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Abstract

Background: Maternal diabetes alters gene expression leading to neural tube defects (NTDs) in the developing brain. The
mechanistic pathways that deregulate the gene expression remain unknown. It is hypothesized that exposure of neural
stem cells (NSCs) to high glucose/hyperglycemia results in activation of epigenetic mechanisms which alter gene expression
and cell fate during brain development.

Methods and Findings: NSCs were isolated from normal pregnancy and streptozotocin induced-diabetic pregnancy and
cultured in physiological glucose. In order to examine hyperglycemia induced epigenetic changes in NSCs, chromatin
reorganization, global histone status at lysine 9 residue of histone H3 (acetylation and trimethylation) and global DNA
methylation were examined and found to be altered by hyperglycemia. In NSCs, hyperglycemia increased the expression of
Dcx (Doublecortin) and Pafah1b1 (Platelet activating factor acetyl hydrolase, isoform 1b, subunit 1) proteins concomitant
with decreased expression of four microRNAs (mmu-miR-200a, mmu-miR-200b, mmu-miR-466a-3p and mmu-miR-466 d-3p)
predicted to target these genes. Knockdown of specific microRNAs in NSCs resulted in increased expression of Dcx and
Pafah1b1 proteins confirming target prediction and altered NSC fate by increasing the expression of neuronal and glial
lineage markers.

Conclusion/ nterpretation: This study revealed that hyperglycemia alters the epigenetic mechanisms in NSCs, resulting in
altered expression of some development control genes which may form the basis for the NTDs. Since epigenetic changes
are reversible, they may be valuable therapeutic targets in order to improve fetal outcomes in diabetic pregnancy.
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Introduction

Diabetes during pregnancy is a well-known risk factor for

congenital anomalies in various organ systems including the

nervous system [1–3]. Preconceptual control of diabetes has shown

to reduce the incidence of congenital abnormalities in diabetic

mothers [4]. On the other hand a tight glycemic control after

organogenesis and embryogenesis have begun may prove insuffi-

cient to prevent or reverse the congenital defects that have already

occurred [5,6].

Global gene expression profiles of developing brain in embryos

of diabetic mice has shown differential expression of several genes

that control various functions such as metabolism, cellular

physiological process, cell cycle progression and cell migration

during brain development [7]. Neural stem cells (NSCs) are self-

renewing multipotent cells giving rise to neuronal and glial cells

(astrocytes and oligodendrocytes) in the central nervous system [8].

It has been shown that maternal diabetes alters the expression of

several genes involved in neurulation [9,10], proliferation and cell

fate specification [11] of NSCs which may form the basis for

neural tube defects. In the developing brain, NSCs differentiate

into neuronal and glial cell types in a sequential fashion. Cell fate

specification of NSC is determined by extracellular signals,

transcription factors and intracellular programmes such as the

epigenetic regulation of gene expression [12–14]. Recently,

microRNAs (miRNAs) have been shown to be essential in the

post transcriptional control of NSC fate and regulation of gene

expression [13,15].

Dietary changes in methyl donors have shown to alter DNA and

histone methylation [16]. Animal studies have revealed that a

choline -deficient diet during pregnancy results in decreased

methylation in genes that control brain development [17]. It is

therefore evident that the fetal epigenetic mechanisms can be

influenced by maternal nutrition or metabolic disturbances. These

epigenetic changes that are acquired during embryogenesis may

even have long lasting effects on the offspring postnatally [18,19].

It has been shown that high glucose causes persistent alterations in

gene expression in human aortic endothelial cells [20] and human

monocytic cell line [21] through histone modifications. In

addition, excess glucose can increase histone acetylation by
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increasing acetyl CoA in the nucleus [22] suggesting a link

between maternal hyperglycemia and fetal epigenome.

We therefore hypothesize that exposure of NSCs to hypergly-

cemia results in activation of epigenetic mechanisms (chromatin

modification, DNA methylation and miRNA mediated) which

alter the expression of genes during brain development. To

address this, we used NSCs isolated from the forebrain of non-

malformed embryos of streptozotocin induced diabetic pregnancy

and cultured those in medium containing physiological glucose

(PG, 5 mmol/l) concentration to examine epigenetic reprogram-

ming caused in utero by maternal hyperglycemia. First, we

examined the histone and DNA methylation status of NSCs to

determine hyperglycemia induced changes in them. In order to

examine the effect of maternal diabetes on epigenetic regulation of

genes involved in NSC fate specification we selected two genes,

Doublecortin (Dcx), and Platelet activating acetyl hydrolase,

isoform 1b, subunit 1 (Pafah1b1), which are involved in neurogen-

esis and neuronal migration. These genes were selected since their

expression levels were found to be altered in developing brain of

malformed embryos from diabetic pregnancy (in our previous

cDNA microarray analysis) [7]. We identified four miRNAs that

were predicted to target both Dcx and Pafah1b1 and determined if

Dcx and Pafah1b1 were targets of these miRNAs by altering

specific miRNA levels in NSCs. Finally, we examined the role of

each miRNA in NSC fate by differentiating the cells after

knockdown of specific miRNAs in NSCs. We show for the first

time that hyperglycemia alters epigenetic mechanisms in NSCs

which may form the basis for neural tube defects observed in

diabetic pregnancy.

Materials and Methods

Ethics Statement
This study was approved by the National University of

Singapore Institutional Animal Care and Use Committee

(IACUC)(approval number 122\09) and all procedures were in

accordance with its guidelines.

Animals and Culture of NSCs
Diabetes was induced in healthy 6–8 weeks old female Swiss

albino mice (Centre for animal resources, CARE, NUS) by a single

intraperitoneal injection of Streptozotocin (STZ, 75 mg/kg body

weight, Sigma-Aldrich, St. Louis, MO, USA) freshly prepared in

0.01 M citrate buffer pH 4.5. One week later, the blood sugar

levels of the mice were tested using a blood glucose meter (Abbott’s

laboratories, Illinois, USA) and mice with non-fasting glucose

levels of .200 mg/dL were confirmed to be diabetic and selected

for mating. Timed mating was done by placing 3–4 diabetic

female mice with one age matched healthy male mice, in cages

overnight. The day when the copulation plug was seen was

counted as embryonic day 0.5 (E 0.5). Only embryos from

pregnant mice with non-fasting glucose .300 mg/dL were used

as experimental group. Age matched control pregnant mice were

purchased from CARE, NUS. On E13.5, the embryos were

collected by caesarean section of diabetic and control mice that

were anesthetized with pentobarbital (150 mg/kg body weight).

All procedures using laboratory animals were in accordance with

the guidelines of Institutional Animal Care and Use Committee

(IACUC), NUS.

Primary culture of NSCs was obtained from the telencephalon

region of embryonic brains as described previously [11,23].

Briefly, the tissue sections were subjected to mechanical dissoci-

ation in DMEM/F12 (1:1, Invitrogen Life technologies, Carlsbad,

CA, USA) and the cell suspension was filtered through a nylon

mesh (70 mm, BD biosciences, MA, USA). The cells were plated at

a concentration of 10–15 cells/ml [24,25] in DMEM/F12 medium

with 5 mM/L D-Glucose (PG) concentration and supplemented

with insulin-transferrin-selenium supplements (Invitrogen), 20 ng/

ml EGF (Sigma- Aldrich, St. Louis, MO, USA) and an antibiotic

antimycotic solution (Sigma- Aldrich) in T-75 flasks (Corning Life

sciences, Lowell, MA, USA). The cultures were incubated at

37uC/5% CO2 for 5 days after which the supernatant containing

freely floating neurospheres was collected in 50 ml tubes (Greiner

Bio-One GmBH, Germany) and centrifuged at 800 rpm/5 min.

Harvested neurospheres were dissociated with TryPLETM Select

(Gibco, Life technologies, Carlsbad, CA, USA) and re-plated (50–

70 cells/ml) for 3–4 days, during which new neurospheres formed

(Fig. S1 A). Subsequently, a second passage was done (as

previously) and cells were grown for 4–5 days. NSCs were grown

for 12–14 days in total and passaged at least twice before they were

used for experiments. NSCs were stained for expression of

intermediate filamentous marker, Nestin (Fig. S1 B–E). All

neurospheres from embryos of control and diabetic pregnancy

expressed Nestin (Fig. S1 B,C) and all cells within a neurosphere

showed immunoreactivity to Nestin (Fig. S1 D, E).

Exposure of NSCs to High Glucose in vitro
30–50 neurospheres derived from E13.5 embryos of control

pregnancy cultured in PG medium were transferred to 6 well

plates containing 2 ml medium with high glucose concentration

(HG, 40 mM/L D-glucose) and cultured for 48 h.

Differentiation of Neurospheres
5–10 neurospheres derived from E13.5 embryos of control or

diabetic pregnancy was plated per well of a 24 well plate

containing poly-ornithine coated coverslips. Each well contained

500 ml of medium with PG concentration and 2% FBS (and no

EGF) in order to induce differentiation. The NSCs were allowed

to differentiate for 3 days or 6 days in vitro after which the

percentages of Gfap, Map2 or Ng2 positive cells were estimated by

immunostaining.

Immunostaining
For immunostaining, the neurospheres or differentiated cells

were fixed with ice cold 4% paraformaldehyde (PFA) for 30 min

and the fixed cells were permeabilized with phosphate buffered

saline (PBS) containing 0.1% Triton-X 100 (PBS-Tx) for 20 min.

Subsequently, the cells were blocked with 5% normal goat serum

for 30 min before incubation with the different primary antibod-

ies. The primary antibodies used were rabbit anti-Gfap antibody

(1:500, Chemicon, Temecula, CA, USA) or rabbit anti-Map2

antibody (1:500, Chemicon) or rabbit anti-Ng2 antibody (1:200

Chemicon) or mouse anti-Nestin antibody (1:500, Millipore, USA)

overnight at 4uC. The next day, cells were incubated with Cy3-

conjugated goat anti-rabbit IgG secondary antibody (1:100,

chemicon) or rabbit anti-mouse IgG secondary antibody (1:100

Chemicon) for 1 h at room temperature. Finally, the nucleus was

counterstained with DAPI and the coverslips were mounted on

glass slides with fluorescent mounting medium (DAKO, USA).

Images were captured with Olympus FV1000 confocal micro-

scope. For estimating the percentage of Map2 or Gfap or Ng2

positive cells, confocal images from at least five random fields were

captured for each sample. The number of positive cells (Map2 or

Gfap or Ng2) was counted in each field and data was represented

as percentage of positive cells (Map2 or Gfap or Ng2) relative to

the total number of cells in that field.

Hyperglycemia Alters Epigenetic Mechanisms
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Electron Microscopy
NSCs from various groups were harvested by centrifugation

(800 rpm/5 min/4uC) and washed twice with PBS, after which

the cells were fixed (2% PFA, 3% glutaraldehyde in PBS) for

1 h at room temperature. The fixed cells were harvested by

centrifugation, washed thrice with PBS and incubated in PBS

solution overnight at 4uC. The cells were then post fixed in 1%

OsO4, pH 7.4 for 2 h at room temperature after which they

were washed with 0.1 M phosphate buffer (pH 7.4). The cells

were then dehydrated through an ascending ethanol series at

room temperature and infiltrated with 100% acetone: resin (1:6)

overnight at room temperature. After three changes in resin, the

cells were embedded in fresh resin and polymerized at 55uC for

1 h. Sections cut were supported on grids (150 nm) and the

slides were stained with uranyl acetate (10 min) and lead citrate

(8 min) at room temperature. Images were captured using Bio

Twin CM 120 (Philips) electron microscope.

Histone Protein Extraction and Assays
Total histone proteins were isolated from NSCs from various

groups using EpiQuik total histone extraction kit (Epigentek,

Farmingdale, NY) following the manufacturers’ instruction.

Histone extracts (2 mg) from each sample was used to quantify

Histone H3K9 trimethylation or acetylation using EpiQuik Global

trimethyl histone H3K9 quantification kit (Epigentek, Farming-

dale, NY) or EpiQuik Global acetyl histone H3K9 quantification

kit (Epigentek) following the manufacturers’ protocol.

DNA Isolation
Genomic DNA was extracted from NSCs from various groups

using DNeasy blood and tissue kit (Qiagen, Hilden, Germany).

The extracted DNA was quantitated using Nanodrop spectropho-

tometer.

Global DNA Methylation Quantification
Genomic DNA (200 ng) from each NSC group was used to

quantify the global DNA methylation levels using Methylamp

global DNA methylation quantification kit (Epigentek, Farming-

dale, NY) and the manufacturer’s instructions were followed. All

samples were analyzed in duplicate. A standard curve was plotted

using the methylated DNA control supplied in the kit and the

DNA methylation % was calculated based on the standard curve.

RNA Isolation
Total RNA was extracted from the control and experimental

groups using mirVanaTM kit (Ambion, Carlsbard, CA, USA)

according to the manufacturer’s protocol. The isolated RNA was

used for miRNA analysis or mRNA qRT-PCR.

cDNA Synthesis and mRNA Analysis
Reverse transcription was done using 2 mg RNA and 2 ml

oligodT, 200 U of molony murine leukemia virus (M-MLV)

reverse transcriptase, 5 U of RNasin (Promega, Madison, WI,

USA), 2 mmol/L of each dNTPs, in a 25 ml reaction volume. The

mRNA expression was quantified by real time RT-PCR analysis

carried out in Applied Biosystems (Applied Biosystems, Foster city,

CA, USA) 7900 HT instrument using 10 ml master mix containing

5 ml SYBR green (Qiagen, Hilden, Germany), 1 mM/L of each

primer (Table 1), 1 ml cDNA and Nuclease free water in 96 well

FAST optical plates. The fold change of mRNA expression was

calculated by 22DDCt method [26].

Protein Isolation and Western Blotting
Protein was extracted from the NSCs using the mammalian

protein extraction reagent (M-PER, Thermo scientific, Rock-

ford, IL USA) following the manufacturer’s protocol. The

extracted protein was quantitated using the Bradford method

(Bio-Rad, Hercules, CA, USA). 20 mg of protein from each

sample was denatured at 95uC for 5 min and separated on a

10% SDS-PAGE. The proteins were transferred to PVDF

membranes and blocked with 5% non-fat milk for 1 h at room

temperature. The blots were incubated in primary antibody,

rabbit anti-Dcx antibody (1:1000, Abcam, Cambridge, MA) or

rabbit anti-Pafah1b1 antibody (1:1000, Abcam, Cambridge,

MA) or mouse anti-beta actin antibody (1:5000, Sigma, St.

Loius, MO,USA) overnight at 4uC. The blots were then

incubated with secondary anti-mouse or anti-rabbit HRP

conjugated antibody (Pierce, Rockford, IL, USA) for 1 h at

room temperature. The blots were developed with enhanced

chemiluminescence reagent (Pierce, Rockford, IL, USA) and

quantitated on densitometer (Bio-Rad, Hercules, CA, USA)

using Quantity One software (Bio-rad, Hercules, CA, USA).

Equal protein loading was confirmed by stripping and re-

probing the blots with beta actin antibody.

Bisulphite Sequencing and Cloning
DNA (1 mg) from each NSC group was bisulfite treated and

purified using Epitect bisulfite kit (Qiagen, Hilden, Germany),

following the manufacturer’s protocol. Bisulfite specific primers

were designed using Methylprimer Express softwareV1.0 (Ap-

plied Biosystems, Foster City, CA, USA) spanning 350–400 bp

of CpG islands in the gene promoter. The bisulfite treated

DNA was then amplified by PCR and the PCR amplicons were

purified and subcloned into the TOPO TAR cloning kit

(Invitrogen, Life technologies, Carlsbad, CA, USA). Plasmid

DNA was isolated from 6 positive colonies and sequenced. The

eletropherograms were analyzed using the BiQ analyzer

software (Max-Planck Institut fur Informatik, Germany) and

the methylation pattern was represented as lollipop grids. Open

circles represent unmethylated CpG sites and closed (shaded)

circles represent methylated CpG sites. The primer sequences

used for PCR and sequencing are listed in Table S1 in Tables

S1.

miRNA Target Prediction
We used the miRWalk database (http://www.ma.uni-

heidelberg.de/appa/zmf/mirwalk/) to predict miRNA-mRNA

interactions in the 39UTR of the genes under study. The results

of the search are summarized in Table 2.

In situ Hybridization
NSCs from normal pregnancy were transferred into 24 well

plates with poly lysine coated coverslips and the cells were

allowed to adhere for 48 h. 59 Fluorescein labelled miRCURY

LNA TM probes were purchased for mouse U6, mmu-miR-200b

and mmu-miR-466d-3p from Exiqon (Vedbaek, Denmark)(Ta-

ble S2 in Tables S1). We followed a previously published

protocol for in situ hybridization [27]. Briefly, the cells were

fixed with 4% PFA, permeabilized with 0.1% PBS-Tx, and

acetylated with acetylation solution containing acetic anhydride

and triethanolamine. The probes were denatured and then

allowed to hybridize to cells overnight at a temperature ranging

from 55uC to 60uC (that was 22uC less than the melting

temperature of the probe). Post hybridization washes were done

at 75uC to 80uC (that was 20uC greater than hybridization
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temperature). The NSCs were counterstained with DAPI (1 mg/

ml, Molecular probes) and coverslips were mounted on glass

slides with fluorescent mounting medium (DAKO). Images were

captured with Olympus FV1000 confocal microscope.

miRNA Analysis
Mouse miRNA primers mmu-miR-200a, mmu-miR-200b,

mmu-miR-466a-3p mmu-miR- 466d-3p, were purchased from

Applied Biosystems Foster City, CA, USA (Taqman TM miRNA

Real time assay) and control primer set snoRNA234 was used to

normalize the samples. Total RNA was reverse transcribed using

miRNA specific stem-loop RT primers and subsequently the

expression of miRNA was detected using specific miRNA primers.

Mouse mmu-miR-124 and control U6 primers were purchased

from Exiqon (Vedbaek, Denmark). Total RNA was converted to

cDNA using the Universal cDNA synthesis kit (Exiqon, Vedbaek,

Denmark) and the cDNA was used for quantification of miRNA-

124.The miRNA expression was quantified by real time RT-PCR

analysis using 96 well FAST optical plates (7900 HT, Applied

Biosystems). The fold change in miRNA expression was calculated

by 22DDCt method [26].

miRNA Knock Down
NSCs from normal pregnancy cultured in medium containing

PG concentration were used for miRNA knockdown. Just before

transfection, the NSCs were trypsinised gently to yield single

cells and 26105 cells were seeded per well of a 24 well plate.

Transfection was done using X-tremeGENE siRNA transfection

reagent (Roche Applied Sciences, Mannheim, Germany) follow-

ing the manufacturer’s instruction. 59flourescently labelled

miRCURY LNA TM miRNA inhibitors mmu-miR-200b,

mmu-miR-466d-3p, and non labeled miRCURY LNA TM

mmu-miR-200a, mmu-miR-466a-3p and were purchased from

Exiqon (Vedbaek, Denmark) (Table S3 in Tables S1). Trans-

fection complexes were prepared in opti-MEM medium

(Invitrogen, Life technologies, Carlsbad, CA, USA) and added

to the cells at final concentration of 20 nM/L. 59 fluorescently

labeled scrambled probe was used as the negative control. 48 h

post transfection, protein expression of the predicted mRNA

targets was analyzed by Western blot.

miRNA Knockdown and Lineage Specification of NSCs
For lineage specification, the NSCs were harvested by

centrifugation 48 h after knockdown with miRNA inhibitors

and trypsinised to yield single cells. About 10,000 cells from

scrambled or miRNA knockdown wells were plated in triplicate

(one each for Gfap, Map2 and Ng2) in 24 well plates containing

poly-ornithine (Sigma-Aldrich, St. Louis, MO, USA) coated

coverslips. In order to induce differentiation, EGF was

withdrawn from the culture medium and 2% FBS was added

to the medium and cells were cultured for 24 h before

proceeding with immunostaining using glial and neuronal cell

lineage markers. For estimating percentage of cells, confocal

images from at least five random fields were captured for each

slide. The percentage of Gfap, Ng2 and Map2 positive cells

were calculated in miRNA knockdown cells and normalized to

scrambled transfected cells.

Statistical Analysis
Data is represented as mean 6 SD from at least three

independent experiments. Student’s t test was done by using

Microsoft Excel spreadsheet and data was considered significant

when p,0.05.

Table 1. Primers used for mRNA qRT-PCR.

Gene name Forward Primer(59 –39) Reverse primer(59- 39) Product size

Dcx TCCAGTCAGCAAAGGTAAGGA CCAAGAGAGAACAGCAAACCA 146 bp

Pafah1b1 GATGACAAGACCCTCCGTGT GAGCTCAAATGGGGTAACCA 240 bp

Map2 CTGGACATCAGCCTCACTCA AATAGGTGCCCTGTGACCTG 164 bp

Gfap AGAAAACCGCATCACCATTC TCACATCACCACGTCCTTGT 184 bp

Ng2 GCACGATGACTCTGAGACCA AGCATCGCTGAAGGCTACAT 223 bp

Beta actin GAAGAGCTATGAGCTGCCTGA GGATTCCATACCCAAGAAGGA 103 bp

doi:10.1371/journal.pone.0065945.t001

Table 2. miRNA and mRNA target prediction by miRWalk.

mRNA miRNA
No. of databases
predicting interaction Names of databases

Dcx mmu-miR-200a 6 DIANAmT, miRanda, miRDB, miRWalk, PITA, Targetscan

mmu-miR-200b 6 DIANAmT, miRanda, miRWalk, PITA, Targetscan, PICTAR 4

mmu-miR-466a-3p 4 miRanda, miRWalk, PITA, Targetscan

mmu-miR-466d-3p 4 miRanda, miRWalk, PITA, Targetscan

Pafah1b1 mmu-miR-200a 4 DIANAmT, miRanda, PITA, Targetscan

mmu-miR-200b 5 .DIANAmT, miRanda, miRWalk, PITA, Targetscan

mmu-miR-466a-3p 4 miRanda, miRWalk, PITA, Targetscan

mmu-miR-466d-3p 4 miRanda, miRWalk, PITA, Targetscan

doi:10.1371/journal.pone.0065945.t002
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Results

Chromatin Reorganization in NSCs Exposed to
Hyperglycemia

In this study, NSCs were isolated from embryos of normal

pregnancy and diabetic pregnancy and cultured in medium with

PG. In addition, NSCs derived from embryos of normal

pregnancy were cultured in medium with high glucose (HG) for

48 h so as to serve as in vitro model of diabetic pregnancy. The

effect of hyperglycemia on chromatin organization in nuclei of

NSCs was analyzed using transmission electron microscopy as it

was hypothesized that hyperglycemia could trigger chromatin

modifications in NSCs. Heterochromatin clumps were found to be

increased (indicated as dark, dense regions) at the nuclear

periphery of NSCs from diabetic pregnancy (Fig. 1C) and that

exposed to HG in vitro (Fig. 1B) when compared to the control

(Fig. 1A) suggesting that hyperglycemia triggers the reorganization

of chromatin in embryonic NSCs. This also provides evidence that

the chromatin reorganization observed in NSCs from embryos of

diabetic pregnancy was indeed the effect of hyperglycemia as

similar results were obtained when NSCs (derived from normal

pregnancy) were cultured in HG in vitro.

Increased Global Histone H3K9 Trimethylation and DNA
Methylation and Decreased Histone H3K9 Acetylation in
NSCs Exposed to Hyperglycemia

The chromatin consists of DNA that can be methylated and

histone proteins that undergo modifications which control

chromatin packaging and organization [28]. Hence we postulated

that the chromatin reorganization observed in NSCs exposed to

hyperglycemia is associated with histone modifications or DNA

modifications. Therefore we analyzed the status of histone H3

lysine 9 (trimethylation and acetylation) and DNA methylation

levels in NSCs. The status of histone modifications was examined

by an ELISA based approach using two histone antibodies: anti-

trimethyl histone H3 lysine 9 (H3K9me3) and anti-acetyl histone

H3 lysine 9 (H3K9ac). The reason for selection of these two

antibodies was because H3K9me3 is generally associated with

transcriptional silencing, whereas H3K9ac is associated with

transcriptional activation [29]. Interestingly, NSCs from diabetic

pregnancy (130.42620.41%, p,0.05) and that exposed to HG

in vitro (125.4867.98%, p,0.05) showed a significant increase in

transcriptional silencing, when compared to the control

(90.6065.01%)(Fig. 1D). In addition, NSCs from diabetic

pregnancy (72.6363.79%, p,0.05) and that exposed to HG

in vitro (78.3464.05%, p,0.05) showed a significant decrease in

transcriptional activation when compared to the control

(90.1367.31%)(Fig. 1E). Further, we examined the effect of

hyperglycemia on global DNA methylation using an ELISA based

approach. We found that the percentage of DNA methylation in

NSCs from diabetic pregnancy (0.4560.02%, p,0.05) and that

exposed to HG in vitro (0.4960.04%, p,0.05) was significantly

increased when compared to the control (0.3660.06%) (Fig. 1F).

Epigenetic Regulation of Genes Involved in
Neurogenesis, Neuronal Migration in NSCs Exposed to
Hyperglycemia

We have previously demonstrated that maternal diabetes

perturbed neurogenesis and neuronal migration in the developing

neural tube resulting in NTDs [7]. To examine if the altered gene

expression was due to changes in epigenetic mechanisms, we

selected two genes namely, Dcx and Pafah1b1 that are involved in

neurogenesis and neuronal migration. The expression of Dcx and

Pafah1b1 mRNA and protein in NSCs from control and diabetic

pregnancy were analyzed by qRT-PCR (Fig. 2A) and Western blot

(Figs. 2B,C). The expression of Dcx (4.7961.99 vs 1.0060.13-

folds, p,0.05) and Pafah1b1 (2.5560.93 vs 1.0460.33-folds,

p,0.05) mRNAs were significantly increased in NSCs from

diabetic pregnancy when compared to the control (Fig. 2A). In

addition, the quantities of Dcx (2.8661.93 vs 1.0060.60-folds,

p,0.05) and Pafah1b1 (3.0560.88 vs 1.0060.51-folds, p,0.05)

proteins increased significantly in NSCs from diabetic pregnancy

when compared to the control (Fig. 2C). Further, the mRNA

expression of Dcx (1.7360.35 vs 1.0860.47-folds, p,0.05) and

Pafah1b1 (1.3660.16 vs 1.0060.06-folds, p,0.05) increased

significantly in NSCs exposed to HG in vitro when compared to

the control (Fig. 2D). In order to identify if the changes in mRNA

expression in NSCs exposed to hyperglycemia (in vivo and in vitro)

were due to changes in CpG methylation, we performed bisulphite

conversion followed by cloning and sequencing of isolated DNA.

There was no change in CpG methylation at Pafah1b1 gene

promoter in NSCs from diabetic pregnancy or that exposed to HG

in vitro when compared to the control (Fig. S2). CpG islands were

found to be absent in the promoter of Dcx gene.

Subsequently, the percentages of neuronal and glial cells were

estimated since hyperglycemia increased the expression of Dcx

and Pafah1b1. The neurospheres of control and diabetic

pregnancy were allowed to differentiate in medium with PG and

2% FBS, without EGF for 3 days or 6 days in vitro and the

neuronal and glial populations were identified by immunostaining

with Map2 (Microtubule associated protein 2) or Gfap (Glial

fibrillary acidic protein) or Ng2 (neuron-glial antigen 2) or Nestin

(Fig. 2E–L and Fig. S3 A–H) and quantified. The percentages of

neuronal and glial positive cells were estimated after 3 and 6 days

of differentiation in order to check if prolonged differentiation

would alter the neurogenesis: gliogenesis ratio. All the differenti-

ated cells from NSCs of control and diabetic pregnancy showed

immunoreactivity to Nestin (Fig. 2 K,L, and Fig. S3 G,H). The

percentage of Map2 positive cells increased significantly at 3 days

(37.5564.64 vs 28.4165.30%, p,0.05) and 6 days (43.6364.57 vs

30.1765.71%, p,0.05) post differentiation. However, the per-

centages of Gfap positive cells at 3 days (44.19610.97 vs

77.0464.53%, p,0.05) and 6 days (45.4764.72 vs

75.5263.10%, p,0.05) and Ng2 positive cells at 3 days

(5.0561.00 vs 8.8061.08%, p,0.05) and 6 days (4.1460.73 vs

9.4360.96%, p,0.05) decreased significantly in differentiated cells

from NSCs of diabetic pregnancy when compared to the control

signifying that hyperglycemia increased neurogenesis and de-

creased gliogenesis (Fig. 2M).

Hyperglycemia Alters the Expression of miRNAs in NSCs
miRNAs predicted to target the 39 UTR of selected genes (Dcx

and Pafah1b1) were identified from miRWalk database [30].

Among several miRNAs predicted to target proposed genes, we

analyzed four miRNAs from two families (Table 2) that were

common targets to selected genes. We performed in situ

hybridization of two representative miRNAs (mmu-miR-200b

and mmu-miR-466d-3p) selected from each family of miRNA that

are investigated in this study (mmu-miR-200 and mmu-miR-466

family) in unbiased manner to detect whether these miRNAs were

expressed by NSCs. Both mmu-miR-200b and mmu-miR-466d-

3p were found to be expressed by NSCs (Figs. 3A,B). Having

confirmed that these miRNAs were expressed in NSCs we then

sought to quantitate their expression levels by real time RT-PCR

in NSCs. The expression levels of miRNA mmu-miR-200a

(0.00960.009 vs 1.0660.45-folds, p,0.05), mmu-miR-200b

(0.02160.02 vs 1.0460.37-folds, p,0.05), mmu-miR-466a-3p
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(0.05460.01 vs1.0160.21-folds, p,0.05) and mmu-miR-466d-3p

(0.02860.02 vs 1.0160.21-folds, p,0.01) were significantly

decreased in NSCs from diabetic pregnancy when compared to

the control (Fig. 3C). In NSCs from diabetic pregnancy, the

significant increase in protein expression of Dcx and Pafah1b1

correlates well with the reduced expression of miRNAs (mmu-

miR-200a, mmu-miR-200b, mmu-miR-466a-3p and mmu-miR-

466d-3p) (Figs. 2B and 3C) which have been predicted to target

Dcx and Pafah1b1 suggesting possible role for miRNA in

regulating gene expression.

Since hyperglycemia increased neurogenesis in NSCs, we

analyzed the expression of miR-124, which has been widely

shown to promote neurogenesis [31]. The expression of mmu-

miR-124 was increased significantly in NSCs from diabetic

pregnancy (8.8362.77 vs 1.0060.40-folds, p,0.05) when com-

pared to the control (Fig. 3D). The increased expression of miR-

124 correlated with increased neurogenesis in NSCs from diabetic

pregnancy (Figs. 3D and 2M).

miRNA-mRNA Target Validation Confirms Target
Prediction

We performed miRNA loss of function study in order to validate

the predicted miRNA-mRNA interactions, since the expression of

selected miRNAs was significantly downregulated in NSCs from

diabetic pregnancy. Individual miRNAs were knocked down in

NSCs isolated from normal pregnancy using miRCURY LNA TM

Figure 1. Hyperglycemia alters epigenetic mechanisms in NSCs. (A–C) Representative transmission electron microscopy images of NSCs from
control (A), that exposed to high glucose (HG) in vitro (B) and from diabetic pregnancy (C). Increased heterochromatin structure at the nuclear
periphery was observed in NSCs exposed to HG and that from diabetic pregnancy (white arrows). Bar represents 1 mm. (magnification: 13,500). (D, E)
The percentage of H3K9me3 (D) was significantly increased in NSCs exposed to HG in vitro (black bars) and that from diabetic pregnancy (open bars)
when compared to the control (grey bars) while the percentage of H3K9ac (E) was significantly decreased in NSCs exposed to HG in vitro (black bars)
and that from diabetic pregnancy (open bars) when compared to the control (grey bars). (F) Increased percentage of DNA methylation was observed
in NSCs exposed to HG in vitro (black bars) and that from diabetic pregnancy (open bars) when compared to the control (grey bars). The bar
represents the mean 6 SD of at least 4 independent experiments, *p,0.05.
doi:10.1371/journal.pone.0065945.g001
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Figure 2. Increased Dcx and Pafah1b1 expression and increased neurogenesis in NSCs from diabetic pregnancy. (A) mRNA expression
of Dcx and Pafah1b1 increased significantly in NSCs from diabetic pregnancy (open bars) compared to the control (filled bars). (B, C) The expression
and quantities of Dcx and Pafah1b1 proteins in NSCs from control and diabetic pregnancy were estimated by Western blot. (B) Representative blot
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miR inhibitors. The expression of the target proteins (Dcx and

Pafah1b1) were analyzed by western blotting 48 h post miRNA

knockdown (Fig. 4A). Knockdown of miRNAs, mmu-miR-200a,

or mmu-miR-200b, or mmu-miR-466a-3p or mmu-miR-466d-3p

resulted in increased expression of Dcx (1.7860.57-folds, p,0.05;

1.4260.34-folds, p,0.05; 2.1260.40-folds, p,0.05; 2.9861.05-

folds, p,0.05 respectively) (Fig. 4B) and Pafah1b1 (1.9360.43-

folds, p,0.05; 1.6960.57-folds, p,0.05; 1.6460.45-folds, p,0.05;

1.6860.34-folds, p,0.01 respectively) (Fig. 4C) proteins in NSCs.

miRNA Knockdown Increases Gliogenesis and
Neurogenesis in NSCs

Given that we observed increased expression of proteins

involved in neurogenesis, and neuronal migration after knock-

down of miRNAs in NSCs, we examined the role of these miRNAs

in NSC fate determination. miRNAs, mmu-miR-200a, mmu-miR-

200b, mmu-miR-466a-3p and mmu-miR-466d-3p were knocked

down individually in NSCs in culture. Following knockdown of

miRNAs, differentiation was induced and the neuronal and glial

lineage populations were estimated by immunocytochemical

analysis.

There was significantly increased astrogenesis as indicated by

increased Gfap positive cells following knockdown of miRNAs,

mmu-miR-200a (120.5266.54%, p,0.01) or mmu-miR-200b

(11562.24%, p,0.01) or mmu-miR-466a-3p (126.53618.87%,

p,0.05) compared to scrambled (Scr) transfected cells (Fig. 5 A–E,

i). Similarly, the knockdown of miRNA mmu-miR-200b

(128.09610.46%, p,0.05) or mmu-miR-466d (116.0566.19%,

p,0.05) increased the number of Ng2 positive cells when

compared to scrambled transfected cells (Fig. 5F–J,ii). Knockdown

of only mmu-miR-200a (135.25619.34%, p,0.05) or mmu-miR-

466a-3p (121.54617.29%, p,0.05) significantly increased the

number of Map2 positive cells compared to scrambled transfected

cells (Fig. 5K–O, iii), signifying increased neurogenesis.

Discussion

Maternal diabetes has been shown to alter the expression of

genes involved in neurogenesis, neuronal migration, and differen-

tiation of NSCs, leading to neural tube defects [7,11]. However,

the exact mechanism behind the deregulation of genes leading to

brain defects is not clear. It has long been argued that epigenetic

mechanisms are involved in modulating the expression patterns of

multiple genes that are implicated in impaired neurodevelopment

in offspring of diabetic pregnancy. Although the management of

diabetes during pregnancy has reduced the occurrence of

congenital malformations greatly, infants of diabetic mothers have

been shown to develop neuropsychological deficits [32]. Analyzing

phenotypically normal embryos may be essential in understanding

the molecular details behind the occurrence of neuropsychological

deficits in offspring of diabetic mothers. The present study clearly

shows that hyperglycemia activates epigenetic mechanisms that

result in altered gene expression in NSCs derived from diabetic

pregnancy and cultured in PG medium.

shows the expression of Dcx and Pafah1b1 proteins in NSCs from embryos of control and diabetic pregnancy. (C) The quantities of Dcx and Pafah1b1
proteins increased significantly in NSCs from embryos of diabetic pregnancy (open bars) compared to the control (filled bars). (D) Dcx and Pafah1b1
mRNA increased significantly in NSCs exposed to HG in vitro (filled bars) when compared to the control (open bars). (E–L) Neurospheres from
embryos of control and diabetic pregnancy were allowed to differentiate for 3 days in vitro and the expression of neuronal (Map2), glial (Gfap, Ng2),
and Nestin positive cell populations were determined by immunocytochemistry. (M) The percentage of Map2 positive cells was significantly
increased while the percentages of Gfap and Ng2 positive cells were significantly reduced in NSCs from diabetic pregnancy (open bars) on both 3
days or 6 days post differentiation when compared to the control(closed bars). Data is represented as mean 6 SD from at least four independent
experiments, *p,0.05.
doi:10.1371/journal.pone.0065945.g002

Figure 3. miRNA expression is altered in NSCs from diabetic
pregnancy. (A, B) in situ hybridization reveals expression of miRNAs
mmu-miR-200b (A) and mmu-miR-466d-3p (B) in NSCs. The nucleus is
counterstained with DAPI (blue). Scale bar: 50 mm. (C) miRNA
expression analysis revealed decreased expression of miRNAs mmu-
miR-200a, mmu-miR-200b, mmu-miR-466a-3p and mmu-miR-466d-3p
in NSCs from diabetic pregnancy (open bars) when compared to the
control (filled bars). Mean 6 SD (n = 4), *p,0.05, **p,0.01 (D)
Expression of neuron specific miRNA, miR-124 was significantly
increased in NSCs from diabetic pregnancy (open bars) when compared
to the control (filled bars). Data is represented as mean 6 SD from three
independent experiments, *p,0.05.
doi:10.1371/journal.pone.0065945.g003
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Chromatin packaging is controlled by reversible histone

modifications and DNA methylation patterns and determines

accessibility and availability of DNA for transcription via specific

acetylation or methylation marks on histone. Heterochromatin

regions that regulate gene expression by adding or removing

silencing marks to genes [33], are known to present at the nuclear

periphery [34] as revealed in TEM analysis. Among the histone

lysine methylation, H3K9me3 residue has been shown to be

associated with gene promoters that are transcriptionally repressed

and is most abundant in heterochromatin regions [35]. High

Figure 4. miRNA loss of function confirms Dcx and Pafah1b1 as targets. (A) Representative Western blot showing Dcx and Pafah1b1 protein
expression after knockdown of specific miRNAs in NSCs. (B,C) The quantities of Dcx (B) and Pafah1b1 (C) proteins increased significantly in NSCs
following knockdown of mmu-miR-200a or mmu-miR-200b or mmu-miR-466a-3p or mmu-miR-466d-3p when compared to scrambled (scr)
transfected cells. Data is represented as mean 6 SD from at least four independent experiments, *p,0.05. **p,0.01.
doi:10.1371/journal.pone.0065945.g004

Hyperglycemia Alters Epigenetic Mechanisms

PLOS ONE | www.plosone.org 9 June 2013 | Volume 8 | Issue 6 | e65945



Hyperglycemia Alters Epigenetic Mechanisms

PLOS ONE | www.plosone.org 10 June 2013 | Volume 8 | Issue 6 | e65945



glucose has been reported to alter gene expression by acetylation

or methylation of lysine residues on histone H3 [20,21]. Taken

together, the increased global H3K9me3 and decreased H3K9ac

observed in NSCs from diabetic pregnancy and NSCs exposed to

HG in vitro indicate that histone modifying enzymes are possibly

activated by hyperglycemia, resulting in altered gene expression.

Further, global methylation assay revealed increased DNA

methylation in NSCs from diabetic pregnancy and NSCs exposed

to HG in vitro. The increased DNA methylation may be

responsible for aberrant gene expression (possibly due to DNA

hypermethylation at gene promoters) in NSCs from diabetic

pregnancy and NSCs exposed to HG in vitro. Although global

DNA methylation levels were found to be increased, upregulation

of Pafah1b1 gene expression in NSCs from diabetic pregnancy

and NSCs exposed to HG in vitro was not due to changes in CpG

methylation.

Neurogenesis and neuronal migration are key events controlling

proper development of the brain. Defective neurogenesis or

neuronal migration results in brain abnormalities [36,37]. In order

to understand the role of hyperglycemia on fate specification of

NSCs, we have analyzed expression of two genes (Dcx and

Pafah1b1) involved in neurogenesis and neuronal migration [37–

39]. Both Dcx and Pafah1b1 were found to be significantly altered

in the brain tissue of embryos from diabetic mice by our previous

microarray studies. Dcx is expressed by migrating neuronal

precursors [40] and functions upstream to Pafah1b1 gene during

neuronal migration [41]. Further, Pafah1b1 is required for

accurate orientation of spindle (and therefore proliferation) in

neuroepithelial stem cells and radial glial progenitor cells [42].

Upregulation or downregulation of Pafah1b1 or Dcx have been

shown to affect brain development. Decreased expression of Dcx

and/or Pafah1b1 contributes to Lissencephaly that is character-

ized by ‘‘smooth brain appearance’’ [43]. Increased expression of

Dcx inhibits proliferation and promotes migration of human

neural progenitors [44]. Increased expression of Pafah1b1 has

been shown to affect brain development including size and cellular

organization in humans and mice [45]. In the present study, an

increased expression of Dcx, Pafah1b1 proteins in the NSCs from

diabetic pregnancy appear to be associated with increased

neurogenesis. It appears that hyperglycemia promotes neurogen-

esis at the cost of gliogenesis since the expression levels of Gfap and

Ng2, markers of astrocytes and oligodendrocytes respectively, were

found to be decreased in NSCs from diabetic pregnancy. The

decreased expression of glial markers in NSCs exposed to

hyperglycemia could also be due to the fact that the gliogenesis

has been shown to be preceded by the neurogenesis in the

developing cortex [46]. Although there was no change in the

differentiation pattern in NSCs from embryos of control and

diabetic pregnancy at different time points (3 days and 6 days of

differentiation), the possibility of delayed gliogenesis cannot be

excluded since NSCs were isolated from only one embryonic stage

(E113.5) in this study. Overall, it is suggested that hyperglycemia

perturbed the cell fate choice between neurons and glia. It is not

clear what drives the hyperglycemia-induced glia–neuron switch,

although several genes appear to be involved.

It is well known that miRNAs regulate gene expression via

binding to 39UTR sequences causing repression or degradation of

the target mRNAs. miR-200 family has been reported to regulate

olfactory neurogenesis in mouse and zebrafish models [47] and the

expression of few members of miR-466 family have been shown in

mouse ocular tissue [48]. This study is the first to report the

expression of miRNAs mmu-miR-200a, mmu-miR-200b, mmu-

miR-466a-3p and mmu-miR-466 d-3p in NSCs obtained from

mouse embryonic forebrain. Further, we confirmed that Dcx and

Pafah1b1 were targets of miRNAs mmu-miR-200a, mmu-miR-

200b, and mmu-miR-466a-3p and mmu-miR-466d-3p by using

knockdown approach. miR-124 is expressed abundantly in the

mouse brain [49], specifically in the neurons and its expression is

found to increase during development [50–52]. Several studies

have demonstrated the role of miR-124 in promoting neurogenesis

and neuronal differentiation [52–55]. In the present study,

increased neurogenesis observed correlated with increased expres-

sion of neuron specific miRNA, miR-124.

Recently miRNAs have been shown to promote and regulate

cell lineage specification in mouse and human cells [56]. Since

knockdown of specific miRNAs increased the expression of

proteins involved in neurogenesis and neuronal migration, we

examined their roles in NSC fate determination. We report novel

role of miRNAs mmu-miR-200a, mmu-miR-200b, mmu-miR-

466a-3p and mmu-miR-466d-3p in regulating neurogenesis and

gliogenesis in vitro by targeting and upregulating Gfap, Map2 and

Ng2 proteins either through direct target or through an indirect

regulation which needs detailed evaluation. Since each of the

miRNAs are reported to contain hundreds of mRNA targets

(miRwalk database), it is possible that many targets are involved in

this complex process of NSC fate determination. Altered NSC fate

due to differential miRNA expression induced by hyperglycemia

may explain the basis for patterning defects observed in the

developing brain exposed to maternal diabetes.

In conclusion, this study demonstrates that epigenetic mecha-

nisms are activated in NSCs by hyperglycemia, resulting in

chromatin reorganization, altered histone H3K9 status, increased

global DNA methylation, and altered miRNA expression thereby

promoting increased expression of neuronal and glial lineage

markers. This study is clinically relevant owing to the fact that

epigenetic changes are persistent even when NSCs from diabetic

pregnancy were cultured in normoglycemia and NSCs from non-

malformed embryos are sensitive to glucotoxicity suggesting that

phenotypically normal embryos are genotypically distinct and

deficient. Since epigenetic changes are reversible, using them as

therapeutic targets may improve fetal outcomes in diabetic

pregnancy.

Supporting Information

Figure S1 (A) Phase contrast image of Neural stem cells
(NSCs) in culture, as free floating neurospheres. Scale

bar: 150 mm. (B–E) Confocal images of neurosphere stained with

intermediate filament marker Nestin in red. DAPI is used to stain

the nucleus blue. (B, C) All neurospheres obtained from control (B)

or diabetic pregnancy (C) express immunoreactivity to Nestin. (D,

E) Panel shows the expression of Nestin by all cells within a

Figure 5. miRNAs regulate NSC fate. The effect of miRNA knockdown on NSC fate was assayed. Specific miRNAs were knocked down in NSCs and
the percentage of Gfap, Ng2 or Map2 positive cells were quantitated in differentiated cells. Confocal images showing the expression of Gfap positive
cells (A–E), Ng2 positive cells (F–J) and Map2 positive cells (K–O) (red) in differentiated cells following knockdown of miRNAs mmu-miR-200a or mmu-
miR-200b or mmu-miR-466a-3p or mmu-miR-466d-3p in NSCs. Quantitative analysis shows the percentage of Gfap positive cells (i), Ng2 positive cells
(ii) and Map2 positive cells (iii) following knockdown of specific miRNAs. Data is represented as mean 6 SD from at least three independent
experiments, *p,0.05. **p,0.01.
doi:10.1371/journal.pone.0065945.g005
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neurosphere from embryos of control (D) or diabetic pregnancy

(E).

(TIFF)

Figure S2 Bisulphite sequencing of DNA from NSCs
from control, diabetic pregnancy and that exposed to
HG in vitro was performed and methylation pattern was
represented as lollipop grid. There was no change in CpG

methylation status at Pafah1b1 promoter in NSCs from diabetic

pregnancy or that exposed to HG in vitro when compared to the

control. Data from six clones is represented here where each row

represents the sequencing information received from a single clone

across 27 CpG sites (2310 to 246). Open circles represent

unmethylated CpG sites and closed (shaded) circles represent

methylated CpG sites.

(TIFF)

Figure S3 (A–H) Neurospheres from embryos of control
and diabetic pregnancy were allowed to differentiate for
six days in vitro and the expression of neuronal (Map2),

glial (Gfap, Ng2), and Nestin positive cell populations
were determined by immunocytochemistry.

(TIFF)

Tables S1 Includes Tables S1, S2, S3.
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