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A B S T R A C T   

Quantitative structure-activity relationship (QSAR) models have been applied to predict a variety of toxicity 
endpoints. Their performance needs to be validated, in a variety of cases, to increase their applicability to 
chemical regulation. Using the data set of substances of very high concern (SVHCs), the performance of QSAR 
models were evaluated to predict the persistence and bioaccumulation of PBT, and the carcinogenicity and 
mutagenicity of CMR. BIOWIN and Toxtree showed higher sensitivity than other QSAR models – the former for 
persistence and bioaccumulation, the latter for carcinogenicity. In terms of mutagenicity, the sensitivities of 
QSAR models were underestimated, Toxtree was more accurate and specific than lazy structure–activity re-
lationships (LAZARs) and Computer Assisted Evaluation of industrial chemical Substances According to Regu-
lations (CAESAR). Using the weight of evidence (WoE) approach, which integrates results of individual QSAR 
models, enhanced the sensitivity of each toxicity endpoint. On the basis of obtained results, in particular the 
prediction of persistence and bioaccumulation by KOWWIN, a conservative criterion is recommended of log Kow 
greater than 4.5 in K-REACH, without an upper limit. This study suggests that reliable production of toxicity data 
by QSAR models is facilitated by a better understanding of the performance of these models.   

1. Introduction 

SVHCs regulated by REACH are chemicals which include substances 
that are PBT and CMR substances. The manufacturers and importers of 
SVHCs are subject to authorization for use or distribution under the 
REACH regulation. Between 2008 and 2018, the ECHA published a 
candidate list of 191 chemicals or chemical groups as SVHCs requiring 
authorization, which has constantly been updated [1]. However, 
experimental data produced using animal models are accompanied by 
several limitations such as the amount of time and money required, and 

ethical issues [2]. Effective non-animal testing methods are required for 
assessment of a various class of chemicals for which the hazard is 
unknown. 

The computational toxicology, in silico, has been suggested as a 
means of screening for chemical toxicity and determining the chemicals 
to be prioritized for further toxicity testing [3]. QSAR models used in 
one type of computational method have been widely accepted as able to 
predict a variety of toxicity endpoints on the basis of their structural 
properties. QSAR models exhibit the mathematically quantitative rela-
tionship between physicochemical properties or molecular descriptors 
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and biological activity in a certain data set. Notable institutions man-
aging domestic or international chemicals, such as the OECD, ECHA and 
the US EPA, have embraced the use of QSAR models and published 
related guidelines [4–6]. The OECD announced five principles to 
consider when using QSAR models for defining an unambiguous 
endpoint and algorithm, applying a defined domain, interpreting a 
mechanism, and measuring goodness-of-fit and predictability [4]. In a 
recent survey study, toxicological experts and the general users 
expressed optimistic views on application of QSAR models for toxicity 
screening assessment [7]. Previous studies have proven the performance 
of QSAR models for different toxicity endpoints, depending on their 
respective data sets. Milan et al. [8] and NIER [9] evaluated QSAR 
models regarding carcinogenicity by comparing predicted and measured 
data of 1,500 organic chemicals. Guerra et al. [2] validated three QSAR 
models regarding carcinogenicity and mutagenicity using 37 volatile 
organic compounds (VOCs) as the targeted data set. Cassano et al. [10] 
and NIER [11] employed multiple QSAR models to evaluate the geno-
toxicity of organic chemicals. It is believed that more case studies could 
result in expanded application of QSAR models [12]. 

We first aimed to examine the performance of QSAR models by 
predicting PBT and CMR properties used to identify SVHCs and 
employed those QSAR models recommended by Korean REACH (“K- 
REACH”). In PBT, the term toxicity (T) was excluded because it covers a 
wide range of unspecified adverse effects classified in GHS, which was 
inappropriate to evaluate performance of specific QSAR models. In 
addition, in CMR, applying the WoE approach is impossible because 
among QSAR model candidates, only CAESAR is available for predicting 
reproductive toxicity (R). Thus, reproductive toxicity was not consid-
ered. Therefore, we selected QSAR models to predict the persistence and 
bioaccumulation of PBT, and the carcinogenicity and mutagenicity of 
CMR. The selected models were KOWWIN, BIOWIN, BCFBAF and 
HYDROWIN for persistence and bioaccumulation, and Toxtree, LAZAR 
and CAESAR for carcinogenicity and mutagenicity. The candidate list of 
SVHCs for authorization was used as the data set. The list of SVHCs is 
suitable to evaluate the performance of QSAR models in that it includes 
organic, inorganic and metallic compounds and is recognized as reliable 
for the examination process by using available data. 

The second objective of this study was to integrate the predicted 
results from the individual QSAR models and evaluate this weighted 
performance. The WoE approach was applied to the chemical assess-
ments as integral data of several independent information to demon-
strate its reliability in consideration of the performance of QSAR models. 

2. Materials and methods 

2.1. QSAR models on persistence and bioaccumulation 

KOWWIN, BIOWIN, BCFBAF and HYDROWIN are included in the EPI 
Suite (V. 4.11) provided by the US EPA. These QSAR models were 
developed and proposed to estimate the persistence and bio-
accumulation of organic chemicals using direct or indirect factors such 
as Kow, the half-life of hydrolysis and BCF. The SMILES of targeted 
chemical is required for QSAR model input data, and the CAS registry 
number is also used. 

A summary of the prediction principles for each QSAR model fol-
lows. KOWWIN predicts the log Kow values using the AFC method 
dividing the entire chemical structure into individual fragments, with 
the Kow of fragments added up. The log Kow value of each fragment is 
derived by multiple regression analysis from a total of 2,447 measured 
values. BIOWIN predicts the biodegradation period of the chemical and 
calculates BIOWIN 1–7 according to the different analysis methods and 
type of biodegradation (aerobic/anaerobic). BCFBAF calculates the BCF 
of target chemicals by classifying them as ionic or non-ionic. Carboxylic 
acid, sulfonic acid and its salts and charged nitrogen compounds are 
classified as ionic chemicals and other chemicals are classified as non- 
ionic. In addition, the log Kow range of a chemical is considered as an 

important factor in BCF prediction. HYDROWIN predicts the half-life of 
chemicals that can be hydrolyzed in water, which includes alkyl halides, 
carbamate, epoxides, esters, halomethanes, and phosphorus esters, as 
they are vulnerable to hydrolysis. 

In this study, the predicted results from QSAR models were applied 
to the criteria provided by K-REACH as shown in Table 1. Through this 
process, all results were reconstructed into persistent/bioaccumulative 
(positive) or not persistent/bioaccumulative (negative). 

2.2. QSAR models on carcinogenicity and mutagenicity 

Toxtree (V.3.1.0), LAZAR (V.1.4.2), and CAESAR (V.2.1.9 for carci-
nogenicity and V.2.1.13 for mutagenicity) were used to predict the 
carcinogenicity and mutagenicity of SVHCs. SMILES is used as the 
chemical input information in three QSAR models, and the CAS number 
is, in part, used in Toxtree. In order to predict the carcinogenicity and 
mutagenicity, the rule base method is applied to Toxtree, while the 
database method is applied in LAZAR and CAESAR [8]. The rules pro-
vided in Toxtree are the sequential algorithms composed by the SAs that 
cause carcinogenic or mutagenic effects, while the results of Toxtree 
depend on whether the SAs are identified in the targeted chemical. The 
’Benigni/Bossa rule base for mutagenicity and carcinogenicity’ was 
chosen from 18 plugins covering a wide range of toxicity endpoints in 
Toxtree and used to identify carcinogens, while ‘in vitro mutagenicity 
(Ames test) alerts by ISS’ was used for mutants. On the other hand, a 
database that includes test data for carcinogenic and mutagenic chem-
icals is built into LAZAR and CAESAR. Carcinogenicity and mutagenicity 
are predicted by test data of the analogues structurally similar to the 
targeted chemical in the database. The LAZAR model is a data mining 
method that uses a training set instead of chemical and biological in-
formation to predict toxicity endpoints. The CAESAR (from VEGAHUB) 
carcinogenicity model consists of a Counter Propagation Artificial 
Neural Network (CP ANN), which holds 12 descriptors. Mutation pre-
diction uses a combination of Support Vector Machine (SVM) classifier 
and a model for SA matching. 

In this study, carcinogenicity as determined by Toxtree was deemed 
negative only if the predicted results were negative for both genotoxic 
and nongenotoxic carcinogenicity. In LAZAR, three predicted results for 
rat, mouse and rodent animal models were offered in carcinogenicity. If 
at least one of the three groups were positive, carcinogenicity was 
determined as positive. In the predicted result displayed in CAESAR, red 
was regarded as positive, green as negative. On the other hand, muta-
genicity was determined without any other process, as all QSAR models 
predicted only one result for the Ames test for salmonella typhimurium. 

2.3. Analysis method of QSAR model validation 

The validation of QSAR models was performed according to statis-
tical method found in Cooper et al. [14]. The compared results were 
sorted according to a matrix consisting of TP, FP, TN, and FN. Perfor-
mance was quantified by calculating accuracy, sensitivity and speci-
ficity. Accuracy is defined as (TP + TN) / (FP + TP + FN + TN), 
Sensitivity isTP / (TP + FN), and specificity is TN / (TN + FP), respec-
tively. Accuracy is the inverse proportion to the ratio predicted to FP and 
FN. Therefore, high accuracy means a low number of false results 

Table 1 
Evaluation criteria for persistence and bioaccumulation using QSAR [13].  

QSAR model Type of result Criteria 

KOWWIN Octanol-Water partition coefficient 
(Kow) 

4.7 <log Kow< 7.6 

BCFBAF Bioconcentration factor (BCF) 1000 ≤ BCF 
BIOWIN BIOWIN 2, 3, 6 BIOWIN 2, 6: Not 

biodegradable 
BIOWIN 3 ≥ month 

HYDROWIN Half-life of hydrolysis (days) > 14 days  
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predicted in QSAR models. Sensitivity is the inverse proportion to the 
ratio predicted to FN, while specificity is the inverse proportion to the 
ratio predicted to FP. These factors represent the level of performance of 
the QSAR models. Of the above terms, sensitivity can be accepted as the 
most important in chemical regulation. From a conservative viewpoint, 
chemical regulation should previse the risk of harm from the use of 
hazardous chemicals, while un-regulated chemicals must be safe to use. 

2.4. Weight of evidence in QSAR model 

The WoE approach was determined by selecting the high frequency 
results that were predicted in individual QSAR models. For example, if 
there were at least two positive values of persistence and bio-
accumulation predicted in KOWWIN, BIOWIN, BCFBAF and HYDRO-
WIN, a positive value was chosen as a result of WoE. Similarly, for 
carcinogenicity and mutagenicity, a positive value was chosen as a result 
of WoE if at least two positive values were predicted in Toxtree, LAZAR 
and CAESAR. WoE was validated in the same way as for individual 
QSAR models. 

3. Results 

3.1. Data set for validation 

In the list of SVHCs, the chemicals that are not suitable for the QSAR 
models were identified. For example, there are groups of chemicals like 
PFDA and other formula (i.e., its sodium and ammonium salts), or those 
of UVCBs like anthracene oil. Firstly, the chemicals in a certain group 
were evaluated as duplicates due to their identical or similar structures 
that can be expected to yield the same results, which might exaggerate 
or reduce the performance of a QSAR model. Secondly, QSAR models are 
not suitable for UVCBs because their SMILES cannot be determined. In 
this study, only one representative chemical included in each group was 
considered in our data set, and UVCBs were excluded. As a result, a final 
data set of 179 chemicals was decided. Carcinogenicity and mutage-
nicity were predicted in a total of 179 SVHCs, but only 108 organic 
chemicals were selected for persistence and bioaccumulation, while 71 
inorganic, ionic, and metallic chemicals were excluded. 

Through KOWWIN, BIOWIN and BCFBAF, all 108 organic SVHCs 
were predicted, however, only 32 chemicals were predicted through 
HYDROWIN. As previously noted, HYDROWIN was developed for use 
with chemicals that can be hydrolyzed. Therefore, the remaining 76 
unpredicted organic SVHCs in HYDROWIN are not hydrolysable chem-
icals. All 179 SVHCs were predicted for carcinogenicity and mutage-
nicity in Toxtree. However, several metallic SVHCs such as cadmium, 
lead and chromium compounds were unpredicted in LAZAR and 
CAESAR (Table 2). 

3.2. Performance of QSAR models and WoE in persistence and 
bioaccumulation 

BCFBAF exhibited the highest accuracy (80 %) and specificity (89 

%), but sensitivity was highest in BIOWIN (100 %). KOWWIN showed 
moderate performance similar to BCFBAF and BIOWIN. However, 
KOWWIN had accuracy, sensitivity and specificity rates of only 28 %, 67 
% and 24 %, respectively - lower than other QSAR models. For WoE, 
sensitivity was higher than individual QSAR models except BIOWIN, 
while accuracy was higher than all of the QSAR models (Fig. 1). 

3.3. Performance of QSAR models and WoE in carcinogenicity and 
mutagenicity 

In terms of carcinogenicity, Toxtree had 70 % accuracy, 84 % 
sensitivity, and 61 % specificity. Toxtree had the highest accuracy and 
sensitivity of the QSAR models. However, LAZAR and CAESAR were 
higher than Toxtree in specificity. WoE was higher than each of the other 
QSAR models in accuracy (73 %) and sensitivity (91 %). WoE had 61 % 
specificity, which was higher than Toxtree but lower than LAZAR and 
CAESAR (Fig. 2). 

Toxtree, LAZAR and CAESAR showed similar accuracy and speci-
ficity in mutagenicity. However, the sensitivity of LAZAR (89 %) and 
CAESAR (100 %) were much higher than Toxtree’s 37 % (Fig. 3). WoE 
showed 68 % accuracy, 42 % sensitivity and 71 % specificity. 

4. Discussion 

We evaluated QSAR model performance in terms of accuracy, 
sensitivity and specificity defined above. In persistence and bio-
accumulation, the QSAR models with high accuracy were in descending 
order of BCFBAF, KOWWIN and BIOWIN. The tendency between 
sensitivity and specificity were opposite in BIOWIN and BCFBAF. BIO-
WIN was the highest for sensitivity and lowest for specificity while 
BCFBAF was the highest for specificity and lowest for sensitivity. On the 
other hand, the performance of HYDROWIN was more limited than 
other QSAR models, and fewer chemicals were evaluated, leaving out 76 
of 108 hydrolysable substances. In terms of carcinogenicity, Toxtree was 
the highest for accuracy and sensitivity but the lowest for specificity. 
LAZAR was the highest for specificity but the lowest for sensitivity. 
Interestingly, these tendencies of the QSAR models obtained in this 
study were different from other studies [2,8]. Toxtree showed higher 
specificity and lower sensitivity than LAZAR in Guerra et al. [2], while 
CAESAR showed higher accuracy, sensitivity and specificity than Tox-
tree and LAZAR. These differences resulted from difference in data sets - 
in other words, the varying characteristics of targeted chemicals. Guerra 
et al. [2] used VOCs and Milan et al. [8] used organic chemicals for data 
sets, including many chemicals from the DSSTox database, which is a 
database built into CAESAR. It has been reported that diverse differences 
in performance of QSAR models were dependent on type and size of data 
set [15,16]. The performance of QSAR models can be enhanced through 
the inclusion of more chemicals and it is also affected how chemicals 
used to training set in QSAR models. Milan et al. [8] evaluated the 
performance in two cases by classifying chemicals into ‘in training set’ 
(in DB) and ‘test set’ (out DB), and reported that performance of in DB 
was higher than out DB. It is possible that chemicals tested in this study 
were included in the database of each QSAR model. In addition, pre-
dictive reliability can be improved if several models are used. We 
applied CAESAR (from VEGAHUB) to predict carcinogenicity. However, 
more accurate results can be obtained by applying all models in 
VEGAHUB as opposed to only using CAESAR. 

The sensitivity of the QSAR model is the most relevant performance 
factor to conservative concepts pursued in chemical regulations [10,17]. 
When users select a QSAR model for regulatory purposes, BIOWIN is 
recommended as suitable for persistence and bioaccumulation, while 
Toxtree is suitable for carcinogenicity, because they showed higher 
sensitivity than other QSAR models. However, even though they 
perform well, it is difficult to ensure QSAR model reliability because of 
the complexity of toxicity endpoints, uncertainties in the database, and 
the presence of unidentified toxic fragments [18,19]. The AD, the 

Table 2 
Number of SVHCs predicted in QSAR models.  

QSAR model Endpoint Type of chemical Number 
(%) 

KOWWIN 
Persistence/ 

bioaccumulation 
Organic chemicals 

(108) 

108 (100) 
BIOWIN 108 (100) 
BCFBAF 108 (100) 
HYDROWIN 32 (30) 

Toxtree 
Carcinogenicity 

All chemicals (179) 

179 (100) 
Mutagenicity 179 (100) 

LAZAR 
Carcinogenicity 139 (78) 
Mutagenicity 119 (66) 

CAESAR 
Carcinogenicity 136 (76) 
Mutagenicity 123 (69)  
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information or knowledge obtained from the training set used to develop 
the QSAR model, is an important factor when users seek to predict the 
toxicity of chemicals using a QSAR model. Such prediction in new 
chemicals should be carried out within the AD, and chemical prediction 
outside the AD should be avoided [20,21]. From the findings of this 
study, the chemicals classified as FN were identified, indicating that the 
chemicals were out of AD and resulted in weak sensitivity in a QSAR 
model. For example, perfluorinated carboxylic acids (PFCAs) were 
repeatedly identified as FN chemicals in QSAR models in predicting 
persistence and bioaccumulation. PFCAs are indeed persistent and bio-
accumulative but their log Kow is low in the experiment, because PFCAs 
easily form an ionic structure. Therefore, the QSAR models related to log 
Kow are not recommended for evaluating persistence and bio-
accumulation of chemicals whose physicochemical properties cannot 
reflect a realistic chemical form like PFOAs [22,23]. Regarding carci-
nogenicity, several metal compounds were identified as FN in the QSAR 
models. In Toxtree, nine carcinogenic cadmium compounds were pre-
dicted to be non-carcinogenic. In LAZAR and CAESAR, numbers of metal 
compounds including cadmium, chromium, cobalt or lead were also 

Fig. 1. Performances of KOWWIN, BCFBAF, BIOWIN, HYDROWIN and WoE in persistence and bioaccumulation.  

Fig. 2. Performances of Toxtree, LAZAR, CAESAR and WoE in carcinogenicity.  

Fig. 3. Performances of Toxtree, LAZAR, CAESAR and WoE in mutagenicity.  
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classified as FN or not predicted. The predictive reliability of QSAR 
models used in this study appears to be limited to organic chemicals, and 
inaccurate with inorganic and metallic compounds. We speculate that 
toxic fragments have yet to be sufficiently identified, and the database 
and prediction methods need to be updated. 

In terms of mutagenicity, Toxtree showed a much lower sensitivity 
than LAZAR and CAESAR – contrary to the case with carcinogenicity. 
However, we found that the data set included 19 mutagenic chemicals, 
which were mostly inorganic or metallic compounds. As identified in the 
carcinogenicity, LAZAR and CAESAR were inaccurate to predict inor-
ganic and metallic compounds. As a result, most mutagenic chemicals in 
the data set were not predicted by LAZAR and CAESAR and were not 
involved in the calculation of sensitivity. We speculate that the imbal-
ance of results on positive and negative data, which was also observed in 
BCFBAF prediction, could influence the behavior of Cooper’s statistics. 
Therefore, the sensitivity of QSAR models to mutagenicity would seem 
to be underestimated. Also, it is possible that the Ames test does not 
guarantee the mutagenic. For instance, 4-aminoazobenzene is labelled 
as false positive for mutagenicity in this study although it is mutagenic 
according to the Ames test. Given that the Ames test is an alternative 
screening test for mutagenicity, it is practical that QSAR models based 
on it can be used to predict mutagenecity. 

In this study, WoE approaches were conducted in terms of the fre-
quency of results predicted from individual QSAR models. The 
employment of WoE approaches mostly enhanced accuracy in persis-
tence, bioaccumulation and carcinogenicity when compared to reliance 
on individual QSAR models. And, the specificity by WoE was similar or 
slightly lower than that of individual QSAR models. However, in terms 
of sensitivity, the resulting performance varied according to toxicity 
endpoints. In persistence and bioaccumulation, BIOWIN was higher than 
WoE, whilst in mutagenicity performance was higher than the WoE 
approach when applying individual LAZAR and CAESAR. The perfor-
mance tendency of WoE varies depending on how results predicted from 
various models were combined. For persistence and bioaccumulation, 
the performance of WoE was lower than expected because of the 
methodology of combination. In combined QSAR models, the previous 
studies have reported that the performance of a WoE approach was 
affected by the methodology of combination, the type of toxicity 
endpoint, and the selection of individual QSAR models [8,24,25]. Orogo 
et al. [24] combined the predicted results of three QSAR models using 
two methods. The first method was very conservative in that if one in-
dividual QSAR model predicted a positive value, the WoE approach 
determined a positive outcome. The second method determined the high 
frequency value among the predicted values in the individual QSAR 
models. Between these two methods, we can expect that the first method 
increased the sensitivity of the WoE approach than the second method 
would. As another case study, Nendza et al. [25] combined the predicted 
results of 7 QSAR models for persistence and bioaccumulation, similar to 
the first method utilized by Orogo et al. [24], resulting in 100 % 
sensitivity in the WoE approach. Milan et al. [8] also demonstrated an 
increase in sensitivity by combining models for carcinogenicity. For 
mutagenicity, we speculate that the performance of the WoE approach is 
low because a number of chemicals out of AD were assessed. Similar 
results were found in Cassano et al. [10], who conducted a WoE 
approach by dividing two groups for the chemical of target. The 
chemicals in the first group were involved in the AD in all QSAR models, 
and chemicals in the second group were not. This resulted in the per-
formance of the WoE approach in the first group being higher than that 
of the second group. Therefore, by combing individual results, the 
involvement of targeted chemicals in AD should be taken into consid-
eration to increase the efficiency of WoE approaches. Collectively, the 
WoE approach can be viewed as a reliable way beyond individual QSAR 
models, but it should be noted that performance is determined by 
various factors such as selecting the appropriate QSAR model according 
to the endpoints, including the chemical to be predicted in the AD, and 
determining the methodology for the WoE approach. For example, 

although an objective standard is required, QSAR models can be 
sequentially applied. For carcinogenicity, the rule base Toxtree can be 
first considered, and LAZAR, which provides a similar approach with 
read-across as a non-parametric tool, can be considered last. Further 
research on various WoE methods is needed to integrate individual re-
sults of QSAR models and to obtain better predictive reliability from 
them. 

4.1. Implication for K-REACH 

Inspired by EU REACH, K-REACH has been enforced since 2015 to 
regulate chemical substance and products in the Republic of Korea. 
Under K-REACH, SVHCs have been managed since 2019 under ‘Key 
Management Substances’. On the list of key management substances, 
204 chemicals exhibit the properties of CMR or PBT. K-REACH recom-
mends utilizing alternative testing methods and using existing data to 
follow the principle of minimizing animal testing. If the amount of a 
specific chemical imported or manufactured is less than ten tons per 
year, QSAR data can produce four human hazards and three environ-
mental hazards. The submitter of the QSAR data is required to use the 
QMRF and QPRF in their reports. QSAR models can also be used in the 
toxicity data required in the CSR, as they provide indirect evidence for 
exemptions, supplementation and reduction of uncertainty [26]. Log 
Kow is an important indicator for bioaccumulation and is used for 
screening PBT materials. It is also widely accepted that the chemicals 
with high log Kow are not accumulate in the body [27]. Given the 
guidelines for application of QSAR models in K-REACH, the criteria for 
chemical persistence and bioaccumulation are log Kow in the range of 
7.6 > log Kow> 4.5. However, in the prediction of this study using 
KOWWIN, some chemicals greater than log Kow of 7.6 identified as PBT 
substances. It is possible that Kow values can be mis-calcualted by 
KOWWIN in which they are estimated by the summation of Kow values 
in each fragment. This can mislead researchers regarding actual Kow 
values based on intrisic physicochemical properties. Therefore, it seems 
that persistence and bioaccumulation are underestimated when using 
the upper limit of 7.6 in that the objective for using QSAR models is to 
identify the characteristics of chemicals without further testing. 

In EU REACH, the range of log Kow is just over 4.5. Therefore, it is 
recommended to set a conservative range of criteria for log Kow in K- 
REACH. In addition, the manufacture or import of at least 100 kg/year 
of non-phase in substances or at least one ton per year of phase-in 
substances shall be ‘registered’ according to K-REACH. Although K- 
REACH allows a grace period depending on toxicity or tonnage, all 
substances must be registered within 10 years. Therefore, further use of 
alternative QSAR models is expected to grow and practical measures will 
be required. The expansion of AD is necessary, and reliable QSAR 
models should be developed to predict several toxicity endpoints of 
inorganic and metallic compounds. 

5. Conclusion 

The performance of QSAR models using a SVHC data set were 
examined. We evaluated KOWWIN, BIOWIN, BCFBAF and HYDROWIN 
in terms of persistence and bioaccumulation, and Toxtree, LAZAR and 
CAESAR in terms of carcinogenicity and mutagenicity. In terms of reg-
ulatory purpose, BIOWIN showed higher sensitivity to persistence and 
bioaccumulation and Toxtree for carcinogenicity of the other QSAR 
models. In terms of mutagenicity, the sensitivities of QSAR models were 
underestimated due to a lower number of mutagenic chemicals in the 
data set, but Toxtree is effective in terms of accuracy and specificity. The 
WoE approach, which integrates results of individual QSAR models, 
showed enhanced sensitivity. We validated QSAR performance by using 
a SVHC data set and suggested that a better understanding of their 
performance promotes the application of toxicity data they produce into 
alternative methods of chemical regulation. 
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