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Abstract

In recent years, methylene blue (MB) has attracted considerable interest as a potential drug

for the treatment of methemoglobinemia and neurodegenerative diseases. MB is active

against microorganisms from various taxonomic groups. However, no studies have yet

been conducted on the effect of MB on the intestinal microbiome of model animals. The aim

of this work was to study the effect of different concentrations of MB on the mouse gut micro-

biome and its relationship with the cognitive abilities of mice. We showed that a low MB con-

centration (15 mg/kg/day) did not cause significant changes in the microbiome composition.

The Bacteroidetes/Firmicutes ratio decreased relative to the control on the 2nd and 3rd

weeks. A slight decrease in the levels Actinobacteria was detected on the 3rd week of the

experiment. Changes in the content of Delta, Gamma, and Epsilonproteobacteria have

been also observed. We did not find significant alterations in the composition of intestinal

microbiome, which could be an indication of the development of dysbiosis or other gut dys-

function. At the same time, a high concentration of MB (50 mg/kg/day) led to pronounced

changes, primarily an increase in the levels of Delta, Gamma and Epsilonproteobacteria.

Over 4 weeks of therapy, the treatment with high MB concentration has led to an increase in

the median content of Proteobacteria to 7.49% vs. 1.61% in the control group. Finally, we

found that MB at a concentration of 15 mg/kg/day improved the cognitive abilities of mice,

while negative correlation between the content of Deferribacteres and cognitive parameters

was revealed. Our data expand the understanding of the relationship between MB, cognitive

abilities, and gut microbiome in respect to the antibacterial properties of MB.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0241784 November 18, 2020 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Gureev AP, Syromyatnikov MY.,

Ignatyeva DA, Valuyskikh VV, Solodskikh SA,

Panevina AV, et al. (2020) Effect of long-term

methylene blue treatment on the composition of

mouse gut microbiome and its relationship with

the cognitive abilities of mice. PLoS ONE 15(11):

e0241784. https://doi.org/10.1371/journal.

pone.0241784

Editor: Jane Foster, McMaster University, CANADA

Received: April 15, 2020

Accepted: October 20, 2020

Published: November 18, 2020

Copyright: © 2020 Gureev et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was supported by the grant of

the President of the Russian Federation for young

scientists (Project MK-3173.2019.11) to M.Yu.S.

and A.P.G.; by RF Ministry of Science and Higher

Education in the framework of the national project

“Science” (Agreement 075-03-2020-088, Unique

https://orcid.org/0000-0003-3562-5329
https://orcid.org/0000-0001-9028-0613
https://orcid.org/0000-0003-0432-1760
https://orcid.org/0000-0002-4626-7320
https://orcid.org/0000-0003-2076-3868
https://doi.org/10.1371/journal.pone.0241784
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241784&domain=pdf&date_stamp=2020-11-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241784&domain=pdf&date_stamp=2020-11-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241784&domain=pdf&date_stamp=2020-11-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241784&domain=pdf&date_stamp=2020-11-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241784&domain=pdf&date_stamp=2020-11-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241784&domain=pdf&date_stamp=2020-11-18
https://doi.org/10.1371/journal.pone.0241784
https://doi.org/10.1371/journal.pone.0241784
http://creativecommons.org/licenses/by/4.0/


Introduction

Methylene blue (MB) is an organic thiazine dye that has recently gained attention due to the

newly discovered biological properties. MB is used in clinical practice to treat most forms of

methemoglobinemia [1, 2]. In recent years, there has been an increasing interest in MB as a

potential drug for neurodegenerative diseases such as Alzheimer’s disease [3–5].

MB is active against microorganisms from various taxonomic groups and exhibits the anti-

malarial effect [6], as it effectively inhibits the growth of Plasmodium falciparum. MB was also

found to exhibit ex vivo activity against drug-resistant isolates of P. falciparum and Plasmo-
dium vivax [7]. One of the mechanisms of the antimalarial effect of MB is inhibition of gluta-

thione reductase activity [8].

The antibacterial effect of MB in the photodynamic therapy has been well studied. The pho-

todynamic therapy converts oxygen molecules into reactive oxygen species that act on target

cells [9]. For example, MB-based photodynamic therapy reduces the amount of Pseudomonas
aeruginosa [10]. MB-mediated photodynamic therapy effectively controls the viability of bacte-

ria that cause dentin caries [11]. The bactericidal action of MB photodynamic therapy was

shown in the destruction of both gram-negative (Porphyromonas gingivalis and Aggregatibac-
ter actinomycetemcomitans) and gram-positive (Streptococcus mutans) bacteria [12]. A solu-

tion of 0.05% MB and 7% sodium citrate inhibited the growth of microorganisms such as

Escherichia coli, P. aeruginosa, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epi-
dermidis, Candida albicans, Aspergillus niger, and Vibrio vulnificus [13]. It has been shown that

MB can be used in the treatment of periodontitis [14]. The antimicrobial effect of MB on E.

coli cells has been demonstrated in zeolite [15]. A combination of citrate, MB, and parabens

has a strong bactericidal effect on S. aureus biofilms [16]. Silicone with covalently bound MB

exhibits a strong bactericidal activity against E. coli and S. aureus [17].

Despite the fact that MB is active against microorganisms from various taxonomic groups

and already used in clinical practice, no studies have been conducted on the effect of MB on

the intestinal microbiome of model animals, such as rats and mice. However, such studies are

necessary due to the fact that MB can potentially affect not only harmful microorganisms, but

also the useful ones that are present in the intestines of animals. It is known that changes in the

composition of intestinal microbiome can lead to serious disorders including cognitive dys-

functions [18]. On one hand, MB is known to improve the cognitive abilities; on the other

hand, MB has the antibacterial effect, which can lead to memory impairment due to the devel-

opment of dysbiosis. Therefore, the aim of this work was to study the effect of different con-

centrations of MB (15 and 50 mg/kg/day) on the mouse gut microbiome and cognitive

abilities of mice.

Materials and methods

Animals and experimental design

All experiments with animals were performed in accordance with the guidelines of the Voro-

nezh State University Ethical Committee on Biomedical Research (Animal Care and Use Sec-

tion, protocol N42-01a dated March 16, 2020). Three month-old 57Bl/6 mice were obtained

from the Stolbovaya Nursery (Moscow region, Russia). The animals were kept at the 12 h

light/12 h dark cycle at a temperature of 25˚C - 26˚C. Mice received water and a standard labo-

ratory diet (Ssniff Spezialdiäten GmbH, Germany) ad libitum.

The following animal groups were used for the experiment: Control–mice that received

pure water for 4 weeks (n = 13); MB 15 –mice that received 15 mg/kg/day MB for 4 weeks

(n = 9); MB 50 –mice that received 50 mg/kg/day MB for 4 weeks (n = 8). Feces collection was
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performed every week during the treatment. The T-maze test was performed in the last five

days of the experiment. The mice were not sacrificed after the experiment.

T-maze test

The T-maze test for assessment of the cognitive abilities of mice was performed according to

Deacon and Rawlins (2006) [18]. The height of the maze was 20 cm; the width of each arm was

10 cm; and the length of each arm was 30 cm. The mice were placed at the base of the “T” and

had to choose one of the arms. In the following trail, the rodent tends to choose the opposite

arm compared with the past trial. This behavioral indicator is called “spontaneous

alternation”.

The experiment included two stages–habitation and trial. During the 1st day of habitation,

the mice moved freely throughout the maze. During the 2nd day of habitation, the mice had to

find food at the end of each arm. The animals were placed in a maze in groups containing

mice from the same cage. Each habitation attempt lasted 3 minutes with the 10-minute inter-

vals between the attempts. In total, each group was given 4 attempts per day.

The trials lasted 3 days. The first attempt for each mouse was training. During the training

attempt, the reward was placed in each arm, but one of them remained closed. The animal was

supposed to enter into the open arm and completely eat the reward. The second attempt was

performed immediately, without a five-minute interval. The experimenter opened the previ-

ously closed arm, and if the animal entered the arm where it had not been before, it receives

the reward. In the next attempt, the arm containing the reward was changed. If the mouse did

not enter the correct arm, then in the next attempt, the reward remained in the same arm. A

total of 10 attempts per day were conducted with a five-minute interval. The score corre-

sponded to the number of correct attempts (minimum, 0; maximum, 10). The same protocol

was used during all three days of trials.

Analysis of gut microbiome composition

Feces were collected once before the start of the treatment (0 week) and at the end of each

week (1st to 4th week). DNA was extracted from the feces with a Proba-GS kit (DNA Technol-

ogy, Russia). Bacteria in the mouse feces were analyzed according to Yang et al. [19]. qPCR

was performed using a Bio-Rad CFX96 Instrument (Bio-Rad, USA) and a qPCRmix-HS SYBR

+LowROX kit (Evrogen, Russia). The content of bacteria of a particular phylum was deter-

mined using the following formula:

X ¼ ðEUniv
CqUnivÞ=ðESpec

CqSpecÞ � 100%;

Where, X is the percentage of bacteria of this phylum; EUniv is PCR efficiency with the uni-

versal primers; ESpec is PCR efficiency with the phylum-specific primers; CqUniv is the num-

ber of quantitation cycle with the universal primers; CqSpec is the number of quantitation

cycle with the phylum-specific primers.

High-throughput sequencing

To perform high-throughput sequencing, bacterial DNA isolated from feces was amplified

with the universal direct 785F forward primer (5’-GGATTAGATACCCTGGTA) and reverse

1100R primer (5’-GGGTTGCGCTCGTTG) [20]. PCR was performed using a 5X ScreenMix-

HS Master Mix (Evrogen, Russia) in the following regime: 94˚ for 4 min followed by 37 cycles

of 94˚ for 30 s, 53˚ for 30 s, and 72˚ for 30 s with the final elongation at 72˚ for 5 min. PCR

products were purified with AMPure XP magnetic beads (Beckman Coulter, USA) and used
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for construction of sequencing libraries using Ion AmpliSeq Library Kit 2.0 (Thermo Fisher

Scientific, USA) as recommended by the manufacturer. Barcoding was done using the Ion

Xpress barcode adapters (Thermo Fisher Scientific, USA). Library DNA concentration was

determined by qPCR using Library Quantification Kit Ion Torrent Platforms (Kapa Biosys-

tems, USA).

Sequencing was performed with the IonTorrent PGM platform using Ion PGM Hi-Q View

Sequencing Kit, Ion OneTouch 2 System, and Ion PGM Hi-Q View OT2 Kit (Thermo Fisher

Scientific, USA).

The results of sequencing were obtained as binary alignment map (BAM) files that were

converted into FASTQ format using the SAMtool v.1.2 software. Demultiplexing and primer

stripping were done with the fastq-multx application of the ea-utils v.1.3. program package.

The reads were then filtered according to the reading quality based on the number of expected

errors [21, 22].

Unique sequences were identified using the DADA2 package version 1.8.0. We used nega-

tive homopolymer gap penalty value (parameter HOMOPOLYMER_GAP_PENALTY = -1),

which causes homopolymer gaps to be treated as homopolymer sequences, and increased net

cumulative number of insertions of one sequence relative to the other (parameter

BAND_SIZE = 32).

Next, we constructed an amplicon sequence variant (ASV) table and filtered out chimeric

sequences. The taxonomy (with the genus-level resolution) was assigned to the sequence vari-

ants using the DADA2 implementation of the naive Bayesian classifier method [23]. The spe-

cies level taxonomy was assigned using exact matching (100% identity) with the amplicon

sequence variants. Identification of bacterial genus and species was performed using the

SILVA database (https://www.arb-silva.de) version 132 as a reference. We used the R version

3.4.4 for all operations related to the NGS data analysis and taxonomy assignment.

Statistical analysis

Statistica 10 software (StatSoft, USA) was used for data analysis. The normality of the gut

microbiome composition and the T-maze test score were assessed using the Shapiro-Wilk test

with a significance threshold of p� 0.05. The Mann-Whitney U-test was used to evaluate the

differences between the experimental groups, because the Shapiro-Wilk test showed a non-

normal distribution. The data were represented as the median (Q1, Q3). The Spearman’s cor-

relation was used for evaluating the association between the gut microbiome composition and

the T-maze test scores.

Results

Gut microbiome composition

The content of Bacteriodetes remained almost unaltered in the course of MB therapy. The only

change was observed on the 4th week of therapy in the MB 50 group, where the content of Bac-
teriodetes was 68.29% (54.97%; 68.86%) vs.86.78% (74.96%; 93.13%) in the control (p< 0.05)

(Fig 1).

The content of Firmicutes changed only in the MB 15 group. On week 0, the content of Fir-
micutes was 7.71% (5.92%; 9.08%), but by the 2nd week, it grew to 15.55% (10.24%; 16.53%) (p
<0.01), and to 26.33% (13.65%; 32.16%) on the 3rd week. However, no statistically significant

differences with the control group were revealed. In the MB 50 group on the 4th week of ther-

apy, the content of Firmicutes [22.48% (18.09%; 31.27%)] was more than two times higher

than in the control group [10.46% (4.90%; 15.15%)], but the differences were statistically insig-

nificant (p = 0.061) (Fig 1B). The Bacteriodetes/Firmicutes ratio in the MB 15 group decreased
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on the 2nd [5.22 (4.77; 8.67); p< 0.01] and 3rd [2.66 (2.06; 6.17); p< 0.01] weeks compared to

week 0 [10.00 (9.32; 13.43)]. In the MB 50 group, the differences were observed only on the 4th

weeks, as the ratio decreased to 3.04 (1.76; 4.00) in comparison with the control [3.99 (2.25;

4.22)], (p< 0.05) (Fig 1C).

The level of Actinobacteria in the MB 15 group [0.24% (0.16%; 0.35%)] was reduced com-

pared with the control [(0.47% (0.28%; 0.92%)] on the 3rd week of therapy (p< 0.05) and in

the MB 50 group [0.19% (0.15%; 0.21%)] vs. control [0.39% (0.30%; 1.25%)] on the 2nd week of

therapy (p< 0.01). Also, on the 2nd week of therapy, a decrease in the content of Actinobacteria
was observed in the MB 50 group compared to week 0 [0.35% (0.26%; 0.46%)], but the data

were statistically insignificant (p = 0.094). The trend towards a decrease in the number of Acti-
nobacteria in the MB 50 group compared to the control was also observed on the 3rd week

[0.13% (0.13%; 0.23%); p = 0.068] (Fig 1D).

The level of Betaproteobacteria did not change during the treatment with MB at various

concentrations (Fig 2A). There were significant differences for Delta- and Gammaproteobac-
teria. A small number of these bacteria have been detected in the MB 15 group on week 0

[0.01% (0.01%; 0.03%)]. The number of these bacteria increased to 0.06% (0.04%; 0.12%)

(p< 0.05) and to 0.40% (0.16%; 0.49%) (p< 0.01) on the 1st and 2nd weeks of MB treatment at

Fig 1. The content of predominant bacteria in the gut microbiome. (A) Bacteroidetes, %. (B) Firmicutes, %. (C) Bacteroidetes/ Firmicutes ratio. (D) Actinobacteria,

%. � p<0.05, compared to the control on the corresponded day. ## p< 0.01, compared with week 0 in the corresponded experimental group.

https://doi.org/10.1371/journal.pone.0241784.g001
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a concentration of 15 mg/kg/day. However, the content of these bacteria then declined to

0.06% (0.01%; 0.08%) on the 3rd week. On the 4th week, Delta- and Gammaproteobacteria were

not detected [0.00% (0.00%; 0.00%)]. In the MB 50 group, the level of Delta- and Gammapro-

teobacteria increased uniformly throughout all 4 weeks of MB therapy:week 0, 0.15% (0.13%;

0.18%); the 1st week, 0.37% (0.21%; 0.51%); the 2nd week, 0.46% (0.17%; 1.95%); the 3rd week,

0.88% (0.68%; 1.28%); p< 0.05 compared with week 0; and the 4th weeks, 1.40% (1.00%;

3.45%), p< 0.05 compared with week 0 and p< 0.05 compared with the control (Fig 2B).

The level of Epsilonproteobacteria in mice treated with MB at a concentration of 15 mg/kg/

day was lower compared to the control: 0.71% (0.27%; 1.14%) vs. 1.41% (0.81%; 4.24%) in the

control on the 2nd week of treatment (p< 0.05) and 0.04% (0, 00%; 0.28%) vs. 0.82% (0.50%;

2.67%) in the control on the 4th weeks (p< 0.01). In the MB 50 group, the content of Epsilon-
proteobacteria increased during the therapy from 0.95% (0.77%; 2.51%) on week 0 to 1.79%

(1.60%; 3.18%) on the 1st week (significant difference with the control, p< 0.01). On the 2nd

week of treatment, the level of Epsilonproteobacteria decreased to 1.39% (1.26%; 1, 92%), but

increased on the 3rd week to 2.68% (1.99%; 2.89%) (significant difference with the control,

p< 0.01). On the 4th week of therapy, the content of Epsilonproteobacteria was 6.04% (4.63%;

Fig 2. The content of predominant bacteria in the gut microbiome. (A) Betaproteobacteria, %. (B) Delta- and Gammaproteobacteria, %. (C)

Epsilonproteobacteria, %. � p<0.05; �� p< 0.01, compared to the control on the corresponded day. # p< 0.05; ## p< 0.01, compared with week 0 in the

corresponded experimental group.

https://doi.org/10.1371/journal.pone.0241784.g002
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7.97%) (significant difference with the control, p< 0.01; significant difference with week 0,

p< 0.05) (Fig 2C).

The content of Deferribacteres in the MB 15 group (0.00% (0.00%; 0.04%) on the 4th week of ther-

apy was reduced compared to the control [0.25% (0.05%; 0.93%)] (p< 0.01). The number of Defer-
ribacteres in the MB 50 group increased on the 2nd week [0.41% (0.16%; 0.46%)] vs. control [0.11%

(0.05%; 0.36%)] (p< 0.05) and also on the 4th week of the experiment [2.07% (0.81%; 2.69%)] vs.

control [0.25% (0.05%; 0.93%)] (p< 0.05). The content of Deferribacteres in the MB 50 group on

the 4th week of the experiment was higher than on week 0 [0.55% (0.41%; 0.66%)] (p< 0.05). There

was also a sharp increase in the number of Deferribacteres [0.71% (0.25%; 1.14%)] in the MB 15

group compared to week 0 [0.01% (0.01%; 0.20%)] and control [0.21% (0.12%; 0.40%)], but the dif-

ferences were statistically insignificant (p = 0.063 and p = 0.462, respectively) (Fig 3A).

The level of “Candidatus Saccharibacteria” fluctuated slightly in the MB 15 group; on week

0 of the experiment, the amount of “Candidatus Saccharibacteria” was 0.42% (0.27%; 0.73%),

but already by the 1st week, it decreased to 0.16% (0.13%; 0.27%) (p< 0.05) and then to 0.07%

(0.00%; 0.23%)on the 4th week (p< 0.05). In the MB 50 group, at the 1st week of therapy, the

level of “Candidatus Saccharibacteria” [0.09% (0.08%; 0.11%)] was lower compared to the con-

trol group [0.22% (0.15%; 0.59%)], p< 0.05 (Fig 3B).

Fig 3. The content of predominant bacteria in the gut microbiome. (A) Deferribacteres, %. (B) “Candidatus Saccharibacteria”, %. (C) Verrucomicrobia, %. (D)

Tenericutes, %. � p< 0.05; �� p< 0.01, compared to the control on the corresponded day. # p< 0.05; ## p< 0.01; ### p< 0.001, compared with week 0 in the

corresponded experimental group.

https://doi.org/10.1371/journal.pone.0241784.g003
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In the MB 15 group, the content Verrucomicrobia did not change during the therapy. In the

MB 50 group, the content of Verrucomicrobia increased uniformly throughout all 4 weeks of

therapy: 0.01% (0.01%; 0.01%) on week 0; 0.09% (0.06%; 0.09%) on the 1st week (p< 0.05 com-

pared to the control); 0.32% (0.31%; 0.49%) on the 2nd week (p< 0.05 compared to the con-

trol); 0.36% (0.09%; 0.48%) on the 3rd week (p< 0.05 compared to the control); and 0.76%

(0.65% 0.79%) on the 4th week (p< 0.05 compared with week 0 and control) (Fig 3C).

The level of Tenericutes bacteria in the mice receiving MB at a concentration of 15 mg/kg/

day was lower [0.01% (0.00%; 0.04%)] compared to the control [0.02% (0.01%; 0.06%)] on the

2nd weeks of treatment (p< 0.05). In the course of therapy, the number of Tenericutes
decreases by the 3rd and 4th weeks [0.00% (0.00%; 0.00%), p< 0.001]. In the MB 50 group, the

content of Tenericutes increased from 0.01% (0.00%; 0.02%) on week to 0.66% (0.39%; 0.75%)

on the 1stweek (significant differences with week 0 and control, p< 0.01), decreased to 0.05%

(0.05%; 0.33%) on the 2nd week of treatment, and then increased again to 0.33% (0.29%;

0.61%)on the 3rd week (significant differences with week 0 and control, p<0.01). On the 4th

week of therapy, the content of Tenericutes increased to 1.82% (1.69%; 2.16%) (significant dif-

ferences with week 0 and control, p< 0.01) (Fig 3D).

Species composition of bacteria in the gut microbiome

In the MB 15 group showed great variability in the number of Bacteroidetes within families

and even genus. Among the Alistipes genus we showed, that MB caused increase in A. obesi (p

<0.05) and A. ihumii (p<0.05), but decrease in A. putredinis (p<0.01) and A. senegalensis (p

<0.01). Among the Firmicutes phylum in the MB 15 group were decreased level of Lactobacil-
lus murinus (p<0.01), L. coleohominis (p<0.01), Dubosiella newyorkensis (p<0.05) and Intes-
tinimonas massiliensis (p<0.01) (Table 1).

In the MB 50 group was observed a 10-fold increase in the level of Bacteroides uniformis (p<

0.01) compared with control and 5-fold increase in the level of Ileibacterium valens (p<0.01). We

observed that level of some Proteobacteria was increased compared to the control in MB 50 group

the 4th week of therapy. It was showed for Helicobacter apodemus (Epsilonbacteraeota) (p<0.05))

and Rodentibacter pneumotropicus (Gammaproteobacteria) (p<0.05)). Also, we showed 4-fold

increase in the level of Mucispirillum schaedleri (Deferribacteres) (p<0.01) (Table 1).

T-maze test results

MB at a concentration of 15 mg/kg/day improved the memory of mice compared to the con-

trol [score 7 (6; 9) for the MB 15 group versus score 6 (4; 7) in the control, p< 0.01], while no

differences were detected for the mice treated with MB at a concentration of 50 mg/kg/day

[score 5 (7; 8)] (Fig 4).

On the first day of the trials, the highest results were demonstrated by the MB 50 group

[score 7 (6; 8)); the score for the MB 15 group was lower (score 7 (6; 7)], while the control

group demonstrated significantly lower score [score 5 (3; 7)]. However, on the second day of

trails, the highest results were demonstrated by the MB 15 group [score 7 (5; 9)], while the

other two groups had lower scores: score 5 (3; 8) in the MB 50 group and score 5 (4; 6). in the

control group. On the third day, the highest scores were also shown by the MB 15 group [score

9 (8; 9)], the scores for the MB 50 and control groups were 7 (6; 7) and 7 (6; 9), respectively.

Correlation analysis

We also found the correlations between most groups of the studied microorganisms. The con-

tent of Bacteroidetes negatively correlated with the content of Firmicutes (rs = -0.611,

p< 0.05), Delta- and Gammaproteobacteria (rs = -0.425, p< 0.05), and Epsilonproteobacteria
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Table 1. MB concentration and species composition of bacteria in the gut microbiome.

Phylum Family Genus Species Control Median (Q1,

Q3)

MB 15 Median (Q1,

Q3)

MB 50 Median (Q1,

Q3)

Bacteroidetes Muribaculaceae Muribaculum intestinale 0,0492 (0,0447,

0,1107)

0,3198 (0,0447,

0,3198)

0,0860 (0,0564,

0,0919)

Bacteroidetes Bacteroidaceae Bacteroides acidifaciens 0,0549 (0,0163,

0,1194)

0,0000 (0,0000,

0,0163)

0,0459 (0,0284,

0,0539)

Bacteroidetes Bacteroidaceae Bacteroides coprocola 0,0000 (0,0000,

0,0000)

0,0000 (0,0000,

0,0000)

0,0000 (0,0000,

0,0000)

Bacteroidetes Bacteroidaceae Bacteroides caecimuris 0,0030 (0,0016,

0,0054)

0,0021 (0,0004,

0,0026)

0,0090 (0,0077,

0,0115)

Bacteroidetes Bacteroidaceae Bacteroides uniformis 0,0008 (0,0005,

0,0015)

0,0000 (0,0000,

0,0000)

0,0089 (0,0064,

0,0132)

Bacteroidetes Bacteroidaceae Bacteroides massiliensis 0,0005 (0,0003,

0,0011)

0,0000 (0,0000,

0,0000)

0,0011 (0,0005,

0,0015)

Bacteroidetes Tannerellaceae Parabacteroides goldsteinii 0,0008 (0,0003,

0,0027)

0,0000 (0,0000,

0,0000)

0,0036 (0,0025,

0,0043)

Bacteroidetes Tannerellaceae Parabacteroides johnsonii 0,0001 (0,0000,

0,0011)

0,0000 (0,0000,

0,0000)

0,0016 (0,0013,

0,0022)

Bacteroidetes Rikenellaceae Alistipes obesi 0,0000 (0,0000,

0,0000)

0,0042 (0,0032,

0,0105)

0,0000 (0,0000,

0,0000)

Bacteroidetes Rikenellaceae Alistipes ihumii 0,0000 (0,0000,

0,0000)

0,0026 (0,0021,

0,0051)

0,0000 (0,0000,

0,0000)

Bacteroidetes Rikenellaceae Alistipes putredinis 0,0071 (0,0051,

0,0205)

0,0000 (0,0000,

0,0000)

0,0204 (0,0152,

0,0205)

Bacteroidetes Rikenellaceae Alistipes senegalensis 0,0016 (0,0015,

0,0090)

0,0000 (0,0000,

0,0000)

0,0100 (0,0089,

0,0139)

Bacteroidetes Rikenellaceae Rikenella microfusus 0,0008 (0,0001,

0,0012)

0,0000 (0,0000,

0,0000)

0,0005 (0,0001,

0,0029)

Firmicutes Lachnospiraceae Lachnospiraceae_NK4A136_group bacterium 0,1908 (0,0997,

0,5423)

0,1143 (0,0968,

0,3198)

0,1320 (0,0969,

0,1853)

Firmicutes Lachnospiraceae Lachnospiraceae_UCG-006 bacterium 0,0023 (0,0020,

0,0048)

0,0051 (0,0000,

0,0063)

0,0068 (0,0051,

0,0310)

Firmicutes Lactobacillaceae Lactobacillus murinus 0,2348 (0,1450,

0,4929)

0,0000 (0,0000,

0,0000)

0,1287 (0,1015,

0,1762)

Firmicutes Lactobacillaceae Lactobacillus coleohominis 0,0167 (0,0073,

0,0302)

0,0000 (0,0000,

0,0000)

0,0333 (0,0266,

0,0437)

Firmicutes Streptococcaceae Streptococcus danieliae 0,0000 (0,0000,

0,0000)

0,0064 (0,0000,

0,0254)

0,0000 (0,0000,

0,0000)

Firmicutes Streptococcaceae Streptococcus ferus 0,0002 (0,0000,

0,0015)

0,0000 (0,0000,

0,0000)

0,0007 (0,0004,

0,0012)

Firmicutes Streptococcaceae Streptococcus acidominimus 0,0000 (0,0000,

0,0005)

0,0000 (0,0000,

0,0000)

0,0003 (0,0000,

0,0013)

Firmicutes Erysipelotrichaceae Ileibacterium valens 0,0103 (0,0055,

0,0208)

0,0026 (0,0000,

0,0051)

0,0527 (0,0281,

0,0679)

Firmicutes Erysipelotrichaceae Dubosiella newyorkensis 0,0060 (0,0028,

0,0093)

0,0000 (0,0000,

0,0000)

0,0268 (0,0212,

0,0348)

Firmicutes Lachnospiraceae Acetatifactor muris 0,0000 (0,0000,

0,0000)

0,0000 (0,0000,

0,0000)

0,0000 (0,0000,

0,0000)

Firmicutes Erysipelotrichaceae Erysipelatoclostridium ramosum 0,0000 (0,0000,

0,0000)

0,0063 (0,0000,

0,0064)

0,0000 (0,0000,

0,0000)

Firmicutes Ruminococcaceae Intestinimonas massiliensis 0,0035 (0,0019,

0,0037)

0,0000 (0,0000,

0,0000)

0,0076 (0,0049,

0,0324)

Firmicutes Erysipelotrichaceae Faecalibaculum rodentium 0,0025 (0,0014,

0,0047)

0,0000 (0,0000,

0,0051)

0,0014 (0,0006,

0,0016)

(Continued)
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(rs = -0.434, p< 0.05). On the contrary, the content of Firmicutes positively correlated with the

levels of Delta-and Gammaproteobacteria (rs = 0.594, p< 0.05), Epsilonproteobacteria (rs =

0.570, p< 0.05), and Actinobacteria (rs = 0.450, p< 0.05). The highest correlation was

observed between the levels of Delta- and Gammaproteobacteria and Epsilonproteobacteria (rs

= 0.852, p< 0.05). The content of Deferribacteres negatively correlated with the level of Bacter-
oidetes (rs = -0.385, p< 0.05). A positive correlation was found between the content of Deferri-
bacteres and the levels of Firmicutes (rs = 0.554, p< 0.05), Actinobacteria (rs = 0.555, p< 0.05),

Delta- and Gammaproteobacteria (rs = 0.864, p< 0.05), and Epsilonproteobacteria (rs = 0.925,

p< 0.05). Similarly, the content of Tenericutes positively correlated with the level of Bacteroi-
detes (rs = -0.385, p< 0.05) and negatively correlated with the levels of Firmicutes (rs = 0.639,

p< 0.05), Delta- and Gammaproteobacteria (rs = 0.765, p< 0.05), Epsilonproteobacteria (rs =

0.847, p<0.05), and Deferribacteres (rs = 0.798, p< 0.05). The levels of Verrucomicrobia posi-

tively correlated with the levels of Firmicutes (rs = 0.520, p< 0.05), Actinobacteria (rs = 0.420,

p< 0.05), Delta- and Gammaproteobacteria (rs = 0.781, p< 0.05), Epsilonproteobacteria (rs =

0.779, p< 0.05), Deferribacteres (rs = 0.789, p< 0.05), and Tenericutes (rs = 0.790, p< 0.05).

The lowest correlation was found for the phylum Betaproteobacteria [its content correlated

only with the level of Bacteroidetes (rs = 0.380, p< 0.05)] and “Candidatus Saccharibacteria”

[correlated only with the level of Actinobacteria (rs = 0.406, p< 0.05)] (Table 2).

Table 1. (Continued)

Phylum Family Genus Species Control Median (Q1,

Q3)

MB 15 Median (Q1,

Q3)

MB 50 Median (Q1,

Q3)

Actinobacteria Bifidobacteriaceae Bifidobacterium animalis 0,0000 (0,0000,

0,0000)

0,0318 (0,0051,

0,0323)

0,0000 (0,0000,

0,0000)

Actinobacteria Bifidobacteriaceae Bifidobacterium pseudolongum 0,0000 (0,0000,

0,0000)

0,0000 (0,0000,

0,0000)

0,0000 (0,0000,

0,0000)

Actinobacteria Propionibacteriaceae Cutibacterium acnes 0,0000 (0,0000,

0,0000)

0,0000 (0,0000,

0,0000)

0,0000 (0,0000,

0,0000)

Actinobacteria Eggerthellaceae Enterorhabdus caecimuris 0,0010 (0,0004,

0,0012)

0,0106 (0,0000,

0,0132)

0,0014 (0,0010,

0,0020)

Actinobacteria Corynebacteriaceae Corynebacterium_1 stationis 0,0005 (0,0000,

0,0040)

0,0000 (0,0000,

0,0000)

0,0005 (0,0001,

0,0008)

Proteobacteria Pasteurellaceae Rodentibacter pneumotropicus 0,0000 (0,0000,

0,0002)

0,0000 (0,0000,

0,0000)

0,0015 (0,0006,

0,0016)

Proteobacteria Sutterellaceae Parasutterella excrementihominis 0,0016 (0,0005,

0,0024)

0,0211 (0,0152,

0,0323)

0,0054 (0,0018,

0,0152)

Proteobacteria Moraxellaceae Enhydrobacter aerosaccus 0,0000 (0,0000,

0,0002)

0,0000 (0,0000,

0,0000)

0,0000 (0,0000,

0,0000)

Proteobacteria Oxalobacteraceae Massilia aurea 0,0000 (0,0000,

0,0003)

0,0000 (0,0000,

0,0000)

0,0000 (0,0000,

0,0000)

Proteobacteria Sutterellaceae Sutterella wadsworthensis 0,0000 (0,0000,

0,0000)

0,0000 (0,0000,

0,0000)

0,0000 (0,0000,

0,0000)

Proteobacteria Neisseriaceae Snodgrassella alvi 0,0000 (0,0000,

0,0000)

0,0032 (0,0000,

0,0042)

0,0000 (0,0000,

0,0000)

Epsilonbacteraeota Helicobacteraceae Helicobacter apodemus 0,0693 (0,0294,

0,0974)

0,1907 (0,1613,

0,2763)

0,2622 (0,1451,

0,4093)

Epsilonbacteraeota Helicobacteraceae Helicobacter ganmani 0,0042 (0,0027,

0,0055)

0,0000 (0,0000,

0,0102)

0,0084 (0,0052,

0,0134)

Epsilonbacteraeota Helicobacteraceae Helicobacter mastomyrinus 0,0040 (0,0027,

0,0065)

0,0000 (0,0000,

0,0000)

0,0099 (0,0058,

0,0128)

Deferribacteres Deferribacteraceae Mucispirillum schaedleri 0,0084 (0,0048,

0,0110)

0,0297 (0,0152,

0,0645)

0,0314 (0,0294,

0,0508)

https://doi.org/10.1371/journal.pone.0241784.t001
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Regarding to the T-maze tests, there was a strong connection between the scores obtained

on different days. The average score correlated most strongly with the scores of the 2nd day of

the trials (rs = 0.895, p< 0.05) and somewhat less with the scores of the 3rd day (rs = 0.781,

p< 0.05) and the 1st day (rs = 0.705, p< 0.05) of trials (Table 2).

Fig 4. Scores in all trials of the T-maze test. � p< 0.05, compared with the control.

https://doi.org/10.1371/journal.pone.0241784.g004

Table 2. Correlation between gut microbiome composition and results of T-maze test.

B F A β γ ε D S T V 1st d s 2ndd s 3rdd s M s

Bac -0,611 -0,294 0,380 -0,425 -0,434 -0,385 0,237 -0,553 -0,293 0,113 -0,166 -0,157 -0,136

Firm 0,450 -0,043 0,594 0,570 0,554 0,050 0,639 0,520 -0,044 -0,082 0,008 -0,038

Act 0,225 0,448 0,545 0,555 0,406 0,356 0,420 -0,250 -0,222 -0,080 -0,199

Beta 0,174 0,236 0,262 -0,020 0,001 0,279 0,360 0,013 -0,143 0,077

Gamma 0,852 0,864 -0,005 0,765 0,781 0,000 -0,241 -0,119 -0,083

Epsilon 0,925 0,045 0,847 0,779 -0,167 -0,350 -0,231 -0,264

Defer 0,127 0,798 0,789 -0,151 -0,442 -0,288 -0,316

Sac 0,004 0,073 -0,190 -0,290 -0,291 -0,334

Ten 0,790 -0,096 -0,247 -0,321 -0,195

Ver -0,037 -0,246 -0,406 -0,250

1st d s 0,514 0,270 0,705

2nd d s 0,705 0,895

3rd d s 0,781

M s

B–Bac–Bacteroidetes; F–Firm–Firmicutes; A–Act–Actinobacteria; β–Beta–Betaproteobacteria; γ—Gamma—Delta- and Gammaproteobacteria; ε–Epsilon–

Epsilonproteobacteria; D–Defer–Deferribacteres; S–Sac—“Candidatus Saccharibacteria”; T–Ten–Tenericutes; V–Ver–Verrucomicrobia; 1st d s–First day score; 2nd d s—

Second day score; 3rd d s–Third day score. Bold font—the correlation is statistically significant, p<0.05.

https://doi.org/10.1371/journal.pone.0241784.t002
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However, the correlation between the levels of bacteria in the intestinal microbiome and

the results of the T-maze test was extremely low. The negative correlation was found only

between the level of Deferribacteres and the scores obtained on the 2nd day of the trials (rs =

-0.442, p< 0.05) (Table 1, Fig 5A) and the level of Verrucomicrobia and the scores obtained on

the 3rd day of trials (rs = -0.406, p< 0.05) (Table 2, Fig 5B).

Discussion

The question about the optimal MB concentration of for the treatment of animals is largely

debatable. The studies in rats have shown that the optimal concentration for the injection is 1

to 4 mg/kg [24, 25]. Single injections of 50–100 mg/kg MB suppressed the running wheel

behavior [26] but did not cause a genotoxic effect [27]. When MB was taken orally with drink-

ing water, a positive effect was observed in the MB concentration range from 15 to 40 mg/kg/

day [28–30]. There is no information on any adverse effects of MB when used at the concentra-

tions above 40 mg/kg/day.

No systematic studies have been conducted to evaluate possible negative effect of MB on

the gastrointestinal tract. In contrast, MB was found to demonstrate the therapeutic effect

against ulcerative colitis induced by intrarectal administration of 2,4,6-trinitrobenzene sul-

fonic acid [31] and against acetic acid-induced colitis in colonic mucosa [32]. However, a sin-

gle case was reported when a standard procedure of submucosal injection of 0.01% MB during

colon resection induced acute localized colitis [33]. Although it has been shown earlier that

chromoendoscopy with MB is a potent tool for the early detection of intraepithelial neoplasias

and colon carcinomas in patients with ulcerative colitis [34–38].

We showed that low MB concentrations (15 mg/kg /day) did not cause significant changes

in the gut microbiome composition. The level of Firmicutes has occasionally increased, but

only in comparison with week 0, but not with control (Fig 1B). The Bacteroidetes/Firmicutes
ratio decreased relative to the control on the 2nd and 3rd weeks (the tendency to decrease was

also observed on the 4th week, p = 0.063) (Fig 1C). This is consistent with data from Manderino

et al. (2017), who showed that people with a higher cognitive performance have a reduced con-

tent of Bacteroidetes and increased content of Firmicutes [39]. A slight decrease in the level of

Actinobacteria was detected on the 3rd week of experiment. The changes in the content of

Delta, Gamma, and Epsilonproteobacteria have been also observed (Fig 2B and 2C). However,

these changes were rather of the “oscillatory nature” and did not exceed 1%. Similar oscillatory

changes within 1% caused by MB at a concentration of 15 mg/kg/day were also observed for

Deferribacteres and “Candidatus Saccharibacteria” (Fig 3A and 3B). However, in general, we

found no significant changes in the intestinal microbiome composition, which could be a

marker of the development of dysbiosis or other gut dysfunction.

At the same time, high MB concentrations (50 mg/kg/day) led to significant changes in the

composition of gut microbiome, mostly, an increase in the levels of Delta, Gamma and Epsi-
lonproteobacteria (Fig 2B and 2C). Within 4 weeks of therapy, the content of Proteobacteria
increased to 7.49% (6.05%; 12.26%) vs. 1.61% (0.80%; 3.96%). in the control group. Sequencing

showed that high concentration of MB caused increase in Helicobacter apodemus (Epsilonbac-

teraeota) and Rodentibacter pneumotropicus (Gammaproteobacteria). Not all species of the

Helicobacter genus are pathogenic, but an increase of these bacteria suggests that there may be

damage to organs or organ systems [40]. An increase in the level of bacteria of the genus

Rodentibacter may indicate the presence of an infection [41]. Recently, Danilova et al. [42]

showed that the increase in the content of Proteobacteria in the microbiome is a marker of the

development of inflammatory bowel disease (which includes Crohn’s disease and ulcerative

colitis). Other indicators of the of inflammatory bowel disease development are an increase in
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Fig 5. Correlation between the T-maze test scores and content of bacterial groups on the 4th week of treatment. (A) Correlation between the T-maze test

scores in (2nd day) and content of Deferribacteres, %; (B) Correlation between the T-maze test scores (3rd day) and content of Verrucomicrobia, %.

https://doi.org/10.1371/journal.pone.0241784.g005
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the number of Bacteroidetes and decrease in the number of Firmicutes [42]. However, in our

study, on the contrary, we found a decrease in the level of Bacteroidetes on the 4th week of the

high-dose MB treatment (Fig 1A). No effect on Firmicutes was detected (Fig 1B). Therefore,

even if the content of Proteobacteria increased, we cannot unequivocally conclude that high

MB concentrations cause changes in the intestinal microbiome typical for patients with

inflammatory bowel disease.

The content of Proteobacteria increases in dysbiosis [18]. There is no consensus in medicine

whether dysbiosis is a consequence or a cause of the inflammatory bowel disease [43]. It is pos-

sible that the long-term treatment with high MB concentrations can have a negative effect on

the gut microbiome. Another change that can be characterized as negative was an increase in

the level of Deferribacteres (Fig 3A). In particular, we showed 4-fold increase in the level of

Mucispirillum schaedleri (Deferribacteres). M. schaedleri is a pathobiont, commensal, which

plays a role in the development of the disease and their increase in the body means the pres-

ence of intestinal inflammation in the studied organism [44].

Usually, an increase in the content of Deferribacteres is associated with the development of

inflammatory processes, as Deferribacteres have been suggested to be mucus-dwelling com-

mensals that can cause the disease [45]. A connection between inflammation and increase in

the level of Proteobacteria has already been shown [46]; therefore, we assume that the develop-

ment of the MB-induced dysbiosis can cause inflammatory processes that can adversely affect

the functioning of the whole organism, in particular, the brain and its cognitive functions [47].

A relationship between intestinal dysbiosis and development of inflammation due to the

loss of mucosal surfaces has been established [48]. Chronic inflammation is considered an

important factor in the cognitive decline [49]. It has been shown repeatedly that the increase

in the content of Proteobacteria is associated with certain cognitive deficits [39, 50].

We found that the MB therapy at a concentration of 15 mg/kg/day improved the cognitive

parameters in mice, what was manifested as higher scores in the spontaneous alternation test

(Fig 4). Alternation reflects motivation of the mice to find food. The T-maze alternation is one

of most popular tests for the evaluation of cognitive abilities of rodents [51].

Most likely, this effect was achieved due to the unique properties of MB, which can act as an

alternative electron carrier [52]. It has been repeatedly shown that MB improves memory in

various experimental models [53–57]. At the same time, we showed that at a concentration of

50 mg/kg/day, MB did not significantly increase the cognitive parameters of mice. Probably,

one of the reasons why the neurostimulating properties of MB were suppressed in this case

was the development of dysbiosis and subsequent inflammatory process. We found a negative

correlation between the level of Deferribacteres and test scores on the 2nd day of trials in the T-

maze test (rs = -0.44, p< 0.05) (Table 1, Fig 5A), which was consistent with the suggestion that

an increase in the content of Deferribacteres is associated with inflammatory process [45] nega-

tively affecting cognitive functions [49].

However, it was previously shown that the level of Verrucomicrobia positively correlates

with the cognitive function in neurologically healthy older adults [39], which contradicted our

data, as we demonstrated negative correlation with the scores on the 3rd day of trials in the T-

maze test (rs = -0.41, p< 0.05) (Table 1, Fig 5B). Probably, the role of Verrucomicrobia in the

microbiome relationship with cognitive properties is species-specific, and it is impossible to

unambiguously extrapolate the cognitive characteristics of mice onto cognitive characteristics

of humans. But the correlation analysis does not guarantee that there is a direct link between

microbiome composition and behavioral parameters. This analysis was carried out in order to

"outline" possible relationships that could prove or disprove subsequent research. Moreover,

the T-maze test does not allow a full assessment of the cognitive abilities of mice, and more

tests are required to unambiguously assess the effect of MB on cognitive functions, for
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example, the Morris water maze. In addition, it was interesting in the future to evaluate MB

effect on the gut microbiome and cognitive ability of mice of different ages, not only three-

month-old mice, which did not have chronic disease.

In summary, we found that MB treatment in a low dose (15 mg/kg/day) improved the cog-

nitive abilities of mice. In contrast, MB treatment in a high dose (50 mg/kg/day) did not affect

the cognitive abilities. We suggest that this might be due to the development of dysbiosis medi-

ated by the increase in the content of Proteobacteria and Deferribacteres. Moreover, we

revealed a negative correlation between the level of Deferribacteres and scores in the T-maze

test. Our data expand the understanding of the relationship between MB, cognitive abilities,

and gut microbiome in relation to the antibacterial properties of MB.
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