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Abstract 

Phylodynamics requires an interdisciplinary understanding of phylogenetics, epidemiology, and statistical inference. It has also experi-
enced more intense application than ever before amid the SARS-CoV-2 pandemic. In light of this, we present a review of phylodynamic 
models beginning with foundational models and assumptions. Our target audience is public health researchers, epidemiologists, and 
biologists seeking a working knowledge of the links between epidemiology, evolutionary models, and resulting epidemiological infer-
ence. We discuss the assumptions linking evolutionary models of pathogen population size to epidemiological models of the infected 
population size. We then describe statistical inference for phylodynamic models and list how output parameters can be rearranged for 
epidemiological interpretation. We go on to cover more sophisticated models and finish by highlighting future directions.
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1. Introduction
Phylodynamics combines evolutionary biology and epidemiology 
to generate evidence about the spread and source of pathogens. 
It does this by exploiting the genomic signature left by ongoing 
evolution during transmission. This allows it to corroborate the 
answers delivered via nongenomic epidemiological modelling and 
sometimes offers deeper insight where case numbers collected 
over time and space fall short. To do this, phylodynamics requires 
pathogen molecular evolution to occur on the same timescale as 
transmission, such that accumulated genetic diversity is informa-
tive about the timing of transmission. This is known as measur-
able evolution (Drummond et al. 2003; Grenfell et al. 2004; Biek 
et al. 2015).

Phylodynamics uniquely contributes to outbreak responses 
through capturing transmission dynamics in time and space that 
are otherwise inaccessible with traditional epidemiological anal-
ysis. This has notably included applications to the spread of 
pathogens such as SARS-CoV-2, Ebola, Zika, and HIV (Stadler et al. 
2014; Vasylyeva et al. 2019; Giovanetti et al. 2020; Seemann et al. 
2020). It is now an established component of coordinated out-
break responses (Rife et al. 2017), and the quantity of genome data 
made available during the SARS-CoV-2 pandemic demonstrates a 
new standard of data availability with which to conduct phylo-
dynamics. In light of this, we present a review of phylodynamic 
models targeted at prospective users of phylodynamics software 
such as BEAST, a major software platform for using the models 

discussed here (Drummond et al. 2012; Bouckaert et al. 2019). 
We begin by outlining some necessary epidemiology for phylody-
namics. Later, we consider the input parameters, epidemiological 
output, and core assumptions necessary for a working knowledge 
of these analyses. Understanding these assumptions includes 
recognising the distinction between birth–death and coalescent 
models, their interface with epidemiological models, skyline mod-
els, and models for structured host or pathogen populations. We 
end by describing some future directions in the field and re-
emphasising that amid all the above models and assumptions, 
an understanding of a pathogen’s host population is forever cru-
cial. This allows for sensible assumptions in which to ground 
phylodynamic analysis where epidemiological knowledge is
lacking.

2. Linking epidemiology and phylogenetics
Phylodynamics requires a model of a pathogen’s epidemiological 
dynamics to be linked with a model of how phylogenies of that 
pathogen evolve over epidemiological timescales. Many publica-
tions in phylodynamics already describe epidemiological models, 
especially the susceptible-infected-recovered (SIR) model (Volz, 
Koelle, and Bedford 2013; Kühnert et al. 2014; Popinga et al. 2015; 
Kuhnert et al. 2016). Here, we provide a summary of the SIR 
model because it is foundational to the phylodynamic methods 
we discuss.
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The SIR model considers a population of size N and partitions 
it into susceptible, infected, and removed compartments, hav-
ing sizes S(t), I(t), and R(t), at time t, respectively. We refer to 
the removed compartment instead of the usual ‘recovered’ com-
partment because it is assumed that sampled cases are removed 
from the infectious population alongside recovered and fatal 
cases. This is assumed to happen by means such as isolation 
or treatment coinciding with sampling, with entry to the recov-
ered compartment often termed becoming uninfectious. The SIR 
population is constrained to obey S(t) + I(t) + R(t) = N, meaning it 
is a closed population with no migration in or out. The model 
begins with any number of infected individuals, although usually 
one, and describes how case numbers proceed provided all mem-
bers of the population are equally likely to encounter each other 
(Kermack 1927). The parameters are the rates of infection/trans-
mission (𝛽, per susceptible–infectious interaction) and removal (𝛿, 
per capita). The rate of removal can be further split into rates 
of sampling, 𝜓, and recovery, 𝜇 with 𝛿 = 𝜓 + 𝜇 (Fig. 1A). The total 
rate of infection at a given time is then 𝛽S(t)I(t). This reflects 
how the number of susceptible individuals is the limiting factor 
for transmission per infected host (𝛽S(t)), with fewer susceptibles 
corresponding to fewer new infections.

Phylodynamics tends to focus on inferring a core set of epi-
demiological parameters whether assuming an SIR or other 
related model. The average number of secondary infections stem-
ming from an infected individual in an otherwise susceptible 
population, R0, is most commonly inferred (Delamater et al. 2019). 
For example, R0 for some early SARS-CoV-2 outbreaks has been 
estimated at around 2.5, meaning two cases will together on 
average infect five others over the duration of infection in an 
otherwise susceptible population (D’Arienzo and Coniglio 2020; 
Petersen et al. 2020). The assumption of an otherwise suscepti-
ble population means that R0 describes the earlier, exponentially 
growing, phase of an outbreak when most hosts are still sus-
ceptible (Fig. 1A, B). It is critical to note that for any pathogen, 
R0 represents the combined effects of the phenotypic propen-
sity for transmission together with all relevant environmental 
and social determinants of transmission rate (Petersen et al.
2020).

Foundational models in phylodynamics, including the coa-
lescent exponential and constant rate birth–death (described 
later), model the early phase of an outbreak where the infected 
population compartment is assumed to be growing exponentially 
(Fig 1A, 2A, B). R0 offers a valuable indication of how rapidly an out-
break is spreading (R0 > 1) or if case numbers are stable or declining 
(R0 ≤ 1). It is assumed that S(t) is large compared to the num-
ber of infections at any given time (i.e. S(t) ≈ N) (Frost and Volz 
2010; Volz 2012). This is so that the total transmission rate per 
infected (𝛽S(t)) is effectively constant over time such that only one 
transmission parameter needs estimation. We refer to this con-
stant as 𝜆 with 𝜆 = 𝛽S(t) (Fig. 1B). In other words, infected hosts 
encounter a stable supply of susceptible others so the number of 
cases increases. This remains accurate for the early stages of an 
outbreak, when the susceptible population is relatively far from 
depletion or immunity in the population is negligible. The assump-
tion of exponential growth is relayed as singular estimates of 
the basic reproductive number 𝑅0 = 𝜆

𝛿  and other epidemiological
parameters.

Estimating transmission rate also allows for inference of other 
quantities such as the doubling time for the number of infections 
(td) and prevalence (the number or proportion of infected individ-
uals). Formulae for these under different phylodynamic models 
are described below.

Other more sophisticated phylodynamic models, which are dis-
cussed later, allow transmission rates to vary dynamically with 
susceptible population size or directly as a function of time. In 
these cases, we instead refer to Re, the time-varying average 
number of secondary infections, also known as the effective repro-
ductive number to distinguish it from R0 (the basic reproductive 
number). Changes in Re reflect depletion of the susceptible popula-
tion as well as nonpharmaceutical interventions and behavioural 
changes. However, the exponential phase of an outbreak tended 
to be the focus of earlier foundational phylodynamic models that 
present an accessible entry point to the literature. Most subse-
quent models are an augmentation of these foundations.

3. Foundational models and assumptions
Phylodynamic analysis requires pathogen genome sequences and 
their sampling times from hosts in the infected and removed com-
partments of a population. Each sequence is assumed to come 
from a different host such that epidemiological estimates relate 
only to between-host dynamics, although some approaches to 
within-host dynamics have been developed (De Maio, Wu, and 
Wilson 2016; Didelot et al. 2016).

To adopt these data into a phylogenetic framework, phylody-
namics imposes two key assumptions. First, the hypothetical ‘true’ 
phylogeny of each individual spreading pathogen mirrors the 
transmission network, such that transmission events closely cor-
respond to branching events (Fig. 1B, C). This assumption implies 
that phylogenetic trees inferred from a set of isolates represent 
subtrees of the underlying transmission network, thus reflecting 
transmission dynamics (Fig. 1B–D). In reality, branching times may 
precede transmission times (du Plessis and Stadler 2015).

From a phylodynamic perspective, the phylogenetic tree should 
be one in which the branch lengths correspond to units of time, 
known as a time-tree or chronogram. Chronograms are obtained 
from phylogenetic trees by multiplying branch lengths (units of 
substitutions/site) by an evolutionary clock rate (units of substitu-
tions/site/time) to convert branch lengths to units of time. The clock 
rate, although a phylogenetic rather than phylodynamic param-
eter, is a key model enabling phylodynamic analysis by relating 
epidemiological time to evolutionary change. See Bromham et al. 
(2018) for a review of clock models in the context of Bayesian 
phylogenetics.

The second assumption is that the underlying pathogen pop-
ulation infecting hosts, and therefore the isolate tree, evolved 
according to a model linking epidemiological and phylogenetic 
dynamics. In the Bayesian framework that predominates in phy-
lodynamics, these models are regarded as a part of the prior and 
referred to as the ‘tree prior’. The tree prior provides an expression 
for the probability of a tree given a set of parameters governing 
the epidemiological process generating it. The two foundational 
tree priors used in phylodynamics are the coalescent and the 
birth–death.

4. The coalescent
The coalescent originated in the field of population genetics 
(Kingman 1982; Rosenberg and Nordborg 2002). It models how the 
ancestry of sampled populations relates to their demographic his-
tory. It can be visualised as a genealogy of a set of individuals 
sampled at various times, with internal nodes corresponding to 
the times at which they coalesce into their common ancestors 
(Fig. 2C). It is therefore termed a backwards-in-time process with 
time starting at the most recent sample and terminating at the 
most recent common ancestor (MRCA) (Drummond et al. 2002).



Figure 1. Representations of the key assumptions in standard phylodynamic analysis. (A) It is assumed that the underlying epidemic is growing 
exponentially and number of samples by extension. This corresponds to a constant rate of transmission (λ) per infected alongside constant rates of 
sampling infections and terminating infections (ψ and μ, respectively). (B) The transmission network is assumed to grow according to these 
parameters. Blue nodes correspond to sampled sequences and red nodes correspond to undiscovered or extinct infections. Node A is the first case.
(C) It is assumed that the network in (B) corresponds to an underlying phylogeny of the pathogen where transmission co-occurs with branching. (D) An 
estimated phylogeny from sampled sequences. Phylodynamics uses the sample tree as a means of estimating the parameters driving (A) and (B).

The standalone form of the coalescent, unlinked to any epi-
demiological model, includes two parameters. These are the effec-
tive population size Ne(t) and the generation time g. The coalescent 
rate for any two co-existing individuals is 1

𝑔𝑁𝑒 (𝑡) , meaning the 
coalescence in an inferred tree offers e information about Ne(t). 
Intuitively, this captures the expectation that the time taken for 
two randomly chosen individuals to coalesce increases with larger 
population sizes. It is also often assumed that gf= 1 for simplicity.

The coalescent also requires a demographic model, which is 
usually a deterministic model of how the effective population size 
changes over time (Pybus, Rambaut, and Harvey 2000). Earlier 
phylodynamic implementations assumed direct proportionality 
between Ne(t) and I(t), such that changes in Ne(t) track changes in 
I(t) (Frost and Volz 2010; Volz 2012). This assumption is still applied 
in many nonparametric coalescent skyline methods, which are 
discussed later.

Effective population size was constant in earlier coalescent 
implementations, but this was later generalised to accommodate 
any population size trajectory over time (Kingman 1982; Griffiths 

and Tavare 1994; Drummond et al. 2012). This notably includes 
exponential growth and logistic growth. Exponential growth is 
most relevant for modelling populations of rapidly spreading 
pathogens in susceptible populations, and this introduces an addi-
tional demographic parameter, the growth rate r from Ne = ert

(Fig. 1A, Fig. 2A, B). For consistency with surrounding literature, we 
refer to the coalescent with an exponential growth demographic 
model as the coalescent exponential from hereon. See Dearlove 
and Wilson (2013) for a review of the connection between the coa-
lescent and common epidemiological compartmental models as 
well as how these relate to exponential and logistic demographic 
models.

Critical work by Frost and Volz (2010), linking the coalescent 
with epidemiological models such as the SIR, showed that Ne(t) 
depends on transmission rates (𝜆) as well as prevalence (I(t)), 
meaning that the earlier assumption of direct proportionality 
between Ne(t) and I(t) is an exception rather than the rule. As a 
result, current implementations of the coalescent exponential, 
such as in BEAST, replace Ne(t) with the scaled effective population 



Figure 2. (A) Example stochastic trajectories in the infected compartment and sequenced subset of it. Stochastic exponential growth is 
accommodated by the constant rate birth–death. (B) An example of the deterministic exponential growth curve in the infected compartment as 
assumed by the coalescent exponential. (C) Sampling times present a source of information under the birth–death. (D) Coalescent events provide 
information in the coalescent while conditioning on sampling times.

size 𝜙 = 𝐼(0)

2𝜆 . This relation incorporates the effect of transmission 
rates and prevalence and relates these back to the coalescence 
rate via 𝛿 = 1

𝐷  as for the standalone coalescent (≡ 1
𝑔𝑁𝑒(𝑡) ). Bet-

ter linking the coalescent exponential to the SIR with 𝜙 allows for 
more accurate estimates of the growth rate r, which is needed to 
estimate R0 and the number of cases at the most recent sampling 
time I(0) (Volz, Koelle, and Bedford 2013) (Table 1).

Capitalising upon the fact that any population size trajectory 
can be incorporated into the coalescent, further work also linked 
the SEIR (E for exposed) for improved epidemiological accuracy 
of the coalescent (Kühnert, Wu, and Drummond 2011; Volz 2012; 
Popinga et al. 2015). Rasmussen, Volz, and Koelle (2014b) also 
apply an SIR with compartments for multiple stages of infection 
to an HIV dataset. 

5. The constant rate birth–death
The constant rate birth–death, or birth–death for short, models 
population growth and has been applied broadly in biology from 

the levels of speciation to cell division (Novozhilov, Karev, and 
Koonin 2006). It is a forwards-in-time process beginning with an 
ancestor in the past which bifurcates into new lineages, generat-
ing a tree. The original parameters underlying the birth–death are 
the birth rate (𝜆), likened to the transmission rate, and the extinc-
tion rate (𝜇). Phylodynamic applications of the birth–death include 
a rate of sampling (𝜓), such that the total death rate is then the 
sum of the sampling rate and extinction rate of lineages (𝛿 = 𝜇 + 𝜓) 
(Stadler et al. 2012a). This represents the rate at which individu-
als enter the removed compartment due to death or recovery of 

the host. Due to the numerous epidemiological events that can 

result in an individual ceasing to exert infectious pressure, the 
aggregate rate 𝛿 is simply known as the ‘becoming uninfectious’ 
rate and is the reciprocal of the average duration of infection (D) 
(Stadler et al. 2012a). The sampling probability for an infection is 
then defined as 𝑝 = 𝜓

𝜓+𝜇 . Phylodynamic birth–death models also 
include an origin parameter, x0, which identifies the time of the 
start of the epidemic.



Table 1. Comparison of the SIR-linked birth–death and coalescent 
models.

Tree prior Parameters Notes Software

Constant rate 
birth–death 
(Stadler et al. 
2012b)

R0, 𝛿, p, and 
x0

• 𝑅0 = 𝜆
𝛿

• Is BDSky with one 
time interval

BEASTv2

BDSIR 
(Kühnert 
et al. 2014)

Re, 𝛿, p, x0, 
and aS(0)

• 𝑅𝑒 = 𝜆(𝑡)
𝛿(𝑡)

• Re = R0 if one time 
interval used 
(BEASTv2 default)

• S(0) = N
Coalescent 

exponential 
(Volz et al. 
2009)

𝜙 and r • Infected population 
size at final sample 
time: I(0) = erT b

• R0 = rDa + 1

BEASTv1&2

Sampling coa-
lescent SIR 
(Volz and 
Frost 2014)

𝜆, 𝜇, p, and 
I(0)

• 𝑅0 = 𝜆
𝜇

• r = 𝜆 − 𝜇
• Forwards in time: 

I(0) = 1 by assump-
tion. Referred to as Y
(0) in citation

-

Stochastic 
coalescent 
SIR (Popinga 
et al. 2015)

R0, 𝛿, x0, and 
S(0)

• Forwards in time 
(S(0) = N)

BEASTv2

EpiInf
 (Vaughan 

et al. 2019)
𝜆, 𝛿, 𝜓, 𝜇, p, 

S(0), and x0

• S(0) = N

𝛿 referred to as 𝛾 in some sources.
aThe duration of infection in the same time units as r.
bT is the posterior tree height.

Given its parameterisation, the birth–death allows inference 
of 𝜆, p, x0, and 𝛿. These are then rearranged to calculate 
the growth rate, basic reproductive number, and doubling time

(𝑅0 = 𝜆

𝛿 , r = 𝜆 − 𝛿, and 𝑡2 = 𝑙𝑛2

𝑟 , respectively). Note that 𝜆 here is 
identical to the SIR transmission rate assumed to be constant dur-
ing exponential growth phase, 𝜆 = 𝛽S(0). Here, r is also the same 
growth rate as under the coalescent exponential.

A critical difference between birth–death and coalescent mod-
els is that the birth–death naturally encodes stochastic population 
growth over time, whereas the coalescent typically does not, 
instead of fitting a deterministic demographic model (Boskova, 
Bonhoeffer, and Stadler 2014), but see (Volz and Frost 2014; 
Popinga et al. 2015). Given that the coalescent assumes a low 
sampling proportion, the birth–death is preferential for modelling 
small outbreak clusters with dense sampling, where stochastic 
population growth has a strong impact. Conversely, the coales-
cent can be more appropriate for larger outbreaks, where sam-
pling (i.e. sequencing) proportion is low, such that deterministic 
population growth approximates the population trajectory with 
reasonable accuracy (Stadler et al. 2015). The birth–death also dif-
fers by including an explicit sampling rate, whereas the coalescent 
conditions on sampling times (Fig. 2). The birth–death is conse-
quently more sensitive to biases in sampling, yet also equipped 
to draw valuable information from sampling times, which often 
reflect infection prevalence.

6. Generating estimates from data
Phylodynamic models combine multiple population-dynamic 
parameters such as birth, death, and growth rates to express the 
likelihood of a phylogeny evolving under specific combinations 

of these parameters. As a result of their complex interrelation, 
algebraically solvable likelihood equations with which to infer 
parameters of best fit are usually unavailable, necessitating 
more computationally intensive techniques. Bayesian implemen-
tations relying on Markov Chain Monte Carlo (MCMC) methods 
are the most commonly used strategies for inference and are 
implemented in most popular phylodynamics packages including 
BEAST 1 (Suchard et al. 2018), BEAST 2 (Bouckaert et al. 2019), phy-
lodyn (Lan et al. 2015; Karcher et al. 2017), and RevBayes (Höhna 
et al. 2016a). Some maximum likelihood packages are available 
such as TreeTime (Sagulenko, Puller, and Neher 2018) and TreePar 
(Stadler 2015).

Bayesian inference requires the combination of independent 
information, via prior distributions, and the probability of the 
data given a model, known as the likelihood. As such, it accommo-
dates parameter-rich phylodynamic models, and quantification 
of uncertainty is a natural by-product of inference through the 
resulting posterior distribution.

Although formally part of the prior, the expression associated 
with each tree prior is termed the phylodynamic likelihood. Phylo-
dynamic likelihood equations express the probability of a tree for a 
given set of parameters (Fig. 3). They are therefore central to con-
necting evolution and epidemiology. Two seminal derivations of 
phylodynamic likelihood equations are Griffiths and Tavare (1994) 
for the coalescent and Stadler (2010) for the birth–death. Each like-
lihood equation contains the parameters of interest under each 
tree prior, so employing them within an MCMC or related algo-
rithm enables inference of posterior distributions for individual 
parameters. See Nascimento, Reis, and Yang (2017) for a targeted 
explanation of MCMC in a phylogenetic context. Also see Fig. 1E 
from du Plessis and Stadler (2015) for a detailed and accessible 
breakdown of the posterior probability expression, including the 
phylodynamic likelihood.

The critical working knowledge surrounding the birth–death 
likelihood equation is that 𝜆, 𝛿, and p are intertwined such that 
they are not individually estimable. This is known as the non-
identifiability problem, and it occurs because 𝜆, 𝛿, and p only 
occur in the terms 𝜆𝛿p and 𝜆 − 𝛿, meaning infinite combinations 
of each individual parameter can produce identical likelihood 
values. Nonidentifiability can result in uselessly broad posterior 
distributions if prior distributions on all nonidentifible parame-
ters are diffuse. Countering this requires the use of additional 
external information to either fix or set informative prior dis-
tributions for some parameters. For example, if one wanted to 
estimate 𝜆, highly informative priors or fixing of at least one of 
𝛿 and p would be required for meaningful inference of 𝜆 (Boskova, 
Bonhoeffer, and Stadler 2014; Louca et al. 2021). The reciprocal 
of the duration of infection is often used to fix the becoming 
uninfectious rate (𝛿 = 1

𝐷 ) in this situation. For early SARS-CoV-
2 variants, independent estimates suggest an infectious period 
of 10 days (0.0274 years), such that 𝛿 could be fixed or given a 
prior concentrated around 0.1 days−1 ≡ 36.5 years−1. When apply-
ing a coalescent with exponential growth, external information 
determining D is also used to calculate R0 from r as in Fig. 3.

7. Further linking the SIR
Coalescent exponential and constant rate birth–death models 
allow for the inference of R0, 𝛿, 𝜆 I (at present), S (at present), and 
the age of the outbreak T ≡ tMRCA, the time since the first trans-
mission event (Fig. 3, Table 1). We refer to S and I at present here 
as the coalescent and birth–death view time in opposite direc-
tions. I at present is a particularly important parameter as it offers 



Figure 3. D refers to the duration of infection and T refers to the posterior tree height. (A) A flowchart of assumptions, methods, and inference under 
the constant rate birth–death. (B) As in (A) but with respect to the coalescent exponential.

insight into the number of infections at the time of the youngest 
sample and thereby the proportion of un-notified cases. Other 
tree priors have built upon these foundational models to infer the 
same parameters by incorporating more sampling information or 
extending beyond the exponential phase.

The coalescent exponential has been extended to include sam-
pling information and stochastic population growth. Popinga et al. 
(2015) introduced the stochastic coalescent SIR, which builds 
upon the coalescent exponential to include stochastic trajecto-
ries of the infected compartment. It provides better estimates 
of epidemiological parameters than the deterministic coales-
cent exponential, but with the drawback of high computational 
demand. This approach involves simulating SIR epidemics along-
side the inference of a sample tree such that SIR parameters 
maximising the likelihood of the tree and epidemic trajectory are
found.

A coalescent model including a sampling rate is implemented 
in the ‘phylodyn’ R package (Karcher et al. 2017). It has been shown 
to improve estimates of R0 if the sampling process is correctly 
specified (Volz and Frost 2014; Karcher et al. 2016).

Birth–death models have also been expanded to cater for pos-
texponential SIR dynamics. The birth–death SIR (BDSIR) model, 
introduced by (Kühnert et al. 2014), estimates trajectories in epi-
demiological compartments rather than singular rates during the 
exponential phase. The BDSIR model achieves better estimates 
for each parameter than constant rate birth–death by accom-
modating this temporal heterogeneity, but at the cost of model 
simplicity. Its approach is to estimate SIR epidemic trajectories 
with parameter values drawn from the prior over consecutive time 
intervals imposed on the time span of the isolate tree. Vaughan 
et al. (2019) recently introduced a framework to estimate epidemic 
trajectories using a particle filtering algorithm, which improves 
the accuracy and generality of this approach. It is available in 
the EpiInf Beast2 package. It can also incorporate an SIS model. 
Alternatively, Leventhal et al. (2014) introduced an approach 
which is able to both accurately and more efficiently infer SIR 
parameters, but at the expense of reconstructing the epidemic
trajectory.

8. Beyond the SIR
There is a wide diversity of phylodynamic models beyond 
those associated with the SIR. They can include more complex 
compartmental models or move away from these altogether. A 
key distinction among them is whether they are parametric or 
nonparametric. Parametric models explicitly model population 
parameters, such as size or birth rates, as fixed functions of time. 
This is similar to the common distinction of parametric statistical 
tests assuming data follow a fixed distribution. In this frame-
work, the coalescent exponential and birth–death are examples 
of parametric models (i.e. population growth is assumed to be 
exponential over time with rate r = 𝜆 − 𝛿). Nonparametric models 
instead offer flexibility from fixed models by allowing parameters 
to vary as piecewise constants over time (Palacios et al. 2014). As 
such, the significance of nonparametric models is the absence 
of a fixed expression for parameters over the entire time course 
of a tree, rather than the absence of parameters altogether as 
the name suggests. Nonparametric models are also referred to as 
skyline models due to piecewise constant parameters over time 
resembling a skyline (Ho and Shapiro 2011).

9. Parametric models
The coalescent can incorporate any model of population size over 
time, although constant, exponential, and logistic models are 
commonest (Griffiths and Tavare 1994). For example, Pybus et al. 
(2001) establish a logistic demographic model for hepatitis C virus 
(HCV) epidemics in a coalescent context. Pybus et al. (2003) also 
study the history of HCV in Egypt and apply a model with two 
constant population sizes separated by a period of exponential 
growth. Rasmussen, Boni, and Koelle (2014a) consider the dynam-
ics of Dengue virus in Vietnam with parametric models including 
spatial and seasonal variation in effective population size. Volz 
and Siveroni (2018) notably introduce PhyDyn, a BEAST v2 pack-
age, that allows for any compartmental model to be fit under the 
coalescent. The authors demonstrate its use with Influenza and 
Ebola data sets.



Birth–death models can also include time-dependent rates 
(i.e. not constant/piecewise constant), although they tend to 
be applied more in macroevolutionary work than genomic epi-
demiology. Nee, May, and Harvey (1994) provide seminal work 
on the birth–death likelihood for phylogenetics, including time-
dependent birth and death rates. Parag and Pybus (2018); Paradis 
(2011); Rabosky and Lovette (2008) also introduce key results 
and methods surrounding inference under the birth–death time-
dependent rates. Höhna, May, and Moore (2016b) and Höhna 
(2013) introduce the capability to simulate under the birth–
death with time-dependent rates. The above present a promising 
path toward replicating the diversity of coalescent parametric 
methods for parametric birth–death models in epidemiological
application.

10. Nonparametric skyline models
Nonparametric skyline models infer parameters as piecewise con-
stants over time to approximate any trajectory. Most infer pop-
ulation size over time (Ne(t)), but some infer other parameters. 
The flexibility to model any demographic history is the great-
est advantage of nonparametric skyline methods. They are most 
appropriate for data sets spanning many generations of infec-
tion such that no single mechanistic model of population size is 
appropriate.

10.1 Skyline models for Ne(t)
Pybus, Rambaut, and Harvey (2000) developed the first nonpara-
metric skyline model and provide a lucid introduction to skyline 
plots. It assumes a known tree and employs maximum likelihood 
estimation, whereas modern Bayesian techniques also incorpo-
rate phylogenetic uncertainty through exploring a posterior distri-
bution of trees. It estimates independent effective population sizes 
(Ni) between each pair of consecutive coalescent events by exploit-
ing the relationship between rate of coalescence and effective 
population size (pairwise coalescent rate is 1

𝑔𝑁𝑒 (𝑡) ). This relation 
underpins all other coalescent e skyline methods too.

The earliest model due to Pybus, Rambaut, and Harvey (2000) 
only considered ultrametric trees (trees relating samples collected 
at the same time). Subsequent methods were extended to include 
heterogeneous sampling (nonultrametric trees) and smoothed 
estimates of population size. These include the Bayesian skyline 
plot (BSP) (Drummond 2005), the Bayesian multiple change point 
method (Opgen-Rhein, Fahrmeir, and Strimmer 2005), and the 
Skyride, which employs Gaussian Markov random fields (GMRF) 
to estimate a temporally smoothed trajectory of effective popu-
lation size (Minin, Bloomquist, and Suchard 2008). Extension to 
continuous change in population size avoids the jumpy output of 
earlier skyline methods. See Fig. 2 from Ho and Shapiro (2011) for 
a comparison of these models.

Extensions to heterochronous sampling and continuous pop-
ulation trajectories led to the Skyrgid model (Gill et al. 2013), 
which also employs GMRF for smoothing. It allows for inference 
of the effective population size at time points other than coales-
cent events but can risk overfitting compared to other methods 
due to this. Gill et al. (2016) then extended the Skygrid to incor-
porate covariate information to model effective population size 
against, such as disease prevalence. See Hill and Baele (2019) for a 
review of skyline methods and an example of how to run a Skygrid 
model in BEAST 1. See Ho and Shapiro (2011) for a review of all the 
above-mentioned skyline methods.

Table 2. Coalescent and birth–death-based skyline models.

Tree prior Parameters Notes Software

BSP (Drummond 
2005)

Ni • Prior on N1 BEASTv1&2

Skyride (Minin, 
Bloomquist, 
and Suchard 
2008)

• GMRF smoothing 
prior

Skygrid (Gill et al. 
2013)

Skygrowth (Volz 
and Didelot 
2018)

Ne(t), r • Prior only placed on 
precision parameter, 
𝜏

Skygrowth

ESP (Parag, du 
Plessis, and 
Pybus 2020)

Ne(t), 𝛽(t) • 𝛽 is sampling 
intensity

• Prior on N1 (first 
interval for Ne)

BEASTv2

BDSky (Stadler 
et al. 2012b)

𝑅𝑒 = 𝜆(𝑡)
𝛿(𝑡)

p(t), x0

• Possible to condition 
on x0

• Accommodates 
simultaneous sam-
pling redefforts 
with an optional 𝜌
parameter

10.2 Skyline models beyond Ne(t)
Recently, Parag, du Plessis, and Pybus (2020) introduced the 
epoch sampling plot (ESP), which incorporates coalescent times 
alongside sampling times for more accurate reconstructions of 
demographic histories. It infers both sampling intensity and effec-
tive population size in predetermined epochs. Parag, du Plessis, 
and Pybus (2020) apply the ESP to data from human influenza 
A virus and steppe bison, demonstrating the flexibility of non-
parametric skyline methods. The introduction also offers a helpful 
review of previous work considering sampling information under 
the coalescent including (Volz and Frost 2014; Karcher et al. 2016).

Volz and Didelot (2018) introduced the skygrowth model, which 
infers population growth rates over time, and demonstrate its use 
with data from Rabies virus and Staphylococcus aureus epidemics. 
The skygrowth model is useful for corroborating constant popula-
tion size in other skyline plots as these may report stable effective 
population size when a nonzero growth rate suggests otherwise. 
The model also includes a regression approach to model growth 
rate against time-varying variables. It is available in the skygrowth 
R package.

The birth–death skyline model (BDSky) due to Stadler et al. 
(2012b) offers a skyline model grounded in the birth–death. It 
infers 𝜆, p, and 𝛿 over time, rather than population size or growth 
rate alone as under the above coalescent models. It also allows for 
differing numbers of time intervals to be set for each parameter, 
which can then be further rearranged to infer other epidemio-
logical quantities over time (Table 2). Much like the other birth–
death-based models, the BDSky requires strong priors on some 
parameters to tackle nonidentifiability and infer sharp posteriors 
on those of interest. The BDSky is similar to the BDSIR model in 
that it infers parameters as piecewise constant over time but does 
not simulate epidemic trajectories to achieve this. Both models 
accommodate sampling efforts where many samples are simul-
taneously taken with a given probability 𝜌, leading to ultrametric 
trees.



11. Structured models
The models discussed so far only consider one pathogen and host 
population. These are singular populations wherein individuals 
are assumed to interact randomly, as in the SIR. However, the 
broader reality is that host and pathogen populations are often 
structured, meaning they contain distinct subgroups for which 
transmission may occur at different rates. Structure is often the 
result of geographical disparities limiting movement across pop-
ulations but can involve numerous other factors. For example, 
Stadler and Bonhoeffer (2013) consider a data set of HIV subtype 
A sequences from Latvia, wherein transmission dynamics differed 
between heterosexual and intravenous drug using subsets of the 
population, both comprising the entirety of the dataset. Structure 
can also arise from differentiation of the pathogen. Additionally, 
some pathogens exhibit a disease progression requiring addi-
tional compartments. For instance, the SEIR model introduces an 
(E)xposed compartment composed of infected but not yet infec-
tious hosts. In response to the need to consider subpopulations 
with distinct epidemiological dynamics, structured models have 
been developed to infer epidemiological dynamics within and 
between types or demes in a population. Here, types and demes inter-
changeably refer to any differentiating categorical factor such as 
location, host demographic, or pathogen subtypes.

Structured models can sometimes be challenging to config-
ure in application. This is usually due to the computational 
demands of a larger set of parameters. See Douglas et al. (2021) 
for a recent application of some structured models to SARS-CoV-2 
transmission.

Lemey et al. (2009) introduced a fundamental approach to 
modelling migration rates between demes by treating geograph-
ical locations as discrete traits between which individuals could 
shift in a way analogous to nucleotide substitution models. This is 
often referred to as discrete trait analysis (DTA). DTA allows infer-
ence of root state, migration rates, and most probable ancestral 
demes of a collection of sequences. Lemey et al. (2014) augmented 
DTA to include explanatory variables such as air-traffic flows to 
predict migration rates using generalised linear models. Lemey 
et al. (2020) also recently built upon Lemey et al. (2009) to include 
the travel history information of samples and applied this to the 
international spread of SARS-CoV-2.

Modelling locations in the same way as substitution offers 
valuable simplicity and scalability but also carries unrealistic 
assumptions. These chiefly include deme-membership not affect-
ing transmission or sampling rates. Sampling biases between 
demes also impact inference of ancestral states and migration 
rates (De Maio et al. 2015). In light of this, several methods 
modelling population structure under structured coalescent and 
multitype birth–death (MTBD) tree priors have been developed.

The structured coalescent includes rates at which individuals 
move between demes (Hey 2010). Unlike the coalescent with a sin-
gle population, inferences focus more on rates of transfer between 
demes than population size within each. Much of the work on 
the structured coalescent grappled with its high computational 
demands by approximating its likelihood. For example, Volz (2012) 
introduced an approximation to the likelihood of the structured 
coalescent. An exact method is used in MultiTypeTree due to 
Vaughan et al. (2014), a BEAST2 package that fits a structured coa-
lescent to sequence data. Vaughan et al. (2014) demonstrated use 
with a global H3N2 influenza data set.

Noting that the structured coalescent only remained computa-
tionally tractable for a few demes and sensitivity to sampling bias 
within DTA, De Maio et al. (2015) developed an approximation to 

the coalescent likelihood that allowed for inference with a larger 
number of demes. It also showed increased accuracy compared 
to DTA and was released as the BASTA package in BEAST2. De 
Maio et al. (2015) applied BASTA to data from Ebola and Avian 
Influenza outbreaks as well as an agricultural virus. BASTA was 
later employed in SCOTTI, a method that infers transmission 
dynamics by considering each host as an individual population, 
thus likening migration rates to transmission rates (De Maio, Wu, 
and Wilson 2016).

Möller, Rasmussen, and Stadler (2017) developed an exact solu-
tion to the structured coalescent likelihood on which they based 
an improved approximation similar to Volz (2012). It is available 
in the MASCOT package in BEAST2, which fits structured coales-
cent models (Möller, Rasmussen, and Stadler 2018). Möller, Dudas, 
and Stadler (2019) then extended MASCOT to model migration 
rates against predictor data analogously to Lemey et al. (2014) with 
generalised linear models.

The MTBD model also accommodates population structure. It 
allows for estimation of transmission rates, death rates, and sam-
pling proportions across subpopulations. For example, Kühnert 
et al. (2018) estimate separate transmission rates for drug-
sensitive and resistant HIV strains using the MTBD. The math-
ematical foundation for deriving the likelihood of the MTBD is 
described in Maddison, Midford, and Otto (2007). Stadler and 
Bonhoeffer (2013) extended this to heterochronous trees and used 
maximum likelihood inference. Their method allows estimation of 
the likelihood of a tree where the ‘types’ of each sample are known 
beforehand but can also assess hypotheses about the underlying 
number of types if tip states are unknown.

Kuhnert et al. (2016) built upon this framework to produce an 
MTBD model combined with the birth–death skyline that infers 
parameters across time intervals as in the BDSky. It is available 
in the BEAST2 bdmm package and allows for both serial and con-
temporaneous sampling but requires types to be specified a priori, 
such as knowing the location of each sample. Barido-Sottani, 
Vaughan, and Stadler (2020) recently developed a model that 
allows for MTBD inference, including the number of types. It 
requires a prior on the number of subgroups and can infer trans-
mission rates, death rates, and a total rate of individuals moving 
between subpopulations alongside a fixed value for the sampling 
proportion. Scire et al. (2020) proposed a new algorithm that 
greatly improves the computational efficiency of the MTBD, rais-
ing the computational limit in its sample size from roughly 250 to 
at least 500.

12. Future directions and final remarks
Future advances in phylodynamics will likely include improved 
metadata integration, model selection, scalability and perfor-
mance, accommodation of continuous spatial structure, and 
adaptive evolution. Many of these areas are continuations of 
outstanding questions outlined by Frost et al. (2015).

The move to integrate geographic metadata features promi-
nently among advances in data integration (Guindon and De Maio 
2021; Hill et al. 2021). Geographic metadata allow for transmis-
sion dynamics to be resolved in space. For example, this can 
allow for the locating of pathogen reservoirs where more tradi-
tional case counts may fall short. Although structured models 
capture geographic structure in a discrete sense, methods mod-
elling spread in continuous space offer finer resolution and are 
emerging. These use the locations and dates of isolates along 
with their genome sequences to infer a point source in space that 



most likely led to the observed geographic distribution (Lemey 
et al. 2010; Kalkauskas et al. 2020). This allows for hypothesis 
testing about geographic spread of a pathogen (Dellicour et al.
2019).

So-called occurrence metadata are also being integrated into 
phylodynamic analyses. Occurrences are known instances of 
infection, for example, due to a positive test, without an accompa-
nying sampled genome. These are included alongside sequenced 
samples so as to offer information about prevalence. These data 
can improve phylodynamic inference, and the theoretical bases 
for their inclusion in phylodynamics are growing (Vaughan et al. 
2019; Andr´eoletti et al. 2020; Gupta et al. 2020; Featherstone et al. 
2021; Zarebski et al. 2022).

Accommodating adaptive evolution offers an opportunity 
for advance as reliance upon pathogen genomic surveillance 
increases. Rasmussen and Stadler (2019) recently developed a 
model based on the MTBD where the evolutionary fitness of lin-
eages is allowed to vary depending on multiple pathogen traits, 
including the fitness effects of mutations at multiple sites in the 
genome. This is distinct from many other phylodynamic models 
which assume selective neutrality between subtypes. Capturing 
adaptive evolution will likely continue to attract interest, espe-
cially following interest in the emergence of variants of concern 
(Tay et al. 2022).

In the vein of increased computing efficiency, online Bayesian 
methods which allow for MCMC chains that can be interrupted to 
include more data are emerging (Gill et al. 2020). This approach is 
similar to sequential Markov inference (Fourment et al. 2018) and 
presents a major step towards effectively real-time phylodynamic 
pathogen surveillance.

Although phylodynamics is expanding in the type and quan-
tity of data it considers, careful consideration must always be 
given to the assumptions underlying tree prior selection. For 
instance, the choice of tree prior can affect estimates of the rate 
of substitution and time of origin (Möoller, du Plessis, and Stadler 
2018). Model adequacy programmes such as TreeModelAdequacy 
in BEAST2 are available to decide whether the model is reason-
able (Duchene et al. 2019). However, more work is required to 
better understand the effects of model misspecification. There 
is a particular need for the development of methods to assess 
the suitability of the demographic assumptions that each tree 
model makes. To this end, Parag, Pybus, and Wu (2022) devel-
oped a statistic that measures the relative contribution of genetic 
information and demographic assumptions in driving skyline
trajectories.

13. Extension to bacteria and other 
pathogens
The ecological and evolutionary complexity of bacteria and 
other more slowly evolving pathogens offers another frontier for 
advance in phylodynamics. Much of phylodynamics is focused 
on viruses, but some bacteria such as Mycobacterium tuberculosis
also evolve measurably so as to enable phylodynamic inference 
(Kuhnert et al. 2018). Given that many species of bacteria can sur-
vive outside of human hosts, a branching event may represent 
an environmental acquisition of infection rather between host 
transmission. This then requires caution regarding the assump-
tion that the isolate tree is a subtree of the transmission tree (Ingle, 
Howden, and Duchene 2021). Accounting for recombination also 
presents a consistent challenge in phylodynamics, although some 
methods to accommodate it have been developed (Didelot et al. 
2010; Vaughan et al. 2017; Didelot and Parkhill 2021).

14. Final remarks
The SARS-CoV-2 pandemic has presented a new standard where 
phylodynamic analyses are conducted closer than ever to real 
time (Hill et al. 2021). This is in part facilitated by shared sequence 
repositories such as GISAID, Nextstrain, and forums such as Viro-
logical.org (Shu and McCauley 2017; Hadfield et al. 2018). This 
opportunity has provided valuable insight into practical consid-
erations for real-time phylodynamics. These include the afore-
mentioned need to assess the suitability of tree priors and aspects 
of sampling. The volume of available data has led to a situation 
where analysing ever larger data sets is not always more infor-
mative relative to tractability, so protocols are required to address 
when and how to subsample from a large database. Methods are 
emerging to meet this need, but many questions remain (Duchene 
et al. 2021; du Plessis et al. 2021). For example, how should one fil-
ter sequences originating from household transmission to avoid 
overinflating transmission rate estimates? Should phylodynam-
ics instead focus on inferring a dispersal distribution of secondary 
infections to account for the probability of super-spreading events, 
as has been demonstrated before by Li, Grassly, and Fraser (2017)? 
Questions regarding sampling are also outstanding with regard to 
structured models. How should one subsample sequences from 
individual countries to infer travel-associated transmission rates? 
Such questions will continue to arise as phylodynamics continues 
to experience broader application. However, one certainty is that 
there will always be a need for domain knowledge on the part of 
local public health researchers to curate suitable datasets with 
these questions in mind.

In sum, phylodynamics is a burgeoning space. It has and 
will continue to revolutionise the way we study epidemiology 
and inform public health responses to future infectious disease 
spread. It does this by explicitly modelling the timing and or loca-
tion of transmission events using evolutionary information, which 
is otherwise inaccessible via traditional epidemiological analyses. 
It is even poised to enter into the realm of cell biology in measur-
ing how tissues develop (Chodrow et al. 2021; Stadler, Pybus, and 
Stumpf 2021). In essence, phylodynamics affords us the chance to 
make more sense of infectious disease epidemiology in the light 
of pathogen evolution, and as such presents a cutting edge of 
research to continue into the future.

Supplementary data
Supplementary data is available at Virus Evolution online.
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