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Abstract

Background: Pulmonary arterial hypertension (PAH) is a common complication for individuals with limited systemic
sclerosis (ISSc). The identification and characterization of biomarkers for ISSc-PAH should lead to less invasive screening, a
better understanding of pathogenesis, and improved treatment.

Methods and Findings: Forty-nine PBMC samples were obtained from 21 ISSc subjects without PAH (ISSc-noPAH), 15 ISSc
subjects with PAH (ISSc-PAH), and 10 healthy controls; three subjects provided PBMCs one year later. Genome-wide gene
expression was measured for each sample. The levels of 89 cytokines were measured in serum from a subset of subjects by
Multi-Analyte Profiling (MAP) immunoassays. Gene expression clearly distinguished ISSc samples from healthy controls, and
separated ISSc-PAH from ISSc-NoPAH patients. Real-time quantitative PCR confirmed increased expression of 9 genes
(ICAM1, IFNGR1, IL1B, IL13Ra1, JAK2, AIF1, CCR1, ALAS2, TIMP2) in ISSc-PAH patients. Increased circulating cytokine levels of
inflammatory mediators such as TNF-alpha, IL1-beta, ICAM-1, and IL-6, and markers of vascular injury such as VCAM-1, VEGF,
and von Willebrand Factor were found in ISSc-PAH subjects.

Conclusions and Significance: The gene expression and cytokine profiles of ISSc-PAH patients suggest the presence of
activated monocytes, and show markers of vascular injury and inflammation. These genes and factors could serve as

biomarkers of PAH involvement in ISSc.
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Introduction

Pulmonary arterial hypertension (PAH) is a common compli-
cation of systemic sclerosis (SSc) associated with high mortality
despite modest improvements in survival due to increased
screening and treatment. PAH occurs more frequently in limited
SSc (ISSc) than in diffuse SSc (dSSc) [1]. Early detection and
treatment of PAH secondary to SSc (SSc-PAH) might lead to
better patient outcome [2]. For example, early treatment of
renovascular disease in SSc patients results in improved renal
outcomes [3]. In addition, hypoxia from progressive PAH may
accelerate vascular injury by stimulating increased ET-1, VEGF,
PDGF and endothelial apoptosis [4,5]. Current tools used in
screening for PAH in SSc patients include echocardiography,
pulmonary function testing, and levels of B-type natriuretic
peptide (BNP), none of which have demonstrated adequate
sensitivity or specificity [2]. Thus, SSc patients could benefit from
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biomarkers that permit earlier detection of patients at risk for
PAH.

SSc patients can have severe disease in several different vascular
beds, resulting in digital ischemia, telangiectasias, scleroderma
renal crisis and PAH. Similar to other vascular pathology in SSc,
SSc-PAH vascular remodeling consists of intimal thickening of
pulmonary arterioles and capillaries due to intimal cell prolifer-
ation and deposition of extracellular matrix [6]. Inflammation may
play a role in SSc-PAH, as patients have circulating autoantibodies
and perivascular inflammatory cell infiltrates such as T- and B-
lymphocytes, and macrophages [6]. While there are similarities in
the histological appearance of vascular lesions and the presumed
pathogenesis between idiopathic PAH (IPAH) and SSc-PAH, the
risk of death for SSc-PAH patients is higher [7,8]. There are also
indications that SSc-PAH patients have fewer plexiform lesions
and more intimal hyperplasia [6,9], as well as differences in the
mvolvement of the pulmonary veins [6].

August 2010 | Volume 5 | Issue 8 | 12106



Since pulmonary tissue is not readily accessible, it is difficult to
perform gene expression studies in SSc-PAH analogous to those of
SSc skin biopsies [10,11,12]. An alternative is to analyze gene
expression of peripheral blood mononuclear cells (PBMCs). Two
studies have investigated the gene expression of PBMCs in IPAH
and SSc-PAH. Bull et al. examined PBMC samples from 7
patients with IPAH, 3 patients with SSc-PAH (in a total of 8
patients with PAH related to a secondary cause), and 6 healthy
controls [13]. Genes were identified that discriminated PAH
patients from healthy controls. Grigoryev et al. analyzed PBMCs
from 9 patients with IPAH, 10 patients with SSc-PAH, and 5
healthy controls [14]. Gene expression concordant between the
IPAH and SSc-PAH groups was contrasted with discordant gene
expression. Neither study examined the alterations in PBMC gene
expression specifically attributable to PAH in SSc. We hypothe-
sized that PBMC gene expression would specifically separate 1SSc
patients from healthy controls, as well as SSc patients with and
without PAH. We report here PBMC gene expression defining
ISSc patients with and without PAH, and healthy controls.

Results

Although PAH can occur in patients with dSSc, in order to
provide a more homogeneous population for analysis, we limited
this study to patients with 1SSc, where it occurs more commonly.
Gene expression of PBMC samples was analyzed for 21 1SSc
patients without PAH (ISSc-NoPAH), 15 ISSc patients with PAH
(ISSc-PAH), and 10 healthy controls. For three patients (two 1SSc-
NoPAH and one ISSc-PAH), an additional PBMC sample was
analyzed one year after the baseline, resulting in 49 total samples.
With 5 technical replicates, a total of 54 microarrays were analyzed.
LSSc patients with mildly elevated pulmonary capillary wedge
pressure (PCWP) (>15 to =18) were included in our primary
analyses consistent with the REVEAL registry with similar rationale
[15]. Patients that had a mild increase in PCWP included in the
primary analysis all had significantly elevated pulmonary vascular
resistance (PVR, see Table 1), and significant increases in both the
pulmonary artery diastolic minus pulmonary capillary wedge
pressure (PAd-PCWP) gradient (>10) and the transpulmonary
gradient (>15). Thus, each was considered to have PAH by the
pulmonary hypertension expert caring for the patient. Further data
supported the diagnoses of PAH in these patients, Patient 66 had a
right heart catheterization two months prior to the catheterization
carried out on the day of study enrollment, showing similar elevated
pressures (mPAP =49) but a normal PCWP (11). Patient 31 had
relatively mild PAH (mPAP = 32) and a relatively mild increase in
PVR (207), but no evidence of right (RV) or left ventricular (LV)
dysfunction on echocardiogram or by cardiac output. Patient 42
had severely elevated mPAP and PVR, with an echocardiogram
showing normal LV function but severely dilated RV consistent
with severe PAH. Patient 89 had relatively mild PAH (mPAP = 37,
PVR =205), with mild elevation of the PCWP (PCWP = 16), but a
PAd 10 mmHg greater than the PCWP consistent with PAH. A
limited number of patients with pulmonary fibrosis, some with
extensive pulmonary fibrosis (2 in each group of 1SSc-PAH and
1SSc-noPAH patients), were also included in our primary analyses
because PAH is common in these SSc patients [16] and it was
deemed important to understand whether biomarkers for ISSc-PAH
patients with pulmonary fibrosis were similar to biomarkers for
1SSc-PAH patients without pulmonary fibrosis. To further support
the results of our primary analysis which included these patients, we
also carried out a secondary analysis excluding patients with
elevated PCWP and/or extensive pulmonary fibrosis, described
below.
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PBMC gene expression distinguishes I1SSc and healthy
controls

Data were first analyzed for genes that differentiated 1SSc from
healthy controls. The most significantly differentially expressed
genes between 1SSc patients, regardless of PAH status, and healthy
controls were identified with Significance Analysis of Microarrays
(SAM) [17]. 206 probes were selected with a false discovery rate
(FDR) <0.18% and clustered hierarchically by both sample and
probe (Figure 1). The division between the 1SSc and healthy
control samples was clear, with all healthy controls clustering
together (Figure 1A). Four out of five technical replicates clustered
either immediately adjacent to one another or with a single sample
separating them (black bars, Figure 1A). Notably, all three PBMC
samples collected one year after baseline demonstrated gene
expression nearly identical to the initial samples (yellow bars,
Figure 1A). Thus, for these three patients, the gene expression was
stable over a period of one year, results remarkably consistent with
the longitudinal analysis of gene expression in SSc skin
(Pendergrass, Lafyatis, Whitfield, In preparation). The full figure
with all probe names is available as Figure S1; the complete data
file is available as Supplementary Data File SI.

The major dendrogram bifurcation places all healthy controls
onto one branch, and divides the 1SSc patients into two groups,
despite selecting for genes that ideally stratify the groups (Figure 1).
Statistically significant dendrogram branches (¥, p=0.001) were
determined with SigClust [18]. The left branch is significant at the
0.001 level (red branches, Figure 1A) and includes PBMCs from
29 of 36 1SSc patients, while the remaining 7 1SSc samples group
with healthy controls (black branches, Figure 1A). As observed for
dSSc skin [10], most 1SSc patients show an expression profile
distinct from healthy controls (Figure 1B). The 7 ISSc patients that
group with healthy controls therefore constitute a ‘normal-like’
group, similar to that observed in SSc skin [10].

Genes with increased expression in 1ISSc PBMCs are associated
with inflammation and vascular injury. Those associated with
inflammation include interleukin-1, interferon, and TNF-alpha
regulated genes such as intracellular adhesion molecule 1 (ICAM1)
[19], caspase 1 (CASPI1) [20], lymphotoxin beta receptor TNFR
superfamily, member 3 (LTBR) [21], signal transducer and activator
of transcription 1 (STAT1), and allograft inflammatory factor (AIF-
1) [22]. Genes associated with angiogenesis, proliferation, hypoxia
and vascular injury include Pre-B-cell colony enhancing factor
(PBEF1/Visfatin) [23], Guanylate binding protein 1 (GBP-1) [24],
Tryptophanyl-tRNA synthetase (WARS) [25], Tissue inhibitor of
metalloproteinase 2 (TIMP2), and CyBB cytochrome b-245 beta
polpypetide (CYBB/NOXZ2) [26]. Genes with decreased expression
in ISSc did not show cohesive biological processes but included
protein kinase C eta (PRKCH), which had decreased expression in
PBMCs from rheumatoid arthritis patients [27].

Gene expression in I1SSc-PAH

In addition to the gene expression differences found between the
ISSc and healthy control samples, a multi-class SAM analysis
identified gene expression that ideally distinguished 1SSc-PAH,
1SSc-NoPAH, and healthy controls. A total of 305 probes were
selected with an FDR<C0.14%, and clustered hierarchically in the
gene and sample dimensions (Figure 2). Twelve of 15 ISSc-PAH
samples clustered together on a significant branch (Group 1,
Figure 2A), and showed the largest differences in gene expression
relative to controls. Nine of 21 ISSc-NoPAH samples clustered on
the same branch and showed intermediate expression levels. Three
ISSc-PAH samples (patients 64, 31, and 2) grouped on the
opposite branch (Group 2, Figure 2A) with 1SSc-NoPAH samples.
All technical replicates clustered adjacent to each other, or with
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Table 1. Clinical and hemodynamic data on subjects associated with PBMC sample arrays.
mPAP PCWP PVR (dyn.s/ CO/CI (L/min/L/ FVC (% DLCO (%
Subject Identifier Age Gender ILD Medications (mm Hg) (mm Hg) cm™®) min/M?) predicted) predicted)
LSSC_PAH_Pat02 67 F none tadalafil 31 14 282 5.1/3.3 79 58
LSSC_PAH_Pat29 62 M none epoprostenol 58 14 475 7.4/4.8 80 40
LSSC_PAH_Pat31 70 F none none 32 16 207 5.8/3.2 100 68
LSSC_PAH_Pat42 59 F mild ILD  none 57 18 745 4.4/2.5
LSSC_PAH_Pat45 52 F none none 52 11 625 5.5/3.4 48
LSSC_PAH_Pat48 63 M mild ILD  bosentan, 45 10 451 6.2/3.2 75 33
sildenafil
LSSC_PAH_Pat54 65 F none none 34 8 378 5.5/3.0
LSSC_PAH_Pat60 70 F none none 48 9 706 4.3/2.4 94 50
LSSC_PAH_Pat60_1yr 71 F none sildenafil 87 47
LSSC_PAH_Pat62 70 F none epoprostenol 43 8 823 3.3/1.8 86 44
LSSC_PAH_Pat64 64 F extensive none 33 13 222 5.4/2.9 59 54
ILD
LSSC_PAH_Pat66 80 F none sildenafil 52 16 846 3.4/2.0
LSSC_PAH_Pat83 64 F none none 37 11 519 4.1/23 101 34
LSSC_PAH_Pat85 69 M none sildenafil 53 9 720 61 43
LSSC_PAH_Pat89 67 F extensive none 37 16 205 8.2/2.6 48 43
ILD
LSSC_PAH_Pat90 56 F mild ILD  epoprostenol 42 5 503 6.2/3.9 929 38
LSSC_NoPAH_Pat12 33 [F none nifedipine 116 109
LSSC_NoPAH_Pat19 36 F none none 97 61
LSSC_NoPAH_Pat22 45 M extensive nifidipine 21 10 109 8.1/5.7 54 29
ILD
LSSC_NoPAH_Pat35 46 F none none
LSSC_NoPAH_Pat35_1yr 48 F none sildenafil 65
LSSC_NoPAH_Pat47 69 F none benazepril, 96 76
procardia
LSSC_NoPAH_Pat52 61 F mild ILD  nifedipine 69
LSSC_NoPAH_Pat52_1yr 62 F mild ILD  nifedipine 52
LSSC_NoPAH_Pat55 60 F none nitroglycerin 96 61
cream
LSSC_NoPAH_Pat57 48 M none nifedipine 15 9 87 5.5/2.4 75 91
LSSC_NoPAH_Pat58 44 F none none 18 10 114 5.6/3.7 110 95
LSSC_NoPAH_Pat67 45 F none none 108 94
LSSC_NoPAH_Pat75 55 F none nifedipine 90 98
LSSC_NoPAH_Pat80 51 F none propanolol 105 82
LSSC_NoPAH_Pat81 37 F none nifedipine,
nitropaste,
trental
LSSC_NoPAH_Pat82 76 F none metoprolol 21 13 125 5.1/3.0 96 51
LSSC_NoPAH_Pat86 51 F extensive none 42 61
ILD
LSSC_NoPAH_Pat87 38 M none none 95 90
LSSC_NoPAH_Pat91 56 F mild ILD  atenolol 17 65
LSSC_NoPAH_Pat98 56 F none nifedipine 89 82
LSSC_NoPAH_Pat100 39 F none nifedipine
LSSC_NoPAH_Pat102 43 F none none 107 83
LSSC_NoPAH_Pat116 57 F none none 100 66
Norml control patients were as follows: Normal_NoPAH_Pat13 (F), Normal_NoPAH_Pat19 (M), Normal_NoPAH_Pat96 (M), Normal_NoPAH_Pat97 (M),
Norma_NoPAH_pat106 (M), Normal_NoPAH_Pat108 (M), Normal_NoPAH_Pat111 (F), Normal_NoPAH_Pat117 (M), Normal_NoPAH_Pat118 (M).
doi:10.1371/journal.pone.0012106.t001
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1GJ Immunoglobulin J pokgeptide, linker protein NM_144646
MARLIN1 Multiple coiled-coil GABABR1-binding protein NM~144720
PLEKHA1 Pleckstrin homology domain containing, family A member 1 NM~001001974
RASGRP1 RAS guanyl releasing protein 1 (calcium and DAG-regulated) NM_005739
PBX4 Pre-B-cell leukemia franscription factor 4 NM~025245
PRKCH Protein kinase C, eta . NM~006255
KLRC4 Killer cell Iectln-llke receptor subfamily C, member 4 NMZ013431
KIF2 Kinesin heavy chain member 2
S100P S$100 calcium binding protein P NM_005980
STAT1 Signal transducer and activator of transcription 1, 91kDa NM~139266
GBP1 Guanylate binding protein 1, interferon-inducible, 67kDa NM_002053
c2 Complement component 2 NM~000063
PLSCR1 Phospholipid scramblase NM~021105
CAM1 Intercellular adhesion molecule 1 (CD54) NM~000201
PBEF1 Pre-B-cell colony enhancing factor 1 NM~005746
DAF Decay accelerating factor for complement (CD55 NM~000574
LGALS3 Lectin, galactoside-binding, soluble, 3 (galectin 3 NM_002306
LTA4H Leukotriene A4 hydrolase™ NM_000895
FZD1 Frizzled homoleg 1 (Drosophila) NM~003505
ANXAS5 Annexin A5 NM~001154
AlF1 Allograft inflammatory factor 1 NM~004847
TNFAIP2 Tumor necrosis factor, alpha-induced protein 2 NM_006291
GRN Granulin NM~002087
SORT1 Sortilin 1 NM~002959
DUSP3 Dual specificity phosphatase 3 NM~00409
CD33 CD33 ant@en p67) o NM~001772
PYCARD PYD and CARD domain containing NM_013258
NEU1 Sialidase 1 (lysosomal sialidase) . NM_000434
APLP2 Amyloid beta (A4g precursor-like protein 2 NM~001642
TIMP2 Tissue inhibitor of metalloproteinase 2 NM_003255
PTPNS1 Protein tyrosine phosphatase, nen-receptor type substrate 1 NM_080792
Cathepsin B NM~147780
TALDO1 Transaldolase 1 NM_006755
ASGR1 Asialoglycoprotein receptor 1 NM_001671
IFI30 Interferon, gamma-inducible protein 30 NM_006332
LMO2 LIM domain only 2 (rhombotin-like 1 NM_005574
RHOA Ras hom_olo%eene family, member ) NM_001664
GCA Grancalcin, EF-hand calcium binding protein NM~—012198
DYSF Dysferlin, limb girdle muscular drstrophy 2B NM~003494
FCGR2A Fc fragment of ?G, low affinity Ila, receptor for (CD32) NM~021642
VAMP3 Vesicle-associated membrane protein 3 (cellubrevin) NM_004781
CYBB Cytochrome b-245, beta Polypeptide NM~000397
ABHDS Abhydrolase domain containing 5 NM_016006
HNMT Histamine N-methyltransferase NM_006895
CALML4 Calmodulin-like 4 ~ . NM~033429
GALNACA4S-6ST B cell RAG associated protein NM~015892
SERPINA1 Serine (or cysteine) proteinase inhibitor, clade A, member 1 NM_001002236
RRAS Related RAS viral (r-ras) oncogene homolo NM_006270
LENG4 Leukocyte receptor cluster (LRC) member NM_024298
CTNNA1 Catenin (cadherin-associated protein), alpha 1, 102kDa NM_001903
MYD88 Myeloid differentiation prlma_niy response gene (88) NM~002468
Lymphotoxin beta receptor (TNFR superfamily, member 3) NM~00234
APLP2 Amyloid beta (tA4) precursor-like protein 2 NM_001642
SECTM1 Secreted and transmembrane 1 NM_003004
MGC35521  Pellino 3 alpha ) NM~145065
BCL2A1 B_(:LZ-reIategé)roiem A1l n NM_004049
ZA20D2 Zinc finger, AZ0 domain contamlnEg 2 NM~006007
CASP1 Caspase 1, apoptosis-related cysteine protease NM~033292
WARS Tryptophany-tRNA synthetase NM_004184
TNFRSF10B Tumor necrosis factor receptor superfamily, member 10b NM_003842
PTX3 Pentaxin-related gene, rapidly induced by IL-1 beta NM_002852
PLA2G4A Phc}{.\sxhollpase A2, group IVA (cytosolic, calcium-dependent) NM—_024420
CEBPA CCAAT/enhancer binding protein (C/EBP), alpha NM_004364
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Figure 1. Gene expression differentiates ISSc PBMC samples from healthy controls. A. Clustering dendrogram using 206 probes that most
differentiated ISSc (red identifiers) and healthy control samples (green identifiers; FDR cutoff<<0.18%). Black bars beneath the sample identifiers
connect technical replicates. Samples collected one year apart are indicated by yellow bars. Asterisks indicate statistically significant clustering
determined by SigClust. The red dendrogram branch contains the majority of ISSc samples, and the black branch contains those ISSc samples most
like healthy controls. B. Heat map showing expression of the 206 probes after 2-dimensional hierarchical clustering. Expression values above the
mean for each probe are indicated in red and below the mean are indicated in green. The yellow box highlights the gene expression data for the
dendrogram branch containing the majority of ISSc samples. A subset of genes is listed next to the heat map. The full figure with all probe names is

available as Figure S1.
doi:10.1371/journal.pone.0012106.g001

only a single sample separating them. Samples collected one year
later showed gene expression most similar to the previous sample.
The full figure with all probe names is available as Figure S2; the
data file is available as Supplementary Data File S2.

A striking feature of the gene expression is a gradient with the
largest differences between the 1SSc-PAH and controls, with 1SSc-
NoPAH showing intermediate expression levels. To validate this
finding, the most significant differentially expressed genes were
analyzed by quantitative RT-PCR. Nine genes were validated
(Figure 3): intercellular adhesion molecule 1 (ICAMI1), associated
with vascular injury; Interferon-y receptor 1 (IFNyR1), interleukin 1
beta (IL1B), interleukin 13 receptor al (IL13Ral), janus kinase 2
(JAK?2), allograft inflammatory factor 1 (AIF1) and chemokine (C-C
motif) receptor 1 (CCRI), all of immunological relevance;
Aminolevulinate delta synthase 2 (ALAS?2), a possible regulator of
the response to hypoxia; and tissue inhibitor of metalloproteinase-2
(TIMP?2) a known regulator of fibrosis. All had significantly higher
expression in the 1SSc-PAH group relative to healthy controls
(p=0.05, Figure 3). For IL1B, IL13Ral, and TIMP2 there was a
significant difference in expression between 1SSc-PAH and 1SSc-
NoPAH samples (p=0.03, Figure 3). The observed differences in
gene expression between these groups are maintained even when
excluding the four patients with extensive pulmonary fibrosis (two in
each of the 1SSc-PAH and 1SSc-NoPAH groups), or the four
patients with mildly elevated PCWP (>15 to =18, all in the 1SSc-
PAH group), indicating that these biomarkers of PAH are not
primarily driven by pulmonary fibrosis or heart failure.

In addition, we carried out a complete secondary analysis
excluding all patients with either PCWP >15 or extensive
pulmonary fibrosis (both groups indicated in Figure 2). 305 probes
were again selected using multi-class SAM  and clustered
hierarchically in the gene and sample dimensions. The dendro-
gram of patient clustering following this analysis is very similar to
that seen when including these patients (Figure S3A) with the
major groupings maintained. Therefore the inclusion of these
patients has little effect on the overall results.

Gene expression groups are associated with PAH severity

We examined the relationship between pulmonary severity
metrics and the gene expression groups defined in the three-class
analysis. The branch containing most of the 1SSc-PAH patients is
labeled ‘Group 1°, and the branch containing all healthy controls
1s labeled ‘Group 2’ (Figure 2A). Although SigClust suggested
potential subgroups within Group 2, there was high variability at
different p-values, suggesting more samples would be needed to
define these groups conclusively. We have therefore considered
these samples as a single group.

Strikingly, when comparing the mean pulmonary arterial
pressure (mPAP) values between Groups 1 and 2, the mPAP was
higher for ISSc-PAH patients (Fig. 4A, solid black circles) in Group
1 versus Group 2. The mean PAP of the three patients with 1SSc-
PAH in Group 2 showed the lowest mPAPs of the patients with
PAH, and these patients had a more intermediate gene expression
compared to ISSc-PAH patients of Group 1. We also compared
the diffusing capacity for carbon monoxide (DLCO) between the
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two groups, as isolated depression of diffusion capacity is
associated with PAH in SSc [28]. DLCO was decreased in Group
1 for both SSc-PAH and SSc-NoPAH patients (Figure 4B, p-
value =0.000263). In a reciprocal pattern to that seen for the
mPAPs, the three 1SSc-PAH patients in Group 2 (solid black
circles) had more preserved DLCO compared to the 1SSc-PAH
patients in Group 1. Therefore, 1SSc-PAH patients in Group 2
show milder changes from normal in both mPAP and DLCO
compared to ISSc-PAH patients of Group 1.

Three patients in Group 1 (2 ISSc-PAH: Pat22 and Pat86, and 1
1SSc-NoPAH: Pat89) and one patient in Group 2 (1ISSc-PAH: Pat64)
had extensive ILD. The difference in FVC between Groupl and
Group 2 was not statistically significant, indicating that ILD was
unlikely to be the primary clinical covariate driving gene expression
in these groups (Table 1). Additionally, we were unable to detect
clustering related to medications each patient was taking. Fifteen out
of 36 patients were not on vasoactive medications at time of the first
blood draw (T'able 1). In patients taking vasoactive medications, the
most common treatments were: phosphodiesterase type 5 (PDES)
inhibitors, sildenafil (4 1SSc-PAH and 1 1SSc-noPAH patient) and
tadenafil (1 1SSc-PAH patient); epoprostenol (3 1SSc-PAH patients
and 1 ISSC-NoPAH patient); and nifedipine (9 1SSc-NoPAH
patients). Two patients, Pat60 and Pat35, started sildenafil before
the second blood draw and showed similar gene expression between
the two time points (Figure 2), indicating that this class of
medication did not affect the expression analyses.

Coordinate enrichment of biological processes

To investigate the pathways deregulated in 1SSc with and
without PAH, we performed a separate multiclass SAM analysis
and selected a more inclusive list of 2,313 probes (FDR =2.67%).
This list was analyzed for enriched biological processes using the
Database for Annotation, Visualization, and Integrated Discovery
(DAVID). Figure S4 shows clusters of gene expression analyzed
using DAVID. The gene expression signature found in all but
three 1SSc-PAH patients (Figure S4), showed enrichment for GO
biological processes associated with proliferation and inflammato-
ry responses (Benjamini-Hochberg corrected, p=0.05), including
negative regulation of apoptosis and cell differentiation, I-kappaB kinase/ NF-
kappaB cascade, myeloid cell differentiation, response to external stimulus, and
wnflammatory  response. Genes included annexin Al (ANAXI),
chemokine ligand 2 (CCL2), BCL2 related protein A1 (BCL2A1),
and tumor necrosis factor receptor al (TNFRSFIA).

Gene expression associated with specific cell-types

To identify gene expression associated with specific cell types, as
well as to seek out indications of cellular activation and
differentiation, we used experimentally derived gene sets from
isolated cells. Gene sets were obtained for B-cells, T-cells,
macrophages, monocytes, immature and mature dendritic cells
(DCs), and myeloid cells (DCs, macrophages, and mono-
cytes)[29,30]. While PBMCs do not contain macrophages, the gene
expression profiles for these cells were included in the analysis due to
the possibility of monocyte populations showing signs of differen-
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Figure 2. Gene expression differentiating ISSc-PAH, ISSc-noPAH and healthy controls. A. Hierarchical clustering dendrogram generated
using 305 probes selected by a multi-group SAM analysis (FDR<<0.14%). LSSc-PAH sample identifiers are indicated in red, ISSc-NoPAH in blue, and
healthy controls in green. Black bars connect technical replicates and yellow bars connect samples collected one year apart. Statistically significant
branches determined by SigClust are indicated. The major bifurcation in the dendrogram divides Group 1 and Group 2. B. Heat map showing the
expression values of the 305 probes after 2-dimensional hierarchical clustering. Gene expression ratios are colored as in Figure 1. The yellow box
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highlights the gene expression of Group 1, which contains most of the ISSc-PAH PBMC samples. A subset of genes from the 305 probes are listed. The
full figure with all probe names is available as Supplementary Figure S2. Patients with PCWP >15 (mm Hg) are indicated with a purple asterisk (*) and
those with extensive ILD are indicated with a blue asterisk (*). The analysis was repeated without these patients and nearly identical groupings were

obtained (Figure S3).
doi:10.1371/journal.pone.0012106.g002

tiation into macrophages. We used Gene Set Enrichment Analysis
(GSEA) to determine gene set signatures significantly overrepre-
sented among the probes ranked by significance of differential
expression between 1SSc and healthy control samples. Four gene
sets were significantly enriched at p=<0.1: myeloid cells (p =0.013,
FDR g-value =0.070); dendritic cells (p=0.014, FDR g-val-
ue = 0.056); macrophages (p=0.011, FDR g-value =0.059); and
immature dendritic cells (p=0.079, FDR g-value =0.237). The
monocyte gene set was fifth in the list ordered by significance and
although above the p-value cutoff (p=0.131), was below the
suggested FDR cutoff of 0.25 (FDR g-value =0.239). The
enrichment of gene sets for the related cell types of myeloid,

dendritic and macrophage cells, coupled with the enrichment of

GO biological processes of endocytosis and cell motility, suggests the
presence of monocytes undergoing cellular recruitment and
differentiation into further cell types such as macrophages,
particularly in 1SSc-PAH patients. Gene expression and cellular
differences in monocytes have been found between SSc and healthy
control patients [31,32], and the indication here of 1SSc-PAH
patients in particular having increased gene expression associated
with macrophages and dendritic cells suggests an inflammation and
injury response with cellular recruitment and differentiation in PAH
patients. Figure S5 shows the GSEA enrichment plot and associated
gene expression data for the top five gene sets.

LSSc-PAH patients show elevated serum biomarkers of
inflammation and vascular injury

Serum samples were analyzed for 18 1SSc-PAH, 19 1SSc-
NoPAH, and 6 healthy controls. Of these individuals, 13 1SSc-
PAH, 18 1SSc-NoPAH, and 4 healthy controls were in the gene
expression analysis. Levels of 89 cytokines were measured using
Human Multi-Analyte Profiling (MAP) multiplexed immunoas-
says. To select cytokines with the greatest differential signal
between the three groups, a multi-class SAM analysis was used to
compare 1SSc-NoPAH, 1SSc-PAH, and healthy controls. The
protein quantities for 42 cytokines (FDR =4.93%) were clustered
in patient and cytokine dimensions. Significantly stable clusters are
indicated (p<<0.05, Figure 5). LSSc-PAH, 1SSc-NoPAH, and
healthy controls clustered together except for 1SSc-PAH-64 and
1SSc-NoPAH-91 (Figure 5). Notably, 1ISSc-PAH-64 also had gene
expression similar to the 1SSc-NoPAH patients (Figure 2),
confirming the gene expression findings.

Markers of vascular injury were increased in the 1SSc-PAH
patients, including Von Willebrand Factor (vWF) [33], C-reactive
protein (CRP) [34], and vascular endothelial growth factor
(VEGF). VEGF and vWF have been found upregulated in
idiopathic pulmonary arterial patients [35]. Also found are fatty
acid binding protein and myoglobin which are markers of acute
myocardial infarction [36].

Found at higher levels in ISSc-PAH are cytokines characteristic
of inflammatory response including: intercellular adhesion mole-
cule 1 (ICAM-1), which was also increased in the microarray data
and confirmed by qRT-PCR; vascular cell adhesion molecule 1
(VCGAM-1); interleukin-8 (IL-8); interleukin-6 (IL-6); interleukin 1-
beta (IL-1B); and tumor necrosis factor alpha (TNF-alpha).
Consistent with the cytokine data, TNF-alpha inducible protein
2 (I'NFAIP2) shows increased gene expression in the 1SSc-PAH
patients. Increased levels of tumor necrosis factor receptor

@ PLoS ONE | www.plosone.org

superfamily member 1B (TNFRII/TNFRI1B) [37] and Beta2—
microglobulin (B2m) are also observed in the ISSC-PAH patients.
High levels of circulating TNFRII and f2m have been reported in
SSc [31,38], however these biomarkers have not previously been
investigated specifically for 1SSc-PAH patients.

Discussion

Our results demonstrate gene expression differences between
the majority of 1SSc patients and healthy controls, as well as
differences between 1SSc-PAH and 1SSc-NoPAH patients. PBMC
gene expression divides 1SSc patients based on the presence and
severity of PAH as assessed by PAP and DLCO. Although some
patients with PAH fell into the group without PAH in the
hierarchical clustering analysis, these patients uniformly had the
mildest PAH in the study. Further studies will be required to
determine if the ISSc patients without PAH but with gene
expression more similar to patients with PAH, are at higher risk of
eventually developing this complication. Our current data show
the gene expression of 1SSc-PAH and 1SSc-NoPAH samples are
stable over the course of approximately one year. Further analyses
over an extended period are needed to rigorously test whether
gene expression can predict the onset of PAH, and how gene
expression in 1SSc patients changes over time.

In addition to gene expression differences between 1SSc-PAH
and 1SSc-NoPAH patients, we found differences in cytokines
between the two groups. The cytokine and gene expression profiles
suggest activated and differentiating monocytes. Notably, ILI1-
beta, produced primarily by stimulated monocytes [39], and
Caspase 1, an important enzyme for cleaving the IL-lbeta
precursor [40] were both increased in 1SSc-PAH. Gene expression
of TLR4, a key receptor for monocyte activation and ILI
upregulation, and MYD88, a TLR signaling molecule, was also
upregulated. Consistent with TLR activation of NI*-kappa B [41],
GO biological processes enriched in 1SSc-PAH include the I-
kappaB  kinase/ NF-kappaB cascade. Collectively these observations
suggest that activated monocytes play an important role in the
inflammatory response in ISSc-PAH patients.

The combined gene expression and cytokine data indicate the
involvement of other myeloid cell types beyond monocytes in 1SSc-
PAH patients. The most significant GSEA results were for gene
sets associated with myeloid cells, dendritic cells, and macrophag-
es. GO biological processes of myeloud cell differentiation, endocytosis, cell
motility, and cell projection biogenesis were also enriched. Dendritic
cells have been implicated in the immunopathology of IPAH with
increases in DCs found in vasculopathy rat models of PAH, and
increased DC infiltrates in affected vessels in human IPAH [42].
1SSc-PAH patients showed increased IL-6, which signals mono-
cytes to differentiate into macrophages, has previously been shown
upregulated in PAH patients and can induce PAH in transgenic
mice [43,44,45]. Cytokines ICAM-1 and VCAM-1 are increased
in 1SSc-PAH, along with increased expression of the ICAM-1
gene. These cytokines are induced through IL1B and TNF-alpha
(both increased in 1SSc-PAH patients on the cytokine array) and
initiate the binding of monocytes to the endothelium. Through a
combined gene expression and cytokine analysis approach, these
data support a role for activated DCs and macrophages in 1SSc-
PAH. LSSc-PAH patients also showed upregulated circulating
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Figure 3. Quantitative Real Time PCR validation of gene expression. RT-PCR validation was performed for nine genes (ICAM1, IFNyR1, IL1B,
IL13Ra1, JAK2, AIF1, CCR1, ALAS2, TIMP2) in healthy control, ISSc-NoPAH, and ISSc-PAH samples. Bars indicate comparisons with statistically
significant differential expression. Symbols indicate the level of significance between groups (asterisks p=0.05, open circles p=0.001).

doi:10.1371/journal.pone.0012106.g003

levels of other inflammatory cytokines, IL1B and TNF-alpha and
downstream targets of these mediators, notably the adhesion
molecules, ICAM-1 and VCAM-1 These data support a role for
activated DCs and macrophages in 1SSc-PAH.
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Figure 4. Distribution of PAH assessment measures between
gene expression groups. ‘Group 1’ and ‘Group 2’ were defined by the
major bifurcation in the clustering dendrogram of figure 2, with Group 1
containing all ISSc-PAH samples but three, and Group 2 containing all of
the healthy control samples. Solid circles indicate PAH measures from ISSc-
PAH patients, open circles indicate those from ISSc-NoPAH patients. A.
mPAP measurements compared between patients in Group1 versus those
in Group 2. B. DLCO values compared between Group 1 and Group 2.
doi:10.1371/journal.pone.0012106.g004
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Grigoryev et al. found genes upregulated in both IPAH and
SSc-PAH compared to healthy controls, as well as a relationship
between decreasing gene expression and increasing right atrium
pressure [14]. In this study we found upregulation of some of the
same genes including adrenomedulin (ADM) and pentraxin-
related gene (PTX3), but we found increased expression of these
genes in some of the ISSc-NoPAH patients as well.

We found increases in some of the same cytokines, including
ICAM-1, TIMP1, and vWF, previously noted by Duan et al. to be
increased in 1SSc patients compared to healthy controls [31]. We
found levels of these cytokines were higher in ISSC patients with
PAH compared to those without PAH, indicating the importance
of these as biomarkers of 1SSc-PAH.

Increased expression of inflammatory cytokines in the serum of
SSc patients with PAH suggests the possibility that these cytokines
might play a role in pathogenesis. Notably, TNF was found to be
increased in the serum of ISSc-PAH patients in this study and TNF
increases pulmonary vascular resistance [46], stimulates endothe-
lin-1 [47] and leads to PAH in TNF transgenic mice [48] TNF
and TNF-regulated genes are increased in patients with rheuma-
toid arthritis, where TINF inhibition provides a clear therapeutic
benefit [49]. In SSc, elevated TNF has been described in diffuse
cutaneous patients with pulmonary fibrosis [50]. One recent open
label study has suggested that TNF inhibition may ameliorate skin
disease [51] and a case report has suggested some possible value
for PAH [52]. IL6 was found to be increased in 1SSc-PAH patients
on the cytokine array, and IL6 is also associated with PAH in the
context of chronic obstructive pulmonary disease (COPD) [53].
Further supporting a possible role in SSc-associated PAH, IL6
transgenic mice develop PAH [45], and hypoxia-induced PAH in
mice is ameliorated in IL6-deleted mice [54]. In our study,
although IL6 protein was elevated in the serum, IL6 mRNA levels
were not elevated in PBMC samples, suggesting that 1L6 might be
secreted primarily from other cell types, such as endothelial cells,
fibroblasts or neutrophils. Thus these inflammatory mediators,
possibly through activation of an innate immune response, may
play a role in SSc-associated PAH.

Our results provide potential biomarkers that identify patients
with 1SSc, showing a specific subset of 1SSc patients with PAH that
can be identified through cellular and circulating biomarkers, and
suggest pathogenic cellular and immunologic pathways that are
upregulated in these patients. The gene expression profiles in
PBMC:s in our study may also provide biomarkers to predict the
risk of 1SSc patients for developing PAH.

Methods

Ethics Statement

This study was approved by the Boston University Medical
Center Institutional Review Board, and the Committee for the
Protection of Human Subjects at Dartmouth College. All patients
signed informed written consent forms approved by the Boston
University Medical Center Institutional Review Board.

Patient Selection

Subjects included limited cutaneous systemic sclerosis (ISSc)
patients according to criteria in LeRoy et al. [55] and healthy
controls. Subjects with 1SSc were stratified into those with or
without PAH on the basis of echocardiogram and pulmonary
artery catheterization according to consensus criteria with
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Figure 5. A subset of cytokines shows association with ISSc and ISSc-PAH. A MAP panel was used to profile the cytokines in plasma from
ISSc-PAH, 1SSc-NoPAH, and healthy control samples. Cytokines with significantly different levels between the three groups were selected using a
multiclass SAM analysis (FDR<4.93%). 42 cytokines were selected and organized by 2 dimensional hierarchical clustering. The dendrogram shows
ISSc-PAH (red), ISSc-NoPAH (blue), and healthy controls (black) group distinctly. Asterisks indicate stable groups as determined by SigClust. Increasing
brightness of red indicates relative fold change increase in cytokine levels. Increasing brightness for green pixels indicates decreasing cytokine levels.
Yellow boxes highlight the cytokines with increased levels in the three major groups, I1SSc-PAH, ISSc regardless of PAH status, and healthy controls.
doi:10.1371/journal.pone.0012106.9g005

exceptions noted below [56]. LSSc subjects with echocardiogram also considered to not have PAH (4 patients). Subjects showing
showing a systolic pulmonary arterial pressure (PAP) <35 mm evidence of PAH by echocardiogram or other clinical criteria
Hg and no clinical features suggesting PAH were considered to who underwent catheterization and showed mean PAP >25 mm

not have PAH. Subjects showing evidence of PAH by Hg and pulmonary capillary wedge pressure (PCWP) =15 were
echocardiogram or other clinical features who underwent right considered to have PAH, or with PCWP >15 but =18
heart catheterization and showed a mean PAP=25 mm Hg were considered to have PAH if adjudicated by the attending
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pulmonologist on the basis of PVR, PAd-PCWP gradient and
transpulmonary gradient (see further details in results section for
individual patients meeting this criteria). Most subjects entered
into the study had no or minimal interstitial lung disease. The
extent of disease in those with interstitial lung disease (9 subjects)
was stratified as either mild (5 subjects) or extensive (4 subjects)
according to previously described methodology using high-
resolution chest computerized tomography (HRCT) and forced
vital capacity (FVCQ) criteria [57]. Blood was collected from
patients on the day of catheterization for catheterized subjects, or
within three months of the date of echocardiogram for subjects
who were not catheterized.

Peripheral Blood Mononuclear Cell Isolation

PBMCs were collected in Becton Dickinson vacutainer CPT
tubes and processed within 30 minutes after collection. Tubes were
centrifuged at 1800 xg for 30 min at room temperature (18-25°C).
The PBMC cell layer was then transferred to a 15 mL tube, and
the PBMCss washed twice with PBS and lysed in RNeasy RLT
buffer (Qiagen, Valencia, CA).

RNA isolation and microarray hybridization

Total RNA was prepared from PBMCs using the RNeasy Mini
Kit (Qiagen). 250 ng of RNA was converted to cDNA and
amplified as labeled cRNA using a Low RNA Input Fluorescent
Linear Amplification Kit (Agilent Technologies). Patient and
healthy control RNA were labeled with Cy3 fluorescent dye, and
Universal Human Reference RNA (Stratagene) was labeled with
Cyb fluorescent dye. Labeled cRNA was hybridized to Agilent
4 x44,000 element DNA microarrays in a reference-based design
as previously described [10], with the following changes. Patient or
healthy control cRNA was co-hybridized with UHR cRNA to
microarrays for 17 hours at 65°C. Arrays were washed for 1
minute each in 6x SSPE, 0.005% N-Lauroylsarcosine at room
temperature and then in 0.06 x SSPE, 0.005% N-Lauroylsarco-
sine at 37°C. This was followed by an acetonitrile wash for 1
minute at room temperature and Stabilization and Drying
Solution for 30 seconds at room temperature. Microarrays were
scanned, processed, and data normalized and filtered as previously

described [10].

Data Access

All microarray data from this study has been deposited to
NCBTI’s Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo/; Accession Number GSE19617) and is MIAME
compliant.

Gene Selection and Hierarchical Clustering

Gene selection was performed using Significance Analysis of
Microarrays (SAM) [17]. For the two class unpaired t-test,
arrays were grouped by ISSc vs. healthy controls and probes
selected with a false discovery rate (FDR) <0.18%. The gene
expression levels of the X (inactive)-specific transcript (XIST)
gene were removed from the analysis because it caused one
healthy control sample to group by gender rather than disease
(Figure S6).

For the multiclass analysis, samples were divided by 1SSc-PAH,
ISSc-NoPAH, and healthy controls. We performed a stringent
analysis that identified 305 probes (FDR<0.14%) and a less
stringent analysis that identified 2,313 probes (FDR<2.67%)
(Figure S5). Average linkage hierarchical clustering was performed
as previously described [10].

@ PLoS ONE | www.plosone.org
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Pathway Analysis

The Database for Annotation, Visualization, and Integrated
Discovery tool (DAVID) [58] was used to analyze coordinately
regulated groups of genes for enriched GO biological processes.

Gene Set Enrichment Analysis (GSEA) [59], was used to
determine enrichment of cell-type specific gene sets. Genes were
ranked by significance of differential expression between 1SSc and
healthy controls. For each gene set, GSEA determined if the set
was found at the top or bottom of the ranked list. Significance was
determined by permuting the data. Gene sets for B and T cells
were obtained from Palmer et al. [29]. Gene sets for macrophages,
monocytes, immature and mature dendritic cells, CD3/CD28
activated T cells, total PBMCs and myeloid cells (DCs,
macrophages, monocytes) were obtained from Haider et al. [30].

Quantitative RT-PCR

RT-PCR was carried out as previously described [60], using
ABI primers for the following genes: ICAM1 (Hs00164932_m1),
IFNYR1 (Hs00166223_ml), IL1B (Hs01555410_m1), IL13Ral
(Hs00609817_m1), JAK2 (Hs01078136_m1), AIF1 (Hs00357551_
gl), CCR1 (Hs00174298_m1), ALAS2 (Hs00163601_m1), TIMP2
(Hs00234278_m1). Relative RNA quantity was determined using
the delta-delta C'T method [61].

Cytokine Panel

Serum samples were collected from 43 patients, and sent to
Rules-Based Medicine (http://www.rulesbasedmedicine.com) for
the Human Multi-Analyte Profiling (MAP) multiplexed immuno
assay. MAP assays were carried out two different times including
approximately equal numbers of samples from all three subject
groups. The first assay obtained analyte measurements for 89
cytokines, the second for 90 cytokines. Results that were not
detectable were replaced with the reported least detectable
amount for that cytokine. To control for bias between the two
MAP assays, the data in the second MAP assay were normalized
for each cytokine to the proportion of the average values in the
first MAP assay divided by the average values in the second MAP
assay. Multiclass SAM analysis was used to compare cytokines
detected between LSSc-NoPAH, LSSc-PAH, and healthy con-
trols, and the resultant data at an FDR cutoff’ of 4.93% was
clustered in both the patient and cytokine dimension.

Statistical Analysis

The R statistical package was used for box plots, two-group t-
test analysis of FVC, DLCO, and PAP, as well as log
transformation, ANOVA, and Tukey H.S.D. analysis of the
qRT-PCR data.

SigClust

An iterative implementation in R of SigClust [18] was used to
determine the number of stable clusters of arrays found after the
hierarchical clustering of the gene expression data as described in
[10]. Three P-value cutoffs of p=0.05, p=0.01, and p=0.001 were
used for SigClust analysis for each dataset.

Supporting Information

Figure S1 All gene names for Figure 1. This file is intended to be
viewed digitally, as the text is small and requires the ability to
zoom in and out.

Found at: doi:10.1371/journal.pone.0012106.s001
PDF)

(0.80 MB
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Figure 82 All gene names for Figure 2. This file is intended to be
viewed digitally, as the text is small and requires the ability to
zoom in and out.

Found at: doi:10.1371/journal.pone.0012106.s002 (1.07 MB
PDF)

Figure 83 Comparison of three group clustering in the presence
and absence of a patients with elevated wedge pressure or extensive
ILD. A. Patients with PCWP >15 (mm Hg) and those with extensive
ILD were removed and the analysis shown in Figure 2 repeated. The
hierarchical clustering dendrogram was generated using 305 probes
selected by a multi-group SAM analysis. Even without these
patients, the majority of the arrays that fell within “group 1”
(purple) in the previous analysis, still were in group 1, and likewise
for those arrays that fell within “group 2" (black) in the previous
analysis. B. This shows the same dendrogram as that of S3A, in this
case the arrays are indicated in color according to diagnosis, 1SSc-
PAH (red), ISSc-NoPAH (blue), healthy controls (green).

Found at: doi:10.1371/journal.pone.0012106.s003 (0.17 MB
PDF)

Figure S84 Gene expression differentiating 1SSc-PAH, LSSc-
noPAH and healthy controls, less stringent cutoff. Supplemental
figures 3A and B show the clustering dendrogram and resultant
heatmap after hierarchically clustering in the array and gene
dimension the resultant 2313 probes that passed a multiclass SAM
analysis with an FDR of 2.67%. Figure S2B shows the clustering
dendrogram with the sample identifiers. A black bar beneath the
sample identifiers connects technical replicates, and samples collected
approximately one year later samples are connected to the baseline
samples by a yellow line. To seek out pathways associated with
coordinate gene expression utilizing David analysis, gene lists were
created from the regions marked in red, green, purple, and blue.

Found at: doi:10.1371/journal.pone.0012106.s004 (0.76 MB TIF)

Figure S5 Gene Set Enrichment Analysis (GSEA) for different
cell type signatures in the gene expression of 1SSc-PAH, 1SSc-
NoPAH and healthy controls. Gene expression signatures for
myeloid cells (A), monocytes (B), macrophages (C), IDCs (D), and
DCs (E) from Haider et al. were found to be enriched in the gene
expression profiles using GSEA. The top panel shows the GSEA
enrichment plot. The bottom panel shows the gene expression plot
from the PBMC dataset for genes/probes that matched each
respective gene list (the gene names associated with each probe are
available in supplemental data). Gene expression in blue represents
decreased gene expression, while red represents increased gene
expression. The Normalized Enrichment Score (NES) is shown for
each gene set along with the FDR g-value. An FDR g-value<<0.25 is
considered to be significant. The ISSc-PAH samples consistently
show increased expression (boxed, red cells) relative to the 1SSc-
noPAH samples and healthy controls (highlighted in yellow) for
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