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Unilateral peripheral vestibular lesions produce a syndrome of oculomotor and postural
deficits with the symptoms at rest, the static symptoms, partially or completely normal-
izing shortly after the lesion due to a process known as vestibular compensation. The
symptoms are thought to result from changes in the activity of vestibular sensorimotor
reflexes. Since the vestibular nuclei must be intact for recovery to occur, many investi-
gations have focused on studying these neurons after lesions. At present, the neuronal
plasticity underlying early recovery from the static symptoms is not fully understood. Here
we propose that knowledge of the reflex identity and input–output connections of the
recorded neurons is essential to link the responses to animal behavior. We further pro-
pose that the cellular mechanisms underlying vestibular compensation can be sorted out
by characterizing the synaptic responses and time course for change in morphologically
defined subsets of vestibular reflex projection neurons. Accordingly, this review focuses
on the perspective gained by performing electrophysiological and immunolabeling studies
on a specific subset of morphologically defined, glutamatergic vestibular reflex projection
neurons, the principal cells of the chick tangential nucleus. Reference is made to pertinent
findings from other studies on vestibular nuclei neurons, but no comprehensive review
of the literature is intended since broad reviews already exist. From recording excitatory
and inhibitory spontaneous synaptic activity in principal cells, we find that the rebalancing
of excitatory synaptic drive bilaterally is essential for vestibular compensation to proceed.
This work is important for it defines for the first time the excitatory and inhibitory nature
of the changing synaptic inputs and the time course for changes in a morphologically
defined subset of vestibular reflex projection neurons during early stages of vestibular
compensation.
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INTRODUCTION
The classical three-neuron vestibular reflex pathways originate in
the vestibular end organs where highly tuned sensors for head and
body motion generate and transmit signals to the dendrites of
first-order bipolar vestibular ganglion cells whose axons transmit
signals to subsets of vestibular nuclei neurons which are distrib-
uted in the brainstem. Second-order vestibular nuclei neurons
participating in the reflex pathways signal third-order, cranial, and
spinal motor neurons, which control gaze, posture, and balance.
Altogether, there are three major vestibular reflex pathways reg-
ulating eye movements and balance essentially without involving
cortical structures (Wilson and Maeda, 1974). The vestibuloocu-
lar reflex (VOR) regulates the six extrinsic eye muscles to maintain
gaze during head movements, the vestibulocollic reflex (VCR) con-
trols the neck muscles to support the head during movements,
and the vestibulospinal reflex (VSR) controls the muscles of the
body and limbs to maintain posture and balance. In addition,
some of the vestibular nuclei neurons whose axons project to the
oculomotor nuclear complex in the medial longitudinal fasciculus

(MLF) have collaterals that descend to cervical spinal cord, making
them vestibuloocular collic (VOC) reflex neurons (Isu et al., 1988;
Minor et al., 1990), which likely coordinate movements of the
head and eyes. Other neurons may contribute to the simple three-
neuron reflexes, but these neurons by themselves can perform the
basic reflex activities (McCrea et al., 1987). The phylogenetically
old vestibular system is highly conserved during evolution (e.g.,
Wallman et al., 1982), perhaps due to the critical role that the
vestibular reflexes plays in survival of the organism confronted by
environmental challenges.

Unilateral damage to the peripheral vestibular system precip-
itates a complex and debilitating syndrome of oculomotor and
balance deficits which include nystagmus, roll head tilt, and flex-
ion/extension of the lower extremities (Aldrich and Peusner, 2002;
Shao et al., 2009). Depending on species, the symptoms at rest,
known as the static symptoms, partially or completely normalize
during the first week after the lesion (Smith and Curthoys, 1989)
due to a process called vestibular compensation (for review, see
Halmagyi et al., 2010). In addition to the static symptoms, dynamic
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symptoms are observed during movements and these generally
take weeks-to-months to recover, if at all (Curthoys and Halmagyi,
1995; Newlands et al., 2005). Both the static and dynamic symp-
toms are thought to result from deficits in the vestibular sensori-
motor reflexes. Considerable experimental evidence indicates that
changes in the vestibular sensorimotor reflexes after lesions involve
functional reorganization of neurons within broadly distributed
regions of the nervous system besides the vestibular nuclei, includ-
ing the cerebellum, inferior olivary nucleus, spinal cord, and visual
system (for review, see Llinas and Walton, 1979; Dieringer, 1995).
For more than 100 years, experiments have been performed on
diverse structures in the central nervous system from different
vertebrate species without gaining a comprehensive view of the
process of vestibular compensation. At present, it is well estab-
lished that the vestibular nuclei must be intact for recovery to occur
(Spiegel and Demetriades, 1925; Precht et al., 1966), underscoring
a critical role for these neurons in compensation. Therefore, the
preponderance of research on vestibular compensation has been
focused on studying the intrinsic membrane properties (e.g., Ser-
afin et al., 1991a,b; Johnston et al., 1994; Beraneck et al., 2003,
2004; Shao et al., 2009; for review, see Eugène et al., 2011) and
responses of vestibular nuclei neurons to different stimuli after
lesions (Goto et al., 2000, 2001; Shao et al., 2012). Since only a
fraction of vestibular nuclei neurons function as vestibular reflex
projection neurons, and their responses to the lesion depend on
which vestibular reflex they participate in, we propose that it is
critical to determine the reflex nature of the recorded neurons and
to average data selectively from neurons participating in the same
reflex pathway. We further propose that knowledge of the reflex
identity of the recorded neurons is essential for linking the neu-
ronal responses to animal behavior. Finally, we propose that the
cellular mechanisms underlying vestibular compensation can be
sorted out by studying the postsynaptic responses of morphologi-
cally identified subsets of vestibular reflex projection neurons after
stimulating specific inputs, and characterizing the time course for
change in these synaptic interactions after lesions.

The fundamental rationale behind this approach resides with
the discovery that subsets of vestibular nuclei neurons with dif-
ferent axonal projections generate diverse spike discharge patterns
(Goldberg, 2000; Sekirnjak and du Lac, 2006; Gottesman-Davis
et al., 2011; Kolkman et al., 2011), and release different neuro-
transmitters (Spencer et al., 1989; Takazawa et al., 2004; Gittis and
du Lac, 2007), with glutamate, GABA, and glycine predominat-
ing. In addition, in other sensory systems a neuron’s response
to deafferentation is tightly linked to its role in the network
(e.g., Francis and Manis, 2000; Li et al., 2009; Zhou et al., 2009).
Accordingly, we propose that different subsets of vestibular reflex
projection neurons, which are distinguished by key morphological
features including their inputs, outputs, neurotransmitter pheno-
type, and/or neuron morphology, should be recorded from after
lesions and then analyzed as separate, independent groups. In most
vestibular compensation studies, this approach is avoided because
most vestibular nuclei lack an architectural organization of its
neurons (i.e., lamination) and its neurons lack distinctive mor-
phologies related to either axonal output, as found for cortical
pyramidal cells (Romand et al., 2011), or to synaptic inputs as
described for cochlear nuclei neurons (for review, see Hackney,

1987). Accordingly, it is a major challenge to relate the morphol-
ogy of vestibular nuclei neurons to their functional responses so
that single neuron function in a behaving animal can be defined.
However, many landmark discoveries in biomedical research have
been rendered by integrating disciplines. For example, bridging
structural and functional approaches vastly improved our under-
standing of signal processing in the central auditory system (see
Feng et al., 1994; Ostapoff et al., 1994), and contributed to elu-
cidate the role of the hippocampus in memory processing (see
Cossart et al., 2006), to name a few.

STRUCTURE/FUNCTION STUDIES ON THE VESTIBULAR
NUCLEAR COMPLEX
Classically, the vestibular nuclear complex consists of four main
vestibular nuclei: lateral, medial (MVN), superior, and descend-
ing (Büttner-Ennever, 1992), with each of them containing a wide
range of neuron subsets with discrete to widely diffuse axonal pro-
jections. In addition to vestibular reflex projection neurons, the
vestibular nuclei contain neurons which project to diverse cortical
sites via thalamic relays to participate in the conscious awareness
of motion, spatial orientation, and navigation (Highstein and Hol-
stein, 2006; Dieterich and Brandt, 2008). Other vestibular nuclei
neurons project to the ipsilateral or contralateral vestibular nuclei
(Malinvaud et al., 2010), nucleus prepositus hypoglossi (McCrea
and Baker, 1985; Kolkman et al., 2011), cerebellar flocculus (High-
stein and Holstein, 2006), parabrachial nucleus (McCandless and
Balaban, 2010), or to multiple brainstem nuclei regulating sympa-
thetic outflow (Holstein et al., 2011). Still other vestibular nuclei
neurons function as local circuit interneurons (Highstein and Hol-
stein, 2006; Popratiloff and Peusner, 2011), or participate in the
polysynaptic VOR pathways (Chen-Huang and McCrea, 1998).

In mammals, the MVN is by far the largest and most exten-
sively studied of the four classical vestibular nuclei. MVN neurons
involved in the mammalian VOR form diverse subsets, with some
of them forming glycinergic inhibitory projections to the ipsi-
lateral abducens nucleus (MVN/ABi; Spencer et al., 1989) while
others contribute glutamatergic excitatory inputs to the contralat-
eral abducens nucleus (MVN/ABc; Büttner-Ennever, 1992; Straka
and Dieringer, 1993; Straka et al., 2005), with both subsets con-
trolling horizontal eye movements. Other VOR neurons in the
MVN project to the contralateral oculomotor and trochlear nuclei
to regulate vertical eye movements. MVN neurons involved in the
VOR tend to concentrate at rostral levels of the nucleus (Him and
Dutia, 2001), and disperse mediolaterally primarily in the ventro-
lateral, magnocellular portion of the MVN (Sekirnjak and du Lac,
2006).

From electrophysiological studies performed on whole animals
and preparations of the whole brainstem or brain slices primarily
obtained from mammals, several popular catalogs of vestibular
nuclei neurons have emerged. In whole animals, type I and type II
neurons are distinguished by their activation on ipsilateral or con-
tralateral head rotation (Precht et al., 1966; Sadeghi et al., 2010),
vestibular only (VO) neurons are identified by their responses to
passive head rotations in the ipsilateral direction (Cullen et al.,
2003; Beraneck et al., 2007), and position–vestibular pause (PVP)
neurons are identified by their monosynaptic responses to primary
vestibular fibers, ability to encode horizontal head velocity during
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rotation, and responses to eye movements without head move-
ments (Beraneck and Cullen, 2007). In fact, most vestibular nuclei
neurons participating in the VOR fall into the category of PVP
neurons, which includes both type I and type II neurons (Cullen
et al., 2003). VO neurons also include type I and type II neurons
as well as vestibulospinal, vestibulofastigial, and vestibulothalamic
neurons (Sadeghi et al., 2011). In brain slices, the most popular
catalog of vestibular nuclei neurons is the type A and type B neu-
rons, which are distinguished by action potential waveform (Him
and Dutia, 2001). Regarding neurotransmitter phenotype, most
type A neurons are GABAergic, while type B neurons can be gluta-
matergic, GABAergic, or glycinergic (Takazawa et al., 2004; Bagnall
et al., 2007). Concerning axonal projections, type B neurons in the
MVN are diversified with some of them projecting to the con-
tralateral oculomotor nucleus (Sekirnjak and du Lac, 2006) while
others represent floccular target neurons (Sekirnjak et al., 2003),
to name a few. It is interesting that the percentage of MVN type A
and type B neurons is subject to change during development (for
review, Eugène et al., 2011) and after lesions (Beraneck et al., 2003,
2004). Clearly, each catalog of these functional subsets lacks homo-
geneity in their input–output connections and neurotransmitter
phenotype.

CHICKEN TANGENTIAL NUCLEUS AS A MODEL FOR
VESTIBULAR COMPENSATION STUDIES
Like mammals, birds have an interstitial nucleus of the vestibular
nerve, called the tangential nucleus in avians. In the chicken, the
tangential nucleus is a major vestibular nucleus, containing about
350 neurons and 3-neuron classes. Principal cells compose the vast
majority (80%; Peusner and Morest, 1977), and display large oval,
glutamatergic cell bodies (30–35 μm) aligned in rows between
the incoming primary vestibular fibers near the lateral surface
of the medulla oblongata (Peusner and Morest, 1977; Peusner
and Giaume, 1997; Popratiloff and Peusner, 2011; Figure 1). Fur-
thermore, the principal cell bodies are readily distinguished from
other neurons by their large cell body size and oval shape in sim-
ple stains such as MAP2 (Peusner and Morest, 1977; Popratiloff
and Peusner, 2007). The striking morphology of the principal
cells is retained after unilateral vestibular ganglionectomy (UVG;
Aldrich and Peusner, 2002). Thus, unlike most vestibular nuclei,
the tangential principal cells conform to a simple architectural
pattern, and they display distinctive morphologies which make
them readily distinguishable from other vestibular nuclei neurons
in the region. Primary vestibular fibers form distinctive termi-
nals in the tangential nucleus, with the largest-diameter fibers,
or “colossal fibers,” forming the large “spoon-shaped” terminals
which encompass about 10% of the hatchling principal cell body
in a one-to-one relationship (Peusner, 1984; Figure 1). In contrast,
the small-diameter primary vestibular fibers form small terminals
primarily on dendrites in the tangential nucleus (Cox and Peusner,
1990a; Popratiloff et al., 2004; Popratiloff and Peusner, 2007).
Combined biocytin-labeling of the primary vestibular fibers with
synaptotagmin-1 (SYT-1) labeling of terminals reveal that about
24% of synaptic terminals in the tangential nucleus originate from
the primary vestibular fibers (Popratiloff et al., 2004). Spoon ter-
minals degenerate 1–3 days after UVG, while the primary vestibu-
lar fibers degenerate by 7 days (Aldrich and Peusner, 2002). GABA

FIGURE 1 | High power confocal image (60×) of a transverse section of

the medulla oblongata showing glutamate immunolabeling in the

tangential nucleus of the hatchling chicken (H5). Glutamate antibody
labels the vestibular fibers, including the colossal vestibular fibers (CF) and
principal cell bodies (PC) in the tangential nucleus. SE, spoon ending
formed on the principal cell body by a colossal fiber. Scale bar, 25 μm.
Adapted from Popratiloff and Peusner (2011).

and glycine-positive terminals show distinct subcellular termina-
tion patterns in the tangential nucleus with greater than 50%
of SYT-1-labeled terminals GABA-positive and about one-third
expressing glycine (Popratiloff and Peusner, 2011).

The three semicircular canals form discrete and separate projec-
tions in the chicken tangential nucleus (Cox and Peusner, 1990a),
while utricular and saccular fibers show little overlap but share
common regions with the canal afferents. After electrical stim-
ulation of individual vestibular nerve branches, the pattern of
canal and otolith convergence onto vestibular nuclei neurons has
been described in detail in the frog (Straka et al., 2002). In mam-
mals, primary vestibular fibers with regular spike discharge tend
to contact VOR neurons, while those with irregular-discharge
pattern primarily contact VOC neurons (Highstein et al., 1987;
Boyle et al., 1992). Besides labyrinthine inputs, tangential princi-
pal cells receive inputs from neurons originating in high cervical
spinal cord (C1–C2; Peusner, 1984; Gross, 1985; Cox and Peusner,
1990b), the cerebellar flocculus, and contralateral MVN (Cox and
Peusner, 1990b). Thus, like most vestibular nuclei, the tangential
nucleus is not a simple relay center, but represents a site processing
convergent, multimodal inputs.

Most principal cell axons course medially without producing
collaterals in the tangential nucleus and enter the contralateral
MLF to contact neurons in the oculomotor, trochlear, or abducens
nucleus. Principal cells innervating the abducens nucleus may have
collaterals descending to cervical spinal cord (Figure 2), while
other principal cells send their axons directly to cervical spinal
cord (Cox and Peusner, 1990b). In consideration of the mas-
sive output to the oculomotor, trochlear, and abducens nuclei,

www.frontiersin.org February 2012 | Volume 3 | Article 17 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Neuro-otology/archive


Peusner et al. Vestibular reflex neurons and compensation

FIGURE 2 | Schematic drawing of a transverse section of the medulla

oblongata at the level of the inner ear (Lb) and at the level of high

cervical spinal cord (C1, C2), showing some of the output pathways of

axons of the principal cells in the chick tangential nucleus (TN). See
the text for a more complete description. VG, vestibular ganglion; Ab,
abducens nucleus; IV, fourth ventricle. Adapted from Shao et al. (2008).

tangential principal cells in the chicken conform most closely to
the mammalian MVN neurons participating in the VOR, leading
to the hypothesis that the chicken tangential nucleus may repre-
sent a laterally displaced fraction of vestibular reflex projection
neurons which fail to consolidate with the more medially situated
MVN (Gottesman-Davis and Peusner, 2010). Horseradish perox-
idase (HRP) injections restricted to the cervical spinal cord reveal
that large numbers of principal cells label retrogradely with HRP,
lending support to the hypothesis that many principal cells are
VOC or VCR neurons (Cox and Peusner, 1990b). Thus, all of the
principal cells of the chicken tangential nucleus are glutamatergic,
second-order vestibular reflex projection neurons with distinct
morphology (Popratiloff and Peusner, 2011), and they participate
in the VOR, VCR, and/or VOC pathways (Wold, 1978; Evinger and
Erichsen, 1986; Labandeira-Garcia et al., 1989; Cox and Peusner,
1990b; Petursdottir, 1990; Gottesman-Davis and Peusner, 2010).

THE HATCHLING CHICKEN AS A MODEL FOR VESTIBULAR
COMPENSATION STUDIES
Although adults recover from brain lesions, they often produce
irreversible deficits in brain function after damage (Dobkin, 2000).
In contrast, children display a higher degree of recovery from
brain damage indicating greater brain plasticity (Kaga, 1999).
Accordingly, we propose that progress in understanding vestibular
compensation may be accelerated by studying young brains, so our
experiments are performed on the hatchling chicken. The hatch-
ling’s vestibular system matures precociously, since they can stand
and feed within hours of birth (Shao et al., 2006a). When a left-
sided UVG is performed on 4-day old hatchlings (H4), the majority
of animals show signs of recovery starting at 3 days after UVG when
they can stand, eat, and drink (Aldrich and Peusner, 2002; Shao

et al., 2009, 2012). However, some subjects do not start to recover
by 3 days, despite receiving similar surgical and postsurgical treat-
ment (Shao et al., 2009, 2012). In fact, about 20% of patients who
undergo surgery involving unilateral vestibular deafferentation fail
to recover completely and exhibit persistent postural and dynamic
reflex deficits (for review, see Badke et al., 2002; Halmagyi et al.,
2010). Thus, the chicken offers an important animal model to
investigate the mechanisms underlying vestibular compensation
and the failure to compensate (Shao et al., 2009, 2012). Recovery
from the static symptoms after UVG usually requires several addi-
tional days compared to UL. Therefore, an advantage of UVG over
UL is an expanded time course to sort out the critical events. In
addition, UVG produces a more predictable experimental model
than UL because all of the primary vestibular fibers degenerate
centrally after UVG (Aldrich and Peusner, 2002), whereas it is
questionable to what extent the primary vestibular fibers and their
terminals survive after UL, and for how long (Jensen, 1983; Sirkin
et al., 1984; Li et al., 1995; Sadeghi et al., 2009). It is interesting
that some investigators propose that the inactivation of primary
vestibular fibers alone is sufficient to induce the observed behav-
ioral deficits, regardless of whether the primary vestibular fibers
degenerate in the brainstem (see Goto et al., 2002).

CHICKEN VESTIBULAR REFLEXES DURING VESTIBULAR
COMPENSATION
After emerging from the eggshell, the chicken’s environment and
consequently its behavior change dramatically, since the chicken
must begin to respond to angular and linear acceleration to main-
tain appropriate posture and balance for eating, drinking, and
movements necessary to its survival (Rogers, 1995). These behav-
iors are mediated primarily by the vestibular system, although
proprioceptive and visual inputs are critically involved in assisting
the vestibular system to perform these basic functions under nor-
mal conditions (for review, see Llinas and Walton, 1979). Thus,
it stands to reason that after vestibular deafferentation, propri-
oceptive, and visual inputs will be recruited early on to sustain
the damaged vestibular-mediated networks. Standard ethological
methods have been applied to characterize the behaviors asso-
ciated with vestibular function, dysfunction, and compensation
after lesions, and they provide a general evaluation of vestibular
reflex activity (frog, Flohr and Precht, 1981; chicken, Heaton, 1975;
Aldrich and Peusner, 2002). However, the tests do not conclusively
identify dysfunction in one particular vestibular reflex. For exam-
ple, tests of locomotion and balance measure both VSR and VCR
function. Nonetheless, ethological tests offer a good starting point
to define an approximate time course for behavioral recovery in
vestibular reflex function after lesions. Below, some results from
behavioral testing are presented to characterize the VSR, VCR, and
VOR in hatchling chickens 1 h to 56 days after UVG, when surgery
is performed on 4-day-old hatchlings (Figure 3; for additional
details, see Aldrich and Peusner, 2002).

TESTING THE VSR
Tests of VSR function include standing, locomotion and balance,
and the righting reflex. Within 4–6 h after UVG, the operated
hatchlings recover consciousness, are vocal, and ready to feed,
but they cannot stand due to increased flexor or extensor muscle
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FIGURE 3 | Behaviors observed in the normal chickens (A,J) and in

operated hatchings which underwent a left UVG at H4 (B–I). (A)

Normal 5-day-old hatchling. (B) One hour after UVG, flexion/extension of
the lower extremities and extensive roll head tilt are observed. (C) Twelve
hours after UVG, the operated hatchlings exhibit 180˚ roll head tilt. (D) One
day after UVG, the operated hatchlings exhibit a 90˚ roll head tilt. (E) Three
days after UVG, the operated hatchlings can stand without assistance for
brief periods. (F) Three to 4 days after UVG, the operated hatchlings can
stand without assistance for long periods. (G) Eight days after UVG, the
operated hatchlings score near normal in the locomotion and balance tests.
(H,I) Fourteen and 56 days after UVG, respectively, a 30˚ roll head tilt to the
left persists. (J) Sham-operated chicken 56 days after surgery. Note the
absence of roll head tilt. Adapted from Aldrich and Peusner (2002).

tone in the lower extremities which does not subside until 2 days
after UVG (Figures 3B–E). By 3–4 days after UVG, most oper-
ated hatchlings can stand and peck at food without assistance for
extended periods (Figure 3F). Altogether, the operated hatchlings
show reduced weight gain during the first 2 weeks after UVG due
to difficulties in feeding and drinking, but by 56 days after UVG
there is no difference in weight between the operated and control
animals. The dynamic symptoms associated with locomotion and
balance have been studied by placing the operated animals in an
enclosure containing chick feed to encourage pecking (Heaton,
1975). Operated hatchlings are ranked according to their ability to
maintain posture, sequential foot movements, goal orientation of
locomotion, and to stand or walk without falling. When operated
hatchlings are placed on a table immediately after UVG, they roll
toward the lesion side. Locomotion and balance scores steadily
improve and return to normal over 9 days after UVG. The righting

reflex is tested by placing the animal on its back, allowing time
for it to stand, and counting the number of successes from mul-
tiple trials (Aldrich and Peusner, 2002). The righting reflex also
takes 9 days to return to normal, with the reflex toward the lesion
side less brisk and agile than that toward the intact side. Thus,
these ethological tests indicate that VSR function recovers to near
normal levels over a period of 9 days.

TESTING THE VCR
Tests for VCR function include roll and yaw head tilt, startle reflex,
hood test, and the lift and drop test. Roll head tilt is the lat-
eral deviation of the head and neck in the coronal plane. While
most static symptoms disappear in operated hatchling, a 30˚ roll
head tilt persists throughout the 56 days of the study (Aldrich and
Peusner, 2002; Figures 3E–I). This behavior is measured by draw-
ing a line through both eyes in photographs and determining the
angle formed by the line with horizontal lines on the enclosure
walls (Figure 3). Yaw head tilt is the flexion of the head and neck
around a vertical axis. Up to 8 days after UVG, yaw head tilt is
about 45˚ toward the lesion side, and then disappears. The startle
reflex appears shortly after hatching and includes loud vocaliza-
tions, bilateral wing flapping, and running in response to loud
auditory or threatening visual stimuli. Stumbling or falling is
rarely observed in the normal hatchlings. When the startle reflex
is elicited shortly after UVG, hatchlings lose head control, increase
roll head tilt to 180˚, and fall. From 7 to 21 days after UVG, a startle
stimulus produces circling, walking backward, and occasional loss
of head control. However, by 21 days, the operated hatchlings do
not lose head control and show a typical response to the startle
stimulus. At 9 days when locomotion and balance scores return
to normal, the hood test is performed by placing an opaque cloth
over the operated hatchling’s head. Initially, during the hood test,
animals lose head control, increase their roll head tilt to 180˚, and
fall. In response to the hood test at 21 days after UVG, roll head
tilt increases to 90˚ and the animals fall. Thereafter, the response
decreases, so that by 56 days only half the operated hatchlings
show increased head tilt, and none of the animals lose balance.
For 10 days after UVG, the lift and drop tests are performed, pro-
ducing dramatic loss of head control and increased roll head tilt
to 180˚. An animal that loses head control during the lift test also
loses head control during the drop test. By 21 days after surgery,
one-third of the operated hatchlings lose head control, and, by
28 days, the lift and drop tests usually have no effect. Roles for pro-
prioceptive and visual inputs in early recovery of head control are
suggested by the results of the hood and drop tests. During the first
9 days, multisensory inputs must assist the operated hatchlings in
maintaining stability while other recovery processes are ongoing.
Apparently,after consolidating the repair processes,non-vestibular
sensory inputs become less vital for performing tasks of balance,
since tests such as the lift and drop test no longer demonstrate
a vestibular dysfunction. In summary, VCR activity substantially
returns to normal levels by 3–4 weeks after UVG.

TESTING THE VOR
Test for VOR function include examining the operated hatchlings
for spontaneous nystagmus, tonic eye deviation, whether the eyes
are open or closed, and the ability to peck at food. Immediately
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after UVG, spontaneous nystagmus and tonic eye deviation are
not detected on visual inspection. However, by 12 h after surgery,
one-third of the animals have the left eye closed and the right
eye open, while another third keep the left eye open and the right
eye closed, and the remaining animals have both eyes open while
awake. By 1 day after UVG, all the operated hatchlings keep both
eyes open while awake. Unlike other species, oculomotor abnor-
malities are difficult to detect in hatchlings because 1–5˚ amplitude
saccades are generated naturally every 1–3 s (Wallman et al., 1982).
Nonetheless, an impaired VOR is indicated by the difficulties in
pecking at food and loss of head control during the startle reflex.
Recovery of the VOR is indicated by the reappearance of head sta-
bility and resumption of normal grooming behavior which occurs
between 13 and 21 days after UVG. Thus, although nystagmus
is not detected on visual inspection, the hood test abnormalities
which persist until at least 56 days after surgery, indicate a dys-
functional VOR. Altogether, visual input likely plays an important
role over a prolonged period after UVG, since VOR deficits persist
for at least 8 weeks after UVG.

In summary, like adult guinea pig (Schaefer and Meyer, 1981),
mouse (Beraneck et al., 2008), and rat (Llinas and Walton, 1979;
Precht, 1986), compensation for most static symptoms after uni-
lateral vestibular deafferentation requires about 9 days in the
hatchling chicken. Behavioral testing demonstrates that vestibu-
lar compensation does not produce a complete return to normal
function. An untrained observer might have difficulty distinguish-
ing between the experimental and control animals at rest 56 days
after UVG, but the persistent 30˚ roll head tilt is striking, indi-
cating impaired vestibular reflex function in the operated animal
(Figures 3I, J). Thus, recovery of function occurs in important,
simple vestibular reflex activities necessary for daily life, including
feeding, drinking, and walking. However, demonstrating dysfunc-
tion in vestibular reflex function in the operated animals depends
only on accurate testing of their labyrinthine function, vestibu-
lar reflexes, and/or associated sensory systems participating in
movements.

SPONTANEOUS SYNAPTIC ACTIVITY
Although evoked synaptic transmission is known to critically
influence normal function of sensory systems, the physiologi-
cal significance of spontaneous synaptic activity is more elusive.
Spontaneous synaptic activity is often referred to as “background
synaptic activity.” Changing levels of spontaneous synaptic activ-
ity are thought to modulate overall neuronal activity, including
spike firing rate (Chance et al., 2002). During development spon-
taneous synaptic events have been found to influence many crucial
activities in excitable cells, including neurogenesis, formation of
neural networks and space maps, emergence of tuning curves
in the auditory system, and the expression of myogenic factors
(e.g., Dallman et al., 1998; Friauf and Lohmann, 1999). In embry-
onic vestibular nuclei neurons, spontaneous synaptic events do
not routinely reach the threshold for firing action potentials due
to their small amplitude (Peusner and Giaume, 1994). However,
in mature or nearly mature vestibular nuclei neurons, sponta-
neous synaptic activity can generate spike firing (Shao et al.,
2006b). Thus, spontaneous synaptic events may provide sufficient
excitatory or inhibitory synaptic drive to modulate the output

of vestibular nuclei neurons. Both presynaptic and postsynaptic
factors contribute to set the frequency of spontaneous synaptic
events. Presynaptic factors include the number of presynaptic ter-
minals, the probability of neurotransmitter release, and/or spike
firing capability of the presynaptic neurons. The most important
postsynaptic factor is the density of neurotransmitter receptor
subunits at the synapse (Petralia et al., 1999). The kinetics of
spontaneous synaptic events include their rise time, decay time,
and amplitude of the response, which are determined primarily
by the composition of the postsynaptic receptor subunits. How-
ever, synchronization of presynaptic neurotransmitter release and
neurotransmitter clearance from the synaptic cleft also can affect
the kinetics (e.g., Barberis et al., 2004). Recording spontaneous
synaptic events provides a good tool to identify the excitatory
or inhibitory nature of different synaptic inputs from diverse
sources onto specific neurons. The excitatory or inhibitory nature
of synaptic events is distinguished by recording at different volt-
ages, while the glutamatergic, GABAergic, or glycinergic nature
of the transmission is determined using specific neurotransmitter
blocking agents. These are key features of the normal neuronal
network to define so that its functional state after deafferentation
can be better understood (Hanganu et al., 2001; Greenhill and
Jones, 2007).

SPONTANEOUS SYNAPTIC ACTIVITY AFTER UNILATERAL
PERIPHERAL VESTIBULAR LESIONS
Normal brain function requires a balance between excitatory and
inhibitory inputs that converge onto neurons in the central ner-
vous system, with imbalance producing major neurological disor-
ders (e.g., Gajcy et al., 2010; Naylor, 2010). Unilateral vestibular
deafferentation destroys the balance in vestibular nuclei neurons
by removing a major excitatory input. One popular hypothesis
predicts that vestibular compensation depends on the plasticity of
non-primary vestibular afferents which contact vestibular nuclei
neurons (see Discussion in Goto et al., 2002).

Our results show that both excitatory and inhibitory events in
principal cells undergo major changes in frequency and kinetics at
set times during recovery (Shao et al., 2012). The frequency of exci-
tatory postsynaptic currents (EPSCs) increases in principal cells on
the lesion side 1 day after UVG and remains elevated at 3 days after
UVG only in the uncompensated chickens (Figure 4A). Increased
EPSC frequency in principal cells could be related to the decreased
expression of the voltage-dependent potassium channel, Kv1.2, in
terminals contacting the principal cell bodies in uncompensated
chickens (Shao et al., 2009). In other systems, decreased Kv1.2
is found to increase excitatory neurotransmitter release (Dodson
et al., 2003). To investigate this possibility, future studies should
determine the neurotransmitter phenotype of the synaptic termi-
nals undergoing decreased Kv1.2 expression. The major change
in kinetics found after UVG is slower miniature EPSC (mEPSC)
decay time in principal cells on the lesion side compared to the
intact side 3 days after UVG in all operated chickens. Since high
levels of GluR2 subunits can generate slower kinetics (Geiger et al.,
1995), and high levels of GluR4 subunits are associated with rapid
AMPA receptor channels and fast desensitization (Zhu, 2009), the
relative expression of these two AMPA receptor subunits in prin-
cipal cells on the lesion and intact sides could account for the
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FIGURE 4 | Excitatory and inhibitory synaptic events in the principal

cells before and after UVG. sEPSC frequency is higher on the lesion
side 1 (A2) and 3 days after UVG in the uncompensated chickens (A3)

compared to controls (A1). (A4) Superimposed and scaled mEPSC
waveforms reveal that principal cells have slower decay times on the
lesion side compared to the intact side in all operated animals 3 days

after UVG. sIPSC frequency is higher on the lesion side in compensating
(B2) and uncompensated chickens (B3) 3 days after UVG compared to
controls (B1). (B4) Superimposed and scaled mIPSC waveforms show
that principal cells have faster decay times on the lesion side compared
to the intact side in all operated animals 3 days after UVG. Adapted from
Shao et al. (2012).

slower mEPSC decay time recorded after UVG. Specifically, higher
levels of GluR2 and lower levels of GluR4 could result in slower
mEPSC decay time in principal cells on the lesion side. Further-
more, AMPA receptors containing abundant GluR2 subunits are
calcium-impermeable, so that increased GluR2 expression in prin-
cipal cells on the lesion side could protect them from calcium
loading which can lead to glutamate-induced cell death. In fact,
none of the principal cells degenerate in compensating chickens
up to 56 days after UVG (Aldrich and Peusner, 2002).

Since simultaneous changes in frequency and kinetics of
spontaneous synaptic events occur within the same neuron, an
approach is necessary to evaluate the overall affect of these changes
on neuron excitability. Synaptic charge transfer provides this mea-
sure. Synaptic charge transfer is a measure obtained by integrating
all deviations from baseline generated by spontaneous synaptic
events in one neuron within a set period. Excitatory synaptic
charge transfer is significantly higher in principal cells on the lesion
side compared to the intact side of uncompensated chickens 3 days
after UVG, and tended to be higher in principal cells on the lesion
side 1 day after the lesion. However, excitatory synaptic charge
transfer is balanced in principal cells on the lesion and intact side
of compensating chickens 3 days after UVG. Thus, increased fre-
quency of excitatory spontaneous synaptic activity on the lesion
side may be the first step to counteract the loss of excitatory
primary vestibular fiber activity, with the second step directed
toward achieving balanced excitatory synaptic drive bilaterally for
compensation to proceed.

Inhibitory synaptic events likewise undergo major changes dur-
ing vestibular compensation, but according to a delayed time

course compared to the excitatory events (Shao et al., 2012). The
frequency of inhibitory postsynaptic currents (IPSCs) increases
significantly in principal cells on the lesion side 3 days after UVG
in both compensating and uncompensated chickens. Increased
IPSC frequency is primarily due to increased GABAergic events,
while the frequency of glycinergic events remains unchanged
(see Table 2; Shao et al., 2012). Increased IPSC frequency is
accompanied by significantly faster decay time of the events on
the lesion side, so that the inhibitory synaptic charge trans-
fer remains balanced bilaterally in compensating and uncom-
pensated chickens 3 days after UVG (Figure 4B). Unlike the
rebalancing of the excitatory synaptic drive which occurs in
compensating chickens only at 3 days, rebalancing of inhibitory
synaptic drive occurs in both compensating and uncompensated
chickens, leading to the conclusion that balancing of inhibitory
synaptic drive bilaterally is insufficient to promote vestibular
compensation. Altogether, both excitatory and inhibitory synaptic
drive must be balanced bilaterally for vestibular compensation to
proceed.

The factors responsible for increased IPSC frequency and faster
decay time in the principal cells on the lesion side have not
been identified. Furthermore, the role of increased GABAergic
sIPSC frequency on the lesion side after unilateral vestibular deaf-
ferentation remains uncertain. In the cat, increased number of
GABA-positive neurons and GABA-labeled terminals are found
throughout the vestibular nuclear complex on the lesion side
3 days after UVG (Tighilet et al., 2007), which could generate
increased GABAergic IPSC frequency in vestibular nuclei neu-
rons. In the rat, GABA neurotransmitter release from commissural
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inputs on MVN neurons increases on the lesion side shortly after
UL (Bergquist et al., 2008). Faster decay time for miniature IPSCs
(mIPSCs) in principal cells is consistent with finding decreased
sensitivity to GABAA receptor agonists in mammalian MVN neu-
rons on the lesion side after UL (Vibert et al., 2000; Yamanaka
et al., 2000). Finally, it is interesting that GABAergic mIPSCs are
absent from half the principal cells on the intact side of the uncom-
pensated chickens 3 days after UVG, suggesting that these neurons
have lost GABAergic inputs. At present, there is no evidence to
support the degeneration of GABAergic terminals in the tangential
nucleus on the intact side after UVG. Finally, there is no evidence
for changes in glycinergic mIPSC frequency in the principal cells
from any experimental group after UVG, although there are sig-
nificant fluctuations in amplitude and decay time of these events
(Shao et al., 2012).

RECAPITULATION OF THE DEVELOPMENTAL PATTERN
DURING VESTIBULAR COMPENSATION
A major hypothesis driving our vestibular compensation studies
is that important developmental targets for change also play crit-
ical roles during vestibular compensation. For example, during
development, a low-threshold, dendrotoxin (DTX)-sensitive, sus-
tained outward potassium current, I DS, is expressed highly at E16
in principal cells capable of firing single action potentials, but is
down-regulated after hatching when most principal cells fire spikes
repetitively on depolarization (Gamkrelidze et al., 2000). More-
over, on exposure to DTX (200 nm; α-DTX), embryonic principal
cells transform from firing single spikes to repetitive spike firing
(Gamkrelidze et al., 1998). Thus, the differential expression of
IDS contributes to the regulation of excitability in principal cells.
Based on these developmental events, we hypothesized that I DS

is up-regulated in principal cells on the intact side of uncompen-
sated chickens 3 days after UVG when they generate single spikes
on depolarization. Indeed, these principal cells express high lev-
els of IDS compared to principal cells in controls (Shao et al.,
2009).

The emergence of spontaneous synaptic activity has been stud-
ied using brain slices at E10, E13, E16, and H1, H5, and H7,
critical stages for the emergence of principal cell excitability and/or
vestibular reflex activity in the chicken (Peusner and Giaume,
1997; Gamkrelidze et al., 1998, 2000; Shao et al., 2003, 2004,
2006a). During development, sEPSC frequency undergoes two
major increases, between E10 and E13 when excitatory events
first appear in the principal cells, and during the perinatal period
between E16 and H1 (Figure 5). sIPSCs frequency also undergoes
a two-step developmental increase, with the first step occurring
between E13 and E16 in the interval between the two excitatory
surges, and the second step beginning at the tail end of the sec-
ond excitatory increase at H1 (Figure 5). Both GABAergic and
glycinergic events contribute to the first sIPSC developmental
surge, but only GABAergic events account for the second one.
At most stages investigated, GABAergic frequency is higher than
all other synaptic events recorded in principal cells, except at H1,
when sEPSC and sIPSC frequencies are similar and GABAergic
and glycinergic-mediated sIPSC frequencies are equal. During
vestibular compensation, the developmental pattern is repeated
in that EPSC frequency increases first, followed by increased IPSC

FIGURE 5 | Summary of developmental changes in the frequency of

sEPSCs, sIPSCs, and GABAergic and glycinergic sIPSCs in the principal

cells. sEPSC frequency increases significantly between E10 and E13,

and between E16 and H1, whereas sIPSCs increases significantly in

principal cells between E13 and E16 and between H1 and H7.

GABAergic sIPSCs increase significantly in the principal cells between E13
and E16, and between H1 and H7. Glycinergic sIPSCs emerge at E13, and
the frequency increases significantly between E13 and E16 and levels off.

frequency. In addition, during early recovery, the frequency of
GABAergic events predominates (Shao et al., 2012).

ROLE OF GABAB IN VESTIBULAR COMPENSATION
The cellular mechanisms that modulate neuronal excitability by
producing changes in neurotransmitter release could play criti-
cal roles in vestibular compensation. GABAB receptors are strong
candidates for this role. GABAB receptors are metabotrophic G-
proteins-coupled receptors (Wojcik and Neff, 1984; Hill, 1985;
Karbon and Enna, 1985) which can localize at presynaptic, postsy-
naptic, and extrasynaptic neuronal membranes (Kaupmann et al.,
1998; Kulik et al., 2002, 2003; Lopez-Bendito et al., 2002; Koyrakh
et al., 2005). GABAB receptors are detected in the brainstem of the
human (Billinton et al., 2000), and in the rodent vestibular nuclei
(Eleore et al., 2005). Both presynaptic and postsynaptic GABAB

receptors are found in rodent MVN neurons using immuno-
cytochemical (Holstein et al., 1992a,b) and electrophysiological
approaches on brain slice preparations (Dutia et al., 1992; Vibert
et al., 1995; Sun et al., 2002). Two types of presynaptic GABAB

receptors are distinguished based on the neurotransmitter pheno-
type of the terminals where they are expressed. GABAB autore-
ceptors are located on GABAergic terminals, whereas GABAB

heteroreceptors are positioned on non-GABAergic terminals (for
review, see Bettler and Tiao, 2006) and may be activated by ambi-
ent GABA or GABA spillover from nearby GABAergic terminals
(Isaacson et al., 1993). Presynaptic GABAB inhibits neurotrans-
mitter release by decreasing calcium conductances, while post-
synaptic GABAB modulates neuronal excitability by increasing
potassium conductances (for review,see Bowery et al.,2002; Bettler
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and Tiao, 2006). To date, no GABAB receptor-mediated sponta-
neous or evoked postsynaptic potentials have been recorded in
vestibular nuclei neurons, except for those found in embryonic
principal cells of the chick tangential nucleus (E16; Shao et al.,
2003).

Changes in presynaptic GABAB receptor expression could con-
tribute to the fluctuations in GABA levels reported in the MVN
(Bergquist et al., 2008), and changes in EPSC and IPSC fre-
quencies in the tangential principal cells after UVG (Shao et al.,
2012). Behavioral studies support a role for GABAB receptors
in vestibular compensation, since baclofen, a GABAB agonist,
decreases spontaneous nystagmus (Magnusson et al., 2000, 2002)
and accelerates the recovery of the postural reflexes when injected
systemically after UL (Heskin-Sweezie et al., 2010). In fact, the
first direct evidence of a role for GABAB receptors in vestibu-
lar compensation was obtained from extracellular recordings of
spontaneous spike activity in brain slices where decreased effi-
cacy to baclofen was found in MVN neurons on the lesion side
4 h after UL, with increased efficacy detected on the intact side
relative to controls (Yamanaka et al., 2000). MVN neurons on
the lesion side continue to show decreased efficacy to baclofen
from 7 to 10 days after the lesion (Johnston et al., 2001). Other
studies measuring relative gene expression indicate a rapid tran-
sient increase in GABAB on the lesion side 6 h after UL (Horii
et al., 2003), while in situ hybridization (Eleore et al., 2005), West-
ern blot, and immunocytochemical experiments (Zhang et al.,
2005) indicate no change in the GABAB mRNA or protein expres-
sion on the lesion or intact sides shortly after UL. These appar-
ently contradictory findings could result from methodological
limitations (e.g., limited sensitivity of Western blot), combining
data from different MVN neuron subsets, and/or the inability
or failure to distinguish presynaptic and postsynaptic GABAB

expression which can be differentially affected after lesions. The
ongoing experiments on the chick tangential principal cells apply
whole-cell patch-clamp recordings and immunolabeling com-
bined with confocal imaging, both of which can distinguish presy-
naptic and postsynaptic GABAB receptor expression (Shao et al.,
2011).

FUTURE STUDIES TO CLARIFY THE FUNCTION OF THE
VESTIBULAR REFLEX PATHWAYS DURING VESTIBULAR
COMPENSATION
Vestibular reflex testing in whole animals is an elegant approach to
quantify the extent of recovery from the dynamic symptoms after
peripheral vestibular lesions. In adults,VOR gain is usually close to
1.0 over the range for natural head movements made during daily
life. When the VOR is tested in the adult mouse after UL using
sinusoidal rotations in the dark at frequencies similar to those
found for natural behaviors (0.2–4 Hz), the gain is reduced to 0.2
for head rotations toward the lesion side at 1 day after UL, recov-
ers to 0.4 by 5 days, and acquires normal values 10 days after UL
(Beraneck et al., 2008). In the mouse, the static symptoms which
appear immediately after UL, including spontaneous nystagmus
in the dark, head tilt, and postural imbalance also resolve within
10 days. Thus, the time course for recovery from certain static
and dynamic symptoms after UL may overlap. Studies performed
on the monkey indicate that recovery of the VOR after UL takes

about a month for rotations toward the lesion side (Cullen et al.,
2009; Sadeghi et al., 2010). From single unit recordings, recov-
ery from the static and dynamic symptoms in the monkey appear
to be under the influence of neck proprioceptive inputs. Indeed,
subsets of vestibular nuclei neurons become responsive to neck
inputs 1–3 weeks after UL, although the same or similar vestibular
nuclei neurons fail to respond to the inputs in the normal monkey
(Sadeghi et al., 2011). The gain of the VCR, usually 1.0, is calcu-
lated as the ratio between the amplitude of the horizontal head
and turntable velocities. Thus, a fully compensated VCR has a gain
of 1.0 and a head velocity 180˚ out of phase with the turntable
(Goode et al., 1999).

Vestibular reflex activity has not been quantified in whole
hatchling chickens after UVG, but tests have been performed on
5-week-old hatchlings after a 5-day exposure to streptomycin at
H10, which reduces VCR and VOR gains to zero (Goode et al.,
1999, 2001). Three weeks after streptomycin exposure, VCR gain
and phase recover to near normal, but VOR gain remains at half
normal (Goode et al., 1999). Apparently,VCR recovers before VOR
in this system. In 5-week-old normal hatchlings, VCR and VOR
gains are 0.6–0.7, with the VOR gain reaching 1.0 only in adult
chickens (Goode et al., 2001). During development, VCR gains
tend to be higher than VOR gains at the ages tested (Goode et al.,
1999), but the age at which this reflex achieves adult values has
not been established. After UVG, we expect that recovery of the
VSR, VCR, and VOR likely follow different time courses due to
their different central pathways and final targets. According to the
rough measures provided by ethological testing, we predict that
VSR will recover first, followed by recovery of VCR, and finally
the VOR.

Despite a partial coincidence in timing of behavioral recov-
ery with restoration of spontaneous spike firing in rodent MVN
neurons studied in vivo, a time-locked sequence of events has not
been found (Ris et al., 1997; for review, see Straka et al., 2005).
Thus, behavioral recovery after unilateral vestibular deafferenta-
tion cannot be explained exclusively by changes in vestibular
nucleus neurons. In fact, in the chicken, a dissociation between the
whole animal behavior and in vitro electrophysiological changes
in principal cells is apparent 1 day after UVG because spontaneous
spike firing is symmetric in the principal cells on the lesion and
intact sides at the same time that the operated chickens display
severe postural deficits. The dissociation between the responses of
vestibular nuclei neurons and animal behavior points to a critical
role for neurons which modulate vestibular reflex activity during
vestibular compensation. Nonetheless, the chicken vestibular sys-
tem provides a good model to test the role of vestibular reflex
projection neurons and other neurons in vestibular compensation
for the reasons given in this review. Further knowledge of the
neural circuitry of different subsets of vestibular reflex projection
neurons, as well as brainstem, spinal cord, and cerebellar neurons
interacting with them, will lead to a better understanding of this
important form of brain plasticity after lesions.
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