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Abstract: In this study, Zeolitic Imidazolate Framework-8 (ZIF-8)-loaded UiO-66-NH2 was
synthesized, characterized, and analyzed for its potential to efficiently remove dyes. The selective
adsorption on ZIF-8-loaded UiO-66-NH2 or its parent MOFs (UiO-66-NH2 and ZIF-8) in the
mixed dyes solution was explored, including anionic dye (methyl orange (MO)) and cationic
dyes (methylene blue (MB) and rhodamine B (RhB)). ZIF-8-loaded UiO-66-NH2 displayed much
better selectivity to MB than its parent MOFs. Adsorption capacity of ZIF-8-loaded UiO-66-NH2

(173 mg/g) toward MB was found to be 215% higher than UiO-66-NH2 (55 mg/g). A kinetics study
based on adsorption data demonstrated that the adsorption process most closely matched with the
model of pseudo-second-order kinetic and Langmuir isotherm. The adsorption was an exothermic and
spontaneous physical process as revealed by the values of thermodynamic parameters. Furthermore,
reusability of ZIF-8-loaded UiO-66-NH2 was investigated and revealed the significant regeneration
efficiency in adsorption capacity for MB even after four adsorption cycles. Experimental results
proved that the interaction between ZIF-8-loaded UiO-66-NH2 and MB was mainly affected by the
mechanism, for instance, electrostatic interaction as well as π–π stacking interactions.
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1. Introduction

Metal organic frameworks (MOFs) are three-dimensional porous crystal materials consisting
of metal clusters or ions coordinated with organic ligands [1]. MOFs are the emerging highly
ordered crystalline porous materials with advantages such as, for instance, large specific surface area,
unconventional porosity, good chemical stability, and tunable structural and functional properties [2].

UiO-66-based composites, including polymer (polymer@UiO-66) [3], nanoparticles (NPs@UiO-66) [4],
and MOF (MOF@UiO-66) [5] have become a focus of research due to the high stability of UiO-66. Owing
to the interface between single MOF, the MOF@MOF structures can provide new capabilities [6]
and have been widely employed for gas storage and catalysis. For instance, Ren et al. [7]
synthesized MIL-101@UiO-66 nanocrystals, which were used for hydrogen storage and displayed
significantly improved performance of hydrogen storage compared with parent MOF (MIL-101 or
UiO-66). Zhuang et al. [8] synthesized core–shell UiO-66-NH2@ZIF-8 and further transformed it into
Pd-UiO-66-NH2@ZIF-8 to achieve enhanced selective catalysis for alkene hydrogenations. Although
MOF@MOF showed appreciably better performances than the parent MOFs, so far MOF@MOF has
not been widely used for the removal of dye.

To date, many approaches have been developed for the elimination of dyestuff, such as
adsorption [9], biodegradation [10], photocatalytic oxidation [11], and membrane separation [12].
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Among them, adsorption is deemed as an effective way owing to its low cost, high efficiency, simple
actions and environment-friendliness [13]. Nevertheless, the majority of the reported adsorbents
exhibit several drawbacks, such as low adsorption capacity and poor selectivity, as well as difficulty in
solid-liquid separation. It is essential to find desirable adsorption materials that can reduce pollutant
organic dyestuff with high selectivity and adsorption capacity. The outstanding features of MOF@MOF
provide an alternative way for the desirable adsorption materials to achieve selective adsorption.

ZIF-8 (Zeolitic Imidazolate Framework-8) is a metal organic framework material with a zeolite
SOD (Sodalite) topology, made by Zn2+ ions coordinated with imidazole rings [14]. ZIF-8 has pore size
between 4–5 Å and possesses a large specific surface area and good water stability as well as it contains
abundant acid-base groups. Therefore, it is being used in various fields, especially for the separation
of pollutants by adsorption [15–19]. Feng et al. [17] studied the adsorption behavior and mechanism
between methyl blue (MB) and ZIF-8 in detail. Thanh et al. [18] reported a one-step synthesis of Fe-ZIF-8
and used it for the removal of Remazol Deep Black RGB dye from aqueous solutions. Zhou et al. [19]
found that ZIF-8 could simultaneously remove 95.4% Cu and 80.3% norfloxacin.

In this work, we have synthesized UiO-66-NH2 and ZIF-8-loaded UiO-66-NH2. The successful
combination of ZIF-8 and UiO-66-NH2 was characterized by X-ray diffraction (XRD), scanning
electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, energy-dispersive X-ray
spectroscopy (EDS) elemental mapping, and transmission electron microscopy (TEM). Three typical
representative dyes with different charge, including methyl orange (MO), MB, and rhodamine B (RhB)
were applied to ascertain selectivity of the adsorbent. The MB adsorption capacity of ZIF-8-loaded
UiO-66-NH2 was found to be higher than its parent MOFs (UiO-66-NH2 or ZIF-8). We also demonstrated
the isotherm, kinetics, and thermodynamics of the MB adsorption on ZIF-8-loaded UiO-66-NH2 and
UiO-66-NH2 to understand the mechanisms behind the adsorption behavior.

2. Materials and Methods

2.1. Materials

2-aminoterephthalic acid (H2BDC-NH2, 98%), Zirconium chloride (ZrCl4, 99.9%), and
2-methylimidazole (2-MI, 99%) were purchased from Aladdin Biochemical Technology Co.,
Ltd. (Shanghai, China). Zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 99%), methanol (CH3OH,
99.5%), MB, MO, RhB, hydrochloric acid (HCl, 37 wt%), sodium hydroxide (NaOH, 96%), and
N,N-dimethylformamide (DMF, 99.5%) were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). All solvents and reagents were of analytical reagent (AR) grade and used as received.

2.2. Synthesis of UiO-66-NH2

The solvothermal method was used to prepare UiO-66-NH2, according to the procedure reported
in the previous literature [20]. ZrCl4 (5 mmol) was dispersed in the mixed solution of DMF (60 mL), and
HCl (10 mL), and 2-aminoterephthalic acid (7 mmol) was dispersed in this mixed solution, followed by
ultra-sonication for 20 min under ambient conditions (25 ◦C). The resulting suspension was transferred
into a 100 mL Teflon-lined autoclave and placed in an oven under autogenous pressure at 120 ◦C for
24 h. After being cooled in the autoclave to room temperature, the resulting material was precipitated
by centrifugation (8000 rpm) and washed three times each with DMF and methanol. The as obtained
material was soaked overnight in methanol to ensure the complete removal of DMF. Afterward,
the product was vacuum dried at 150 ◦C for 12 h for activation, and finally ground to obtain the
UiO-66-NH2.

2.3. Synthesis of ZIF-8-Loaded UiO-66-NH2

ZIF-8-loaded UiO-66-NH2 was prepared via the layer-by-layer solution deposition method
according to the procedure reported in the previous literature [21]. The amino groups of UiO-66-NH2

can act as a covalent linker between seed layers and supports in this reaction [22,23]. The lone pair of
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electrons on the N-atom of amino groups can form complexation with Zn2+ ions, which can chelate with
2-MI to produce ZIF-8 seeded layers in surface of UiO-66-NH2. After that, through the layer-by-layer
solution deposition method, the continuous and compact ZIF-8 can be formed on the surface of
UiO-66-NH2. The task consists of the following steps: 0.5 g UiO-66-NH2 was dispersed in 0.1 M Zn
(NO3)2/methanol solution (20 mL) and stirred at 1200 rpm for 2 h under ambient conditions (25 ◦C),
followed by ultrasonic washing with methanol for 20 min and centrifugation to the obtained product.
To this, 0.8 M 2-methylimidazole/methanol solution (20 mL) was added and stirred at 1200 rpm for
2 h under ambient condition (25 ◦C), and followed by ultrasonic washing with methanol for 20 min,
and finally vacuum dried at 75 ◦C for 12 h to get the ZIF-8-loaded UiO-66-NH2. The whole process
represents one loop and this whole process was repeated for n number of cycles by changing the ZIF-8
content and represented as n-ZIF-8@UiO-66-NH2.

2.4. Characterization

Crystalline structures of ZIF-8-loaded UiO-66-NH2 and UiO-66-NH2 were examined by XRD using
Bruker D8-ADVANCE (Bruker AXS, Karlsruhe, Germany) with Cu Kα radiation in the angular range,
2θ = 5–50◦. FTIR spectrum (KBr pellets as substrate) were recorded on Nicolet 5700 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA) in the range from 4000 to 400 cm−1. The morphology
of the nanoparticles was measured on SEM, (Sirion 200, FEI, Hillsboro, OR, USA) and TEM (Tecnai
G2 F20 S-TWIN, FEI, Hillsboro, OR, USA). N2 adsorption/desorption isotherms of the synthesized
adsorbents was performed at 77 K with Quantachrome AUTOSORB IQ (Quantachrome, FL, USA).
Zeta potential analysis of the synthesized adsorbents was performed at 25 ◦C with Malvern Zetasizer
instrument (Nano ZS 90new, Malvern Panalytical, Malvern, UK). UV-Vis absorption spectra were
measured on a UV-Vis spectrophotometer (UV-3600, Shimadzu, Kyoto, Japan) in the range from 800 to
200 nm. The pH values were detected by pH meter.

2.5. Adsorption Experiments of Dyes

Typical representative dyes with different charges were employed to measure the ability of the
adsorbent for selectively adsorbing dyes, for example, MB (664 nm), RhB (554 nm), and MO (464 nm).
Typically, 10 mg sample was dispersed into 100 mL dye solution (0–50 mg/L) and stirred continuously
for 24 h under ambient condition (25 ◦C). 0.05 M HCl and NaOH were used to regulate pH of the MB
solution. The adsorption capacities were calculated using the following Formula (1):

qe =
(C0 −Ce)V

m
(1)

where qe is the adsorption capacity of equilibrium (mg/g) and C0 and Ce are the initial and final
concentrations (mg/L), respectively. m is the mass of adsorbent for the adsorption experiments (g), and
V is the volume of dye solutions (L).

3. Results and Discussion

3.1. Adsorbents Characterizations

Figure 1 depicts the XRD graphs of the synthesized UiO-66-NH2 and ZIF-8-loaded UiO-66-NH2.
All the characteristic diffraction peaks of UiO-66-NH2 and ZIF-8-loaded UiO-66-NH2 were sharp,
thereby showing excellent crystallinity, which was consistent with the previous reports [21,24].
However, the intensities of diffraction for ZIF-8-loaded UiO-66-NH2 were lower than UiO-66-NH2,
suggesting that the crystallinity of UiO-66-NH2 reduced after ZIF-8 loading. It could be due to the
interaction between Zn2+ and amino groups of ZIF-8 and UiO-66-NH2, which might slightly change
the frame structure of UiO-66-NH2 [25,26]. The diffraction peak of ZIF-8 did not emerge in the XRD
pattern of ZIF-8-loaded UiO-66-NH2, which is due to the fact that the thickness of ZIF-8 shell was not
good enough to form strong scattering crystalline peaks [21].
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5-ZIF-8@UiO-66-NH2, and 7-ZIF-8@UiO-66-NH2.

The FTIR spectra of ZIF-8-loaded UiO-66-NH2 and parent MOFs (UiO-66-NH2 and ZIF-8) were
analyzed (Figure 2a), aiming to probe the loading amount of ZIF-8. The spectra of UiO-66-NH2

exhibited a peak at 1500 cm−1 due to C=C of the aromatic group. The peaks at 3368 and 3487 cm−1

represent symmetric and asymmetric vibrations of N-H groups, respectively [27]. However, all the
characteristic peaks of UiO-66-NH2 remained in ZIF-8-loaded UiO-66-NH2 and both showed a similar
pattern of FTIR spectrum. In addition, two characteristic absorption bands of ZIF-8 at 3135 and
2929 cm−1 corresponding to stretching vibration of aromatic and aliphatic C–H, respectively, also
appeared, indicating the successful loading of ZIF-8 in the UiO-66-NH2 [28]. To determine the loading
amount of ZIF-8, semi-quantitative analysis of FTIR with 3135 and 1500 cm−1 peaks of ZIF-8 and
UiO-66-NH2, respectively, was performed (Figure 2b) and found that the ZIF-8 content increased in
the UiO-66-NH2 on increasing the number of loading cycles.

Figure 3A,B displays the images of SEM and TEM for (a) UiO-66-NH2, and (b) ZIF-8-loaded
UiO-66-NH2 (1-ZIF-8@UiO-66-NH2), showing that all the samples were agglomerated granules. The
shape and size of the UiO-66-NH2 and ZIF-8-loaded UiO-66-NH2 did not change significantly, and
the particle sizes were about 100 nm. Figure 3Ac,Bc displays the EDS mappings of the ZIF-8-loaded
UiO-66-NH2 and found that the Zn and Zr mappings were consistent with the C, N, and O mappings,
indicating that the Zn was uniformly distributed into the UiO-66-NH2 framework. TEM was
used for a better comparison of difference in morphological structure between UiO-66-NH2 and
ZIF-8-loaded UiO-66-NH2. UiO-66-NH2 framework showed smooth surface and no obvious lattice
fringes (Figure 3Ba). After loading with ZIF-8, highly dispersed tiny black nanoparticles (about
10–20 nm) were observed on the UiO-66-NH2 surface (Figure 3Bb).
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Figure 3. Scanning electron microscopy (SEM) (A) and transmission electron microscopy (TEM) (B)
images of (a) UiO-66-NH2, (b) zeolitic imidazolate framework-8 (ZIF-8)-loaded UiO-66-NH2, and (c)
energy-dispersive X-ray spectroscopy (EDS) mappings of the ZIF-8-loaded UiO-66-NH2.

N2 adsorption/desorption isotherms of UiO-66-NH2 and ZIF-8-loaded UiO-66-NH2 (1-ZIF-
8@UiO-66-NH2) are shown in Figure 4a. ZIF-8, UiO-66-NH2, and ZIF-8-loaded UiO-66-NH2 exhibited
strictly Type I isotherm with a predominantly microporous structure. ZIF-8-loaded UiO-66-NH2

showed a BET (Brunauer-Emmet-Teller) specific surface area and pore volume of 651 m2/g and
0.233 cm3/g, respectively, which is much less than ZIF-8 and UiO-66-NH2. It might be attributed to
the fact that ZIF-8 loaded on the surface of UiO-66-NH2 blocked the channels of UiO-66-NH2, which
further confirmed that ZIF-8 were immobilized on the UiO-66-NH2 framework. The parameters of
various samples are listed in Table 1. The average pore diameter of as-synthesized UiO-66 was 1.2 nm.
However, the pore diameter of UiO-66 decreased to 0.5 nm after loading with ZIF-8. The weight loss of
UiO-66-NH2 and ZIF-8-loaded UiO-66-NH2 (1-ZIF-8@UiO-66-NH2) in N2 atmosphere is shown in
Figure 4b. The first phase of weight loss is attributed to the loss of solvent molecules (H2O, DMF) in
the temperature range 25–250 ◦C. The next weight loss is mainly because of destruction of organic
framework. Finally, at high temperature, it stabilized, due to the generated metallic oxides. The trend
of curves of ZIF-8-loaded UiO-66-NH2 were similar to that of UiO-66-NH2, which shows that the
thermal stability of UiO-66-NH2 did not change after loading with ZIF-8.
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Table 1. Pore structure parameters of zeolitic imidazolate framework-8 (ZIF-8), UiO-66-NH2, 1-ZIF-
8@UiO-66-NH2.

Sample SBET (m2/g) Smicro (m2/g) Vmicro (cm3/g) Pore Width (nm)

ZIF-8 1938.859 1841.897 0.646 0.524
UiO-66-NH2 897.779 801.012 0.308 1.232

1-ZIF-8@UiO-66-NH2 651.895 596.664 0.233 0.548

3.2. Separation Selectivity in the Mixed Dye Solution

The ideal adsorption selectivity of MB over MO and RhB on ZIF-8-loaded UiO-66-NH2 was
calculated according to the following expression:

S =
qMB/CMB

qMO(RhB)/CMO(RhB)
(2)

where S is the dye selective adsorption index, qMB, qMO, and qRhB are the adsorption capacity of dye
(MB, MO, and RhB, respectively) on adsorbents when in equilibrium (mg/g), CMB, CMO, and CRhB
correspond to initial concentration of different dyes in mixed solution (mg/L).

As shown in Figure 5, the adsorptive capacity of ZIF-8-loaded UiO-66-NH2 for MB was significantly
higher than its parent MOFs (UiO-66-NH2 and ZIF-8). At the same time, the adsorption selectivity
of MB over MO or RhB first increased and then decreased with increasing ZIF-8 loading. Pure
UiO-66-NH2 exhibited the best adsorption effect on MO in mixed dyes due to the addition of HCl
as a regulator during preparation. The dye preferential sorption was due to the hydrogen ions
exposure on to the acid-promoted UiO-66-NH2 surface and resulted in zeta potential raise [29]. Pure
ZIF-8 also showed the best adsorption effect on MO in mixed dyes due to the positive charge of its
surface [30]. However, ZIF-8-loaded UiO-66-NH2 exhibited the best adsorption effect on MB in mixed
dyes. Among them, 1-ZIF-8@UiO-66-NH2 showed the largest adsorptive capacity of MB. Owing to the
opposite electrical properties of MB and MO, the zeta potential of ZIF-8-loaded UiO-66-NH2 could
be lower than UiO-66-NH2. For the better insight of adsorption interactions between ZIF-8-loaded
UiO-66-NH2 and MB, the adsorption of MB by 1-ZIF-8@UiO-66-NH2 has been discussed in detail in
the proceeding sections.
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3.3. Adsorption Isotherms

To understand the adsorption mechanisms of MB with ZIF-8-loaded UiO-66-NH2, Langmuir (3)
and Freundlich (4) isotherm models were studied.

Ce

qe
=

1
KLqmax

+
Ce

qmax
(3)

lnqe = lnKF +
1
n

lnCe (4)

where, qmax is maximum adsorption capacity (mg/g), KF and KL are Freundlich constant and Langmuir
constant, respectively, and 1/n is Freundlich constant related to the adsorption.

Figure 6 shows that the adsorption of MB by the UiO-66-NH2 and ZIF-8-loaded UiO-66-NH2

conforms to Langmuir isotherm model, while the predicted result of Freundlich adsorption model
was significantly different from experimental data for MB. The model parameters for adsorption are
presented in the Table 2. Correlation coefficient (R2) of Langmuir isotherm models were bigger than
that of Freundlich isotherm models and R2 value of Langmuir isotherm models was almost equal to
unity, which suggested that the adsorption of MB on these two adsorbents was heterogeneous and a
monolayer adsorption process [31]. The theoretical maximum adsorption capacity of the ZIF-8-loaded
UiO-66-NH2 (173 mg/g) was higher than pure UiO-66-NH2 (55 mg/g), indicating 215% improvement
in the adsorption capacity, which could be due to the loading of ZIF-8 nanoparticles. To date, several
researches have been carried out for the removal of MB by MOFs [32]. Table 3 compares the adsorption
capacities of MB over similar MOFs under the same experimental conditions [29,33–37]. Yang [36]
demonstrated the use of UiO-66-P for the adsorptive removal of MB, MO, Congo Red (CR), and Acid
Chrome Blue K (AC). UiO-66-P could adsorb MB but not the other dyes. The adsorption capability of
UiO-66-P (91.1 mg/g) for MB was improved by 272% compared to that of pristine UiO-66 (24.5 mg/g),
which shows that the negative charge of UiO-66 was due to phosphate immobilization approach.
Yang et al. [37] studied the adsorption of MB using Ce(III)-doped UiO-66 and showed decrease in
surface potential of UiO-66, thereby enhancing adsorption capacity for MB. However, the surface
potential of UiO-66-P (−12.6 mv) was lower than Ce(III)-doped UiO-66 (+6.48 mv) but the adsorption
capacity of MB on Ce(III)-doped UiO-66 (145.1 mg/g) higher than UiO-66-P. This behavior could be due
to higher specific surface area of synthesized UiO-66 composite, which indicates that the adsorption
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process was controlled by many factors. These results further confirmed that ZIF-8-loaded UiO-66-NH2

demonstrates enormous advantage for MB in adsorption capacity and selective adsorption.
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Figure 6. Langmuir (a) and Freundlich (b) isotherm models for the adsorption of methylene blue (MB)
on UiO-66-NH2 and zeolitic imidazolate framework-8 (ZIF-8)-loaded UiO-66-NH2.

Table 2. Values of isotherm model parameters for the adsorption of methylene blue (MB) on UiO-66-NH2

and zeolitic imidazolate framework-8 (ZIF-8)-loaded UiO-66-NH2.

Adsorbent
Langmuir Isotherm Freundlich Isotherm

qmax KL RL R2 KF 1/n n R2

1-ZIF@UiO 173.01 1 0.0175 0.999 83.89 0.2297 4.35 0.937
UiO-66-NH2 55.04 0.79 0.0324 0.999 34.50 0.1297 7.71 0.972

Table 3. Comparison of methylene blue (MB) maximum adsorption capacities on various metal organic
frameworks (MOFs).

Adsorbents qmax (mg/g) References

UiO-66 69.8 [33]
UiO-66 90 [34]

UiO-66-NH2 90.88 [35]
Acid- promoted UiO-66 13.0 [29]

UiO-66-P composite 91.1 [36]
Ce(III)-doped UiO-66 145.1 [37]

UiO-66-NH2 55 Our work
ZIF-8-loaded UiO-66-NH2 173 Our work

3.4. Kinetic Studies

In order to better explore the adsorption rate, kinetic models were studied. The kinetic equation
shows the relationship between concentration and other parameters with time. The kinetics models of
pseudo-first-order (5) and pseudo-second-order (6) are as follows [38–40]:

lg(qe − qt) = lgqe −K1
t

2.303
(5)

t
qt

=
1

K2q2
e
+

t
qe

(6)

where K1 and K2 are the rate constant of pseudo-first-order kinetics model (min−1) and
pseudo-second-order kinetics model (g/mg min), respectively. t is the adsorption time (min). The
values of the kinetic parameters are set out in the Table 4.
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Table 4. Values of the kinetic parameters for 1-zeolitic imidazolate framework-8 (ZIF-8)@UiO-66-NH2

and UiO-66-NH2.

Adsorbent C0 qe
Pseudo-First-Order Kinetic Pseudo-Second-Order Kinetic

qe K1 R2 qe K2 R2 Rate

1-ZIF@UiO
10 90 33.64 0.0066 0.727 92.25 0.00050 0.999 0.046
20 132 50.68 0.0099 0.897 135.32 0.00039 0.999 0.053
30 160 62.90 0.0076 0.866 164.47 0.00030 0.999 0.049

UiO-66-NH2

5 36 21.48 0.0053 0.984 36.44 0.00068 0.995 0.025
10 43 21.03 0.0079 0.937 44.74 0.00083 0.999 0.037
20 50 39.23 0.0129 0.941 53.22 0.00062 0.999 0.033

Figure 7 shows the pseudo-first-order and pseudo-second-order kinetic models for the adsorption
of MB onto UiO-66-NH2 and ZIF-8-loaded UiO-66-NH2, and displays that the latter fitted with
better linearity compared to former. Moreover, the calculated data of the kinetics model for
pseudo-second-order was very close to the adsorption data, which showed that the process of
adsorption in our work conforms to the kinetics model of pseudo-second-order.
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Liquid phase adsorption generally consists of three parts [41]: Step one represents film transport
involving the diffusion of pollutants through a boundary layer of hypothetical film for the adsorbent.
The second step represents intra-particle diffusion, and the last step represents adsorption and
desorption to achieve balance. Film and intra-particle transport are the main constraints that control the
absorption rates by porous adsorbents. In our experiments, using the model of intra-particle diffusion,
we simulated the adsorption process in order to understand the diffusion mechanism between the
adsorbent and MB [42]. The related model is as following (7):

qt = k
1
2
i + Ci (7)
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where ki is the rate constant of intra-particle diffusion during i stage (mg/g min)1/2 and Ci is constant of
boundary layer theory. The parameters of the model are listed in Table 5.

Table 5. Parameters of intra-particle diffusion kinetic model.

Adsorbent C (mg/L)
Intra-Particle Diffusion Kinetic Model

K1 C1 R2 K2 C2 R2

1-ZIF@UiO
10 8.27 1.16 0.983 0.47 77.48 0.913
20 12.91 2.54 0.959 0.79 112.42 0.961
30 14.17 11.27 0.972 1.28 130.13 0.950

UiO-66-NH2

5 1.53 7.97 0.985 0.34 26.40 0.982
10 2.52 8.29 0.981 0.26 36.58 0.995
20 2.81 10.48 0.982 0.26 44.31 0.964

Figure 8 shows that the curves were divided into two regions, which suggested that the adsorption
process contains two or more steps. The first half of the curve represents the adsorbed molecules
diffusion in the fluid film on the surface of the particles. The slope of the second part of the curve
was significantly smaller, indicating the lower adsorption rate of this part. This behavior represents
the process of intra-particle diffusion. Using a model of intra-particle diffusion, all R2 values were >

0.9, which indicates that adsorption of MB on UiO-66-NH2 and ZIF-8-loaded UiO-66-NH2 could be
described by intra-particle diffusion. Therefore, the adsorption of MB by the ZIF-8-loaded UiO-66-NH2

or UiO-66-NH2 was based on both the diffusion of external and intra-particle. Moreover, the coordinate
origin was not passed by the curve, which signified that the diffusion of intra-particle was not the only
dominant factor of adsorption rate [43].
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3.5. Effect of pH on Adsorption

The pH of the dye solution has a huge influence on the dye adsorption capacity of absorbent.
Figure 9 represents the impact of various pH on MB adsorption onto UiO-66-NH2 and ZIF-8-loaded
UiO-66-NH2 under ambient conditions (25 ◦C). Due to the fact that MB aqueous solution can result in
the blue shift in absorption wavelength under strongly alkaline conditions, the adsorption experiments
were carried out only under acidic and weakly basic conditions (pH 3–11). For UiO-66-NH2, the
adsorptive capacity of MB increased rapidly on raising the pH to 10. Nevertheless, the adsorption
capacity decreased with pH >10. At low pH, the UiO-66-NH2 with positive surface charge hinders
the adsorption of cationic dye, MB. The highest adsorptive capacity was observed at pH = 10, which
indicates that the hydroxyl ion promoted the adsorption of MB. However, the adsorption capacity of
MB was lowered with pH > 10, which may be due to excessive hydroxide ions that might compete
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with the adsorbent, leading to the decrease in adsorption capacity [44]. For ZIF-8-loaded UiO-66-NH2,
the adsorption capacity of MB increased rapidly as the pH rose to 5 and the adsorption capacity of MB
remained stable at pH = 5–10. Therefore, it can be concluded that the stability of MB on ZIF-8-loaded
UiO-66-NH2 was higher compared with UiO-66-NH2. From 5 to 3, the adsorption capacity of the
ZIF-8-loaded UiO-66-NH2 rapidly decreased, which may be due to the fact that ZIF-8 might dissolve
in acidic conditions [45].
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3.6. Adsorption Thermodynamics

To understand the adsorption mechanism of MB with ZIF-8-loaded UiO-66-NH2, the change
in adsorption capacity of MB onto UiO-66-NH2 and ZIF-8-loaded UiO-66-NH2 under different
temperatures (25, 35, and 45 ◦C) was studied. In general, the parameters were calculated by the
following Equations [46]:

ln
qe

ce
=

∆S0

R
−

∆H0

RT
(8)

∆G0 = ∆H0
− T∆S0. (9)

where ∆S◦, ∆H◦, and ∆G◦ are the standard entropy change (J/mol K), enthalpy changes (kJ/mol),
and free energy (kJ/mol), respectively. T and R are the adsorption temperature (K) and gas constant
(8.3145 J/mol K), respectively. Table 6 shows the thermodynamic parameter values.

Table 6. Values of the thermodynamic parameters.

Adsorbent
CONCENTRATION

(mg/L)
∆H◦

(kJ/mol)
∆S◦

(J/mol K)
∆G◦ (kJ/mol)

298 K 308 K 318 K R2

1−ZIF@UiO
10 −18.46 −27.89 −10.15 −9.87 −9.59 0.977
20 −9.83 −7.18 −7.69 −7.62 −7.55 0.970
30 −9.11 −10.29 −6.05 −5.95 −5.84 0.996

UiO−66−NH2

5 −21.31 −44.93 −7.92 −7.47 −7.02 0.850
10 −20.11 −50.84 −4.96 −4.46 −3.95 0.936
20 −21.29 −60.86 −3.15 −2.54 −1.93 0.963
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The negative values of enthalpy change show that the adsorption processes were exothermic,
which was in accordance with the results in Figure 10, in which the adsorption capacity of MB decreased
with the rise of temperature. Moreover, the value of adsorption heat on UiO-66-NH2 was about
−20 kJ/mol, which shows that the interaction between UiO-66-NH2 and MB could be because of the
dipole-dipole interaction and/or hydrogen-bond [47]. By comparison, the value of adsorption heat for
ZIF-8-loaded UiO-66-NH2 slightly declined, which suggested that it may have other interaction. Based
on the correlative references, the ∆G◦ of chemisorption and physisorption were −400 to −50 kJ/mol and
−40 to 0 kJ/mol, respectively [48]. The free energy in our case was found to be negative, which indicates
that the adsorption course was an irreversible and spontaneous processes. The values of free energy of
UiO-66-NH2 and ZIF-8-loaded UiO-66-NH2 were in range of −11 to −5 (kJ/mol) and −8 to −1 (kJ/mol),
respectively, which suggests that both the adsorption course of MB were primarily physisorption.
Furthermore, the negative value of entropy change shows that MB mobility decreased after adsorption
with UiO-66-NH2 or ZIF-8-loaded UiO-66-NH2. Since both entropy change and enthalpy change were
negative, it can be concluded that the enthalpy change is an important driving force with such kind of
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3.7. Reusability of ZIF-8-Loaded UiO-66-NH2

The recycling adsorption experiments were performed on 1-ZIF-8@UiO-66-NH2 in order to
analyze the reusability of ZIF-8-loaded UiO-66-NH2. The used adsorbent recovered by centrifugation
was immersed into 100 mL ethanol for desorption by ultrasonication for 60 min and washed with
methanol several times, followed by drying at 373 K for the next adsorption cycle. The recycling
performance of ZIF-8-loaded UiO-66-NH2 (Figure 11) indicates the significant regeneration efficiency in
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adsorption capacity for MB after four adsorption cycles (less than 25% decrease in adsorption capacity),
which provides its applicability to regenerate and reuse in actual dye removal.Nanomaterials 2019, 9, x FOR PEER REVIEW 13 of 18 
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3.8. Adsorption Mechanism

To further reveal the MB adsorption mechanism, XRD and FT-IR analysis of ZIF-8-loaded
UiO-66-NH2 before and after adsorption of MB were examined. XRD spectra (Figure 12a) showed all
the peaks of ZIF-8-loaded UiO-66-NH2 at the same position after the adsorption of MB, demonstrating
the unchanged crystalline structure of ZIF-8-loaded UiO-66-NH2. Nevertheless, the characteristic
peak intensities of ZIF-8-loaded UiO-66-NH2 recovered after adsorption was found to be weaker
than ZIF-8-loaded UiO-66-NH2 before used, which may be due to binding of dye molecules with the
active binding sites of adsorbents [49]. In the FTIR spectra, after adsorption of MB on ZIF-8-loaded
UiO-66-NH2 (Figure 12b), an intense and broad band centered at 3368 cm−1 remain unchanged (the
broad band could be due to peak overlap of N–H and O–H [50]), which showed that the hydrogen
bonding might not play a major role in the adsorption process [51]. However, the new absorption
peaks for the vibration of aromatic ring of MB at 890 cm−1 and 1600 cm−1 could be clearly observed [52],
which showed that the MB was immobilized on surface of ZIF-8-loaded UiO-66-NH2. The peaks at
1571 cm−1 (C=O), 1257 cm−1 (C–N), and 426 cm−1 (Zn–N) of ZIF-8-loaded UiO-66-NH2 shifted and
showed a significant decrease in intensity after MB adsorption [28,53,54]. This could be explained
by the following assumptions: (i) MB, a cationic dye, is more inclined to be absorbed on negatively
charged surfaces by electrostatic interaction. The surface potential of the UiO-66-NH2 changed from
positive (+13) to negative (−2) after ZIF-8 loading as revealed by zeta potential (Figure 12c) and the
cause of the change in surface potential might be because the basic sites (OH− groups and N− moieties
mainly) adsorbed on the surface of ZIF-8 in the solution [55], which could provide the adsorption sites
for electrostatic interaction with MB. (ii) Both MB and ZIF-8-loaded UiO-66-NH2 contain aromatic rings
and π–π stacking interactions could occur between MB and ZIF-8-loaded UiO-66-NH2, resulting in the
shift of the peak (1257 to 1253 cm−1; 1571 to 1567 cm−1) [56]. Moreover, the characteristics of good
water stability and relatively high specific surface area make ZIF-8-loaded UiO-66-NH2 contact and
adsorb MB efficiently, which provides an advantage for the ZIF-8-loaded UiO-66-NH2 to adsorb the
cationic dyes. However, RhB is also cationic dye, but the bad performance of ZIF-8-loaded UiO-66-NH2

in adsorption of RhB might be due to the steric hindrance because of large molecular size. The complex
structure of RhB (as shown in Table 7) with bigger molecular size compared with MB might hinder it
from entering the pores of ZIF-8-loaded UiO-66-NH2 (RhB: 1.41 × 0.98 nm > pore width: 0.5 nm). In
conclusion, the ZIF-8-loaded UiO-66-NH2 was suitable for selective adsorption of small-size cationic
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dye and their interaction was mainly affected by electrostatic and π–π stacking interactions. The
possible adsorption mechanism is schematically illustrated in Scheme 1.Nanomaterials 2019, 9, x FOR PEER REVIEW 14 of 18 
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4. Conclusions

In summary, the positively charged UiO-66-NH2 was synthesized successfully using the
solvothermal method and ZIF-8 was successfully loaded into UiO-66-NH2, as revealed by FTIR and
XRD. The content of ZIF-8 present after several loading cycles was determined by semi-quantitative
analysis of FTIR spectrum. The adsorption capacity of ZIF-8-loaded UiO-66-NH2 (173 mg/g) toward
MB was found to be 215% higher than UiO-66-NH2 (55 mg/g), which was due to the improved
electrostatic attraction between MB and UiO-66-NH2 after loading with ZIF-8. Kinetic studies indicated
that the adsorption process in this work conforms to the pseudo-second-order kinetics model and the
adsorption of MB by the ZIF-8-loaded UiO-66-NH2 or UiO-66-NH2 was based on the joint control of the
diffusion of external and intra-particle. The adsorption capacity of MB by ZIF-8-loaded UiO-66-NH2

increased rapidly as the pH rose to 5 and remained stable at pH = 5–10. The recycling adsorption
experiments revealed the significant regeneration efficiency in adsorption capacity for MB even after
four adsorption cycles and displayed no change in the crystalline structure of the reused ZIF-8-loaded
UiO-66-NH2 as revealed by XRD and IR. Thus, the prepared ZIF-8-loaded UiO-66-NH2 showed that
high selectivity and good water stability can be of great potential in the water treatment.
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