of
TNF-α (Figure 6D). Highly significant immunostimulatory activities were also observed
for AAP-3 at 125 µg/mL as indicated by: (i) an over 15-fold increase in the production of
IL-6 compared to the control (untreated macrophages) (Figure 6C) and (ii) a more than
12-fold increase in the production of TNF-α (Figure 6D). These observations are very signif-
icant and demonstrate that AAP-1, AAP-2 and AAP-3 are highly suitable candidates for
stimulating the immune system.

As discussed before, appropriate modulation of the immune system and reducing
oxidative stress are the important properties to be considered when designing anticancer
therapeutics/formulations [21,22,25,32]. A. annua polysaccharides reported in this research
displayed highly significant immunomodulatory and antioxidant activities. It is therefore
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proposed that AAPs are potential candidates for the development of effective anticancer
formulations. Further research in this direction is underway in the authors’ laboratory.

Information from the literature indicates that toll-like receptors (TLR) can recognize and
bind with various types of polysaccharides such as protein-polysaccharide complexes, inulins
and glucans and activate macrophages to promote cytokine secretion (Figure 7) [38,39]. For in-
stance, high molecular weight polysaccharide–protein complex isolated from Lentinus edodes
displayed significant immunomodulatory activities [38].
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Figure 7. Schematic representation of mechanism of immunostimulatory activity induced by inulin-
type fructans (β-D-(2→1)-fructan) of longer chain lengths (Note: Fructans with shorter chains leads
to decreased production of cytokines) [40,41].

These observations are consistent with literature findings that plant polysaccharides
can display immunomodulatory activities [32,39–41].

The structure of AAP-3 (Section 2.2) has been identified as a β-(2→1)-fructan with
an average molecular mass of 5.8 kDa. Fructans of this size are known to possess signif-
icant immunostimulatory activities [32,40,41]. β-(2→1)-linked fructans with long chain
lengths (consisting of 11–60 fructose units) can directly interact with dendritic cells (DCs)
(Figure 7) [39]. The toll-like receptors (TLRs) present on DCs and macrophages recognize
β-(2→1)-linked fructans (inulin-type fructans) and can activate TLR-2 to stimulate immune
response and produce cytokines (such as IL-6, IL-1 and TNF-α) [32,39–41]. Fructans mainly
activate TLR-2, but also TLR-4 and other TLRs to a lesser extent [40,41]. It has also been
recognized that β-fructan chain length is an important factor in this mechanism of action
(Figure 7) with long chain lengths favoring better immunostimulatory activity [32,40,41].
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Two β-(2→1)-linked fructans (inulin type immunomodulatory fructans) have been
discovered in the authors’ laboratory: (i) LCP-2 with an average molecular mass of 5.3 kDa
published earlier [32] and (ii) AAP-3 with an average molecular mass of 5.8 kDa. Consistent
with the literature [35,36], AAP-3 with a larger molecular mass showed significantly higher
immunostimulatory activity than LCP-2 [32].

Abundant literature in this area indicates that immunomodulatory activity plays an
important role in cancer treatment [19–31]. Hence, A. annua polysaccharides isolated in
this study are potential anticancer agents and useful for the development of anticancer
formulations.

2.5. Cell Viability

The effect of AAP-1, AAP-2 and AAP-3 on the viability of mouse macrophage cells
is given in Figure 8. The result that the polysaccharides from A. annua show significant
cell viabilities even at the highest concentration (125 µg/mL) used in this study indicate
that they have low toxicity. These results are consistent with literature reports that plant
polysaccharides are essentially non-toxic [21,25,31,32].
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3. Materials and Methods
3.1. Material

Artemisia annua (Qing Hao, aerial part) was purchased from Herbal Life Chinese
Herbal Medicine shop, Sydney, Australia. The herbs traded in Australia have approvals
from both Australian and Chinese governments. Specifications from the supplier indicate
that the plant was harvested at the optimum time for medicinal efficacy.

3.2. Chemicals

The DPPH•, ABTS•+, 1,10-phenanthroline, H2O2, dimethyl sulfoxide (DMSO), 95%
ethanol, ascorbic acid, trypan blue 0.4%, and lipopolysaccharide (LPS) were purchased from
Sigma (Rowville, Australia) and Lomb Scientific Pty Ltd. (Sydney, Australia). The foetal
bovine serum (FBS), antibiotics, and Dulbecco’s modified Eagle’s medium (DMEM) with
gluMax were purchased from BD Bioscience (USA). The tumor necrosis factor-α (TNF-α)
and interleukin (IL-6) (mouse)—ELISA standards and antibodies were also purchased from
BD Bioscience.
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3.3. Extraction and Fractionation of Polysaccharides from A. annua

To extract the water-soluble compounds, 500 g of dried A. annua was powdered then
autoclaved (2000 mL, 121 ◦C, 2 h). Details of the procedure are similar to that published
previously and is described in Figure 1 [21,31,32]. These fractions were collected and
concentrated by freeze drying, then stored at −20 ◦C for further studies.

3.4. Determination of Molecular Weights of Polysaccharide Fractions

Estimation of molecular weights of the purified polysaccharide fractions was done on
the basis of the elution volume and molecular weight using a standard dextran series that
included T2000 (2000 kDa), T450 (450 kDa), T150 (150 kDa), T70 (70 kDa), T40 (40 kDa), T10
(10 kDa) and glucose at a concentration of 10 mg/mL each for calibrating the Sepharose
CL-6B column [21,31,32]. Regression of the standard curve gave a linear equation (with
R2 = 0.9882) represented by:

y = −0.2328x + 1.523 (1)

which was used to estimate the average molecular weight of the polysaccharides.

3.5. Analysis of Monosaccharides

The total sugar content was measured using the phenol–sulfuric acid method [21,32].
Glucose was used to produce a standard curve for determining the sugar content. Regres-
sion of the standard curve gave a linear equation (R2 = 0.9964) represented by:

y = 0.0018x + 0.0374 (2)

The total protein content was measured using a modified Lowry’s method, where
BSA was used to prepare the standards [21,32] for constructing the standard curve for
determining the bound protein. Regression of the standard curve gave a linear equation
(R2 = 0.9923) represented by:

y = 0.0017x − 0.0212 (3)

The mono-sugar content was determined by gas chromatography (Hewlett Packard
7890B) with FID detection [21,32]. The approach followed to prepare the samples for GC
analysis was based on the procedure published previously [21]. Mannose, glucose, galac-
tose, xylose, fucose, rhamnose, arabinose and ribose were used as mono-sugar standards.

3.6. Bioactivity Tests
3.6.1. DPPH• Scavenging Assay

The Blois method was employed to determine the DPPH• scavenging ability of the
polysaccharides and is similar to that described in previous publications [32,42,43].

Free radical scavenging activities of AAPs was evaluated using the equation:

DPPH• scavenging activity (%) =
ODcontrol −ODSample

ODcontrol
× 100% (4)

where OD of the control is the absorbance of DPPH solution without sample and OD of
sample is the test sample (DPPH solution plus test sample or positive control).

3.6.2. ABTS•+ Radical Scavenging Assay

ABTS•+ scavenging ability of the polysaccharides was determined using a published
method and is similar to that described in previous publications [32,43].

Free radical scavenging activity of AAPs was evaluated using the equation:

ABTS•+ scavenging activity (%) =
ODcontrol −ODSample

ODcontrol
× 100% (5)
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where OD of the control is the absorbance of ABTS solution without sample and OD of
sample is the test sample (ABTS solution plus test sample or positive control).

3.6.3. OH• Radical Scavenging Assay

The OH• scavenging assay was a slightly modified method described by de Avellar et al.,
(2004) [44]. The procedure is similar to that presented in previous publications [32]. Ascor-
bic acid (Vc) at a concentration range of 17–1000 µg/mL was the positive control. The OH•

scavenging ability of AAPs was determined using the equation:

OH• scavenging activity (%) =
ODSample −ODneg_control

ODblank −ODneg_control
× 100% (6)

where the negative control is the reaction mixture without sample and without ascorbic
acid. The blank is the reaction mixture without sample, ascorbic acid and H2O2.

3.6.4. Immunomodulatory Activity Assays

Mouse macrophages (RAW 264.7) were first added to DMEM (culture medium con-
taining 1% antibiotic and 5%FBS) and incubated for 4 days at 37 ◦C in 5% CO2. The cells
were then diluted with the medium to achieve a density of 2× 105 cells/mL. The procedure
is based on the published literature [32].

IL-6 Production

ELISA kit (IL-6, BD Biosciences, San Jose, CA, USA) was used to measure the con-
centration of IL-6 following the procedure in the manufacturer’s manual [31,32,45,46]. All
experiments were conducted in triplicate. Standard IL-6 (mouse) was used to produce a
calibration curve that gave the linear equation (R2 = 0.992):

y = 0.0019x + 0.0248 (7)

which was then used to determine the concentration of IL-6 produced by the polysaccharide
extract.

TNF-α Production

ELISA kit (TNF-α, BD Biosciences, San Jose, CA, USA) was used to measure the
concentration of TNF-α following the method provided in the manufacturer’s manual and
as previously described [31,32,45,46]. Triplicate measurements were made.

Standard TNF-α (mouse) was used to produce the calibration curve that gave the
linear equation (R2 = 0.9867):

y = 0.0015x + 0.067 (8)

which was used to determine the concentration of TNF-α produced by the polysaccharide
extract.

3.6.5. Determination of Cell Viability by MTT Assay

Viability of macrophage cells (RAW 264.7) was measured using the MTT assay as
previously described [31,32]. The absorbance was measured at 595 nm and the fraction of
live cells was determined using the equation:

Cell viability (%) =
OD o f sample

OD o f pos control
× 100% (9)

The positive control was mouse macrophages treated by only DMEM medium (with-
out LPS and sample).
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3.7. Fourier Transform Infrared (FTIR) Spectroscopy

A TENSOR II FTIR spectrometer (BRUKER) was used for structural characterization
of the AAPs at room temperature (25 ◦C) [32,34]. All spectra were recorded between
4000–450 cm−1.

3.8. Statistical Analysis

Data is expressed as mean ± standard deviation (SD) values. The group mean was
compared using a one-way analysis of variance (ANOVA) and Duncan’s multiple range
tests. The statistical difference was considered significant if p < 0.05. All statistical analyses
were performed using OriginPro 8.5 and Excel 2016.

4. Conclusions

Three polysaccharide fractions were successfully isolated from the aqueous extract of
A. annua (AAP-1, AAP-2 and AAP-3). AAPs isolated from A. annua displayed highly signif-
icant immunostimulatory capacities and antioxidant activities. In particular, AAP-1 and
AAP-3 have displayed very high immunostimulatory activities and low toxicity, demon-
strating that they have high potential as natural immune-enhancing agents.

FTIR results indicate that AAP-1 and AAP-2 are pyranose-containing polysaccha-
rides with β-linkages. GC and FTIR results lead to the conclusion that AAP-3 is a
β-fructofuranoside. It is pertinent to further compare the biological activity results and
structural features of LCP-2 [32] with those of AAP-3. Both polysaccharides gave very
similar mono-sugar ratios, similar FTIR spectral features and very comparable biological
activities. These results strongly indicate that AAP-3 is a β-fructan.
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