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Abstract
Background: Skeletal muscle mass can be markedly reduced through a process called atrophy, as
a consequence of many diseases or critical physiological and environmental situations. Atrophy is
characterised by loss of contractile proteins and reduction of fiber volume. Although in the last
decade the molecular aspects underlying muscle atrophy have received increased attention, the fine
mechanisms controlling muscle degeneration are still incomplete. In this study we applied meta-
analysis on gene expression signatures pertaining to different types of muscle atrophy for the
identification of novel key regulatory signals implicated in these degenerative processes.

Results: We found a general down-regulation of genes involved in energy production and
carbohydrate metabolism and up-regulation of genes for protein degradation and catabolism. Six
functional pathways occupy central positions in the molecular network obtained by the integration
of atrophy transcriptome and molecular interaction data. They are TGF-β pathway, apoptosis,
membrane trafficking/cytoskeleton organization, NFKB pathways, inflammation and reorganization
of the extracellular matrix. Protein degradation pathway is evident only in the network specific for
muscle short-term response to atrophy. TGF-β pathway plays a central role with proteins SMAD3/
4, MYC, MAX and CDKN1A in the general network, and JUN, MYC, GNB2L1/RACK1 in the
short-term muscle response network.

Conclusion: Our study offers a general overview of the molecular pathways and cellular
processes regulating the establishment and maintenance of atrophic state in skeletal muscle,
showing also how the different pathways are interconnected. This analysis identifies novel key
factors that could be further investigated as potential targets for the development of therapeutic
treatments. We suggest that the transcription factors SMAD3/4, GNB2L1/RACK1, MYC, MAX and
JUN, whose functions have been extensively studied in tumours but only marginally in muscle,
appear instead to play important roles in regulating muscle response to atrophy.
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Background
Atrophy is a complex modification occurring in skeletal
muscles as a result of a variety of causes such as damages
to neural connections, disuse or unloading, fasting and
also as a consequence of many diseases including diabe-
tes, sepsis, acidosis or cancer. The variety of conditions
inducing atrophy implies different molecular triggers and
signalling pathways for muscle wasting. However, regard-
less of the stirring event, skeletal muscle atrophy is gener-
ally characterized by a decrease in protein content, fiber
diameter, force production, and fatigue resistance.

The dynamic regulation of skeletal muscle mass depends
on the balance between overall rates of protein synthesis
and degradation. It is now established that these two bio-
chemical processes appear to be coordinated by complex
signalling networks. During hypertrophy, the rate of syn-
thesis of muscle contractile proteins is much higher than
the rate of degradation that results in an increase of the
size of the existing muscle fibers. On the contrary,
enhanced protein breakdown is the primary cause of the
rapid loss of muscle proteins that occurs during atrophy
[1-3].

Significant advancements have been recently made in the
understanding of the signalling pathways mediating skel-
etal muscle atrophy and its opposite process of hypertro-
phy [4-9]. It has become clear that the activity or inactivity
of the IGF-1/Insulin/Akt/FoxO pathway determines
whether a muscle will increase protein synthesis and
growth (hypertrophy), or undergo protein breakdown
and atrophy. In particular, IGF-1 stimulation induces
hypertrophy of skeletal muscle by stimulating the phos-
phatidylinositol 3-kinase (PI3K)-Akt pathway, resulting
in the downstream activation of proteins required for pro-
tein synthesis [10,11]. Downstream of PI3K-Akt signal,
IGF-1 activates also mTOR and p70S6K. However, mTOR
can be activated directly by amino acids, causing a subse-
quent stimulation of p70S6K activity [12,13]. Thus,
mTOR seems to have a central role in integrating a variety
of growth signals, from simple nutritional stimulation to
activation by protein growth factors, resulting in protein
synthesis. Akt activates mTOR by phosphorylation [14],
and both Akt and mTOR phosphorylation are increased
during muscle hypertrophy [15]. Conversely, when the
activity of the IGF-1/Akt/FoxO pathway decreases, the
transcription factors FoxO1 and 3 are activated and the
two muscle specific E3 ubiquitin ligases atrogin-1 (or
MAFbx, muscle atrophy F-box) and MuRF-1 (muscle ring
finger 1) are induced [16,17]. These proteins have been
identified by genomic experiments designed to uncover
new markers of the atrophy process [18,19] and their
expression is increased significantly in several types of
muscle atrophy, demonstrating the predominant role of
the ubiquitin-proteasome pathway during the progres-
sion of muscle wasting [20].

The NFKB signalling cascade also plays an important role
in the control of muscle degradation. First hints on
involvement of NFKB in muscle wasting came from the
up-regulation of this gene during disuse atrophy [21] and
sepsis [22]. Additionally, experiments in cultured myo-
tubes demonstrated that the block of this transcription fac-
tor by overexpression of a mutant form of I-kBα, that is
insensitive to degradation by the proteasome, inhibits
protein loss induced by tumor necrosis factor-α (TNF-α)
[23].

Not only the IGF-1/PI3K/Akt/FoxO and the NFKB signal-
ling cascades are involved in the control of muscle mass
upon skeletal muscle atrophy. Recent studies in cultured
myotubes, mouse models and natural mutations demon-
strated that also myostatin is a potent regulator of skeletal
muscle mass [24-28]. The mechanism by which myostatin
inactivation leads to muscle growth is still controversial.
Recently, it was proposed that the myostatin signalling
pathway could be linked to the IGF-1/PI3K/Akt pathway.
McFarlane and co-workers showed in cultured myotubes
and in mouse skeletal muscle that treatment with myosta-
tin was associated with a reduction of fiber size, and with
induction of the muscle-specific E3 ubiquitin ligases
atrogin-1 and MuRF-1 [29]. This study showed that the
atrophic effects observed were mediated by dephosphor-
ylation and inhibition of Akt and the consequent activa-
tion of FoxO1.

Although in the last decade, with the application of
genomic technologies such as global gene expression pro-
filing, the molecular networks underlying several types of
atrophy have been studied in deeper details, the fine
mechanisms that control muscle wasting and loss of func-
tional capacity are still incomplete. The different types of
atrophy may involve the coordinated action of a wide
number of genes organised in complex networks and the
outcome of individual expression studies is insufficient
for the complete comprehension of such composite state.
Instead, it would be meaningful for this purpose to under-
take approaches aimed to combine and integrate data
from the various studies that, at different level of resolu-
tion, have been applied to muscle atrophy. The outcome
of a data integration approach for complex phenomena
like muscle atrophy may not only be used for the confir-
mation and strengthening of results of single studies, but
also for the completion of common molecular pathways,
the definition of pivotal gene players and hopefully the
individuation of novel players and pathways. The integra-
tive analysis of multiple gene expression datasets concern-
ing a common biological problem, called "meta-
analysis", has already demonstrated the capability of
retrieving much more relevant information than single
experiment datasets [30,31].
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In this paper we present the results of a comprehensive
meta-analysis performed on publicly available gene
expression datasets pertaining to different types of muscle
atrophy caused by aging [32], fasting [20], unloading
[33], denervation [5,34], and by a number of diseased
states like uremia, diabetes and cancer cachexia [4], in
human, mouse and rat models. Our study was designed to
pursue multiple goals such as the identification of novel
possible key regulatory signals implicated in muscle wast-
ing caused by atrophic states and the definition in the sig-
nalling pathways of similarities shared by different
atrophic states or across evolutionary related mammalian
species.

As expected, we found a significant enrichment associated
to up-regulation of biological processes related to catabo-
lism and protein degradation, and a significant enrich-
ment with down-regulation of processes related to energy
production (ATP production, oxidoreductase activity,
CREB cycle, glycolysis) and muscle development. The
comparison of enriched functional categories separates
atrophies caused by long-term stimuli from those caused
by short-term stimuli. Furthermore, we studied the
enrichment of specific transcription factor (TF) binding
sites in the genes relevant for atrophy as revealed by the
meta-analysis, obtaining clues for important roles that
should be ascribed in the atrophy processes to TF such as
SP1, MAX and EEF1D/deltaEF1. Interestingly, some TF
genes that target these enriched sequences appear to be
also differentially expressed in most of the atrophy data-
sets. The combination of these two results strength the
output of meta-analysis and then allows the reconstruc-
tion of specific regulatory pathways.

The integration of transcriptional signatures derived by
single studies with molecular interaction data has allowed
the reconstruction of a complex molecular network that
includes genes deregulated in at least one type of atrophy.
Focusing on the hub transcripts that are deregulated in at
least three of these studies, and selecting only highly con-
nected nodes and their nearest neighbours edges, we
zoomed into the networks identifying specific pathways
commonly involved in the atrophic process. The TGF-β
pathway seems to be the core of the network with
SMAD3/4, MYC, MAX, SP1, CDKN1A/B proteins involved
in regulating cell cycle and differentiation of many cell
types included skeletal muscle cells. Additional pathways
representative of cell reaction to cycle arrest were identi-
fied as separate areas of the network: NFKB pathway,
apoptosis, membrane trafficking, cytoskeleton organiza-
tion and inflammation.

We applied the same approach separately to muscle
expression datasets obtained at short distance from the
initiation of atrophic process, revealing that the up-regu-

lation of genes involved in proteolytic and catabolic proc-
esses characterizes the early muscle response to atrophic
stimuli. The meta-analysis of expression signatures of
muscles at 14 or more days from atrophy initiation shows
that this early response became somehow balanced. Hub
genes occupying a central role in the molecular networks
of atrophy short-term response overlap only partially
those found with the general meta-analysis. In particular,
MYC and MAX genes are found by both analysis, whereas
SMAD3/4 proteins seem to be replaced by JUN and
GNB2L1/RACK1 in the short-term signature.

Results and discussion
Skeletal muscle accounts for almost 40% of adult human
body mass and is composed by a differentiated and spe-
cialized tissue characterized however by a high rate of
plasticity to adapt to physiological changes. As a conse-
quence of many diseases or critical physiological and
environmental conditions, skeletal muscle mass can be
markedly reduced, through a process generally called atro-
phy. This process is characterised by depletion of contrac-
tile proteins and reduction of muscle fiber volume.
Although muscle atrophy can be induced by a variety of
very diverse stimuli, there are a number of unexpected
similarities among the intracellular responses that medi-
ate the atrophic processes. The aims of our study were i)
the definition of genes and pathways specifically involved
in one or few types of atrophies in order to gain new
insights in the mechanism controlling atrophy; ii) the
comparison of molecular pathways underlying different
types of atrophy to identify shared core molecular mecha-
nisms leading to muscle wasting. A detailed description of
datasets included in the meta-analysis is available in Table
1.

Similarities of functional category enrichment among 
different atrophies
Initially, the identification of differentially expressed
genes has been performed separately for each dataset. The
numbers of differentially expressed genes detected specif-
ically in each independent dataset and the overlap
between them are reported respectively in Table 2 and Fig-
ure 1.

As expected, there are no commonly deregulated genes
resulting from the intersection of all five atrophy profiles;
this is probably due to the experimental differences
between studies included in the work (stimuli inducing
atrophy, microarray platforms, muscle types, and organ-
isms, see Table 1). With the exception of fasting and sys-
temic muscle wasting, about 60–80% of the genes in each
list seem to be stimulus-specific, while the remaining 20–
40% seems to be shared by different groups of atrophies
(Figure 1). The groups of differentially expressed genes in
fasting and systemic muscle wasting show a striking over-
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lapping percentage. Both groups of genes derived from
experiments performed with the same microarray plat-
form and the same muscle type, while all the other groups
derived from experiments obtained through the combina-
tion of different platforms and muscle types (see Table 1).
We are confident that the larger overlapping percentage
with respect to the other comparisons could be partially
due to these similarities.

Recently, Hosack et al. [35] have shown that different
selection and comparison methodologies of expression
data can result in gene lists that differ in quality and quan-
tity of genes, but they also show that in spite of this varia-
tion the top five most represented biological categories in
which differentially expressed genes are classified remain
constant. This means that meta-analysis approaches give
consistent results when comparing functional classes (e.g.
specific cellular function or metabolic pathway) with
respect to genes.

In the light of these findings, GO functional category
enrichment has been performed for each list of deregu-
lated genes, identifying those functional categories (bio-
logical process, molecular function, cellular component
and metabolic pathways) commonly shared by the stud-
ies. Table 3 and 4 report the enriched categories shared by
the datasets. As expected, we found a general significant
enrichment of functional categories related to catabolism
processes (proteasome pathways, autophagy, catabo-
lism), in which are classified mostly over expressed genes,

and of functional classes related to energy production
with carbohydrate metabolism (oxidoreductase activity,
reductive carboxylate cycle, response to hypoxia, oxidative
phosphorylation, nitrogen metabolism) in which instead
are classified mostly down regulated genes. In atrophy, in
fact, the rate of degradation of contractile proteins
becomes greater than the rate of replacement, modifying
the balance requested for the maintenance of skeletal
muscle mass. In addition, we found also over represented
the functional categories of muscle contraction and devel-
opment linked to muscle wasting state, and of insulin sig-
nalling pathway that have been extensively associated to
muscle hypertrophy and atrophy.

To evaluate the degree of functional similarity among
datasets, we used functional enrichment p-values as a
measure to obtain a similarity matrix. The functional cat-
egories listed in Table 3 and 4 are the rows of the matrix
and the seven atrophy studies are indicated in the col-
umns (Table 1); the cells of the matrix contain the corre-
sponding enrichment p-value. Cluster analyses have been
performed, through TMEV tool [36], using GO and KEGG
functional matrices and Figure 2 shows the resulting den-
drograms. Different p-value transformations have been
used to test the dendrogram robustness: dendrograms on
datasets (columns) did not show changes in the whole
structure but only on the bootstrap support (however, the
first separation of datasets in two broad classes was always
characterised by 100% bootstrap support). The clustering
of expression datasets seems to be independent from mus-

Table 1: Atrophy gene expression datasets used for the meta-analysis

Authors Journal Year Atrophy Platform Organism Tot. Probes Muscle Type Experimental 
Design

Kostrominova 
et al.

Physiol. 
Genomics

2005 Denervation Membrane 
arrays

R. Norvegicus 1,176 Extensor 
Digitorum 
Longus

Case vs 
Control

Raffaello et al. Physiol. 
Genomics

2006 Denervation cDNA arrays M. Musculus 2,061 Tibialis 
Anterioris

Time course

Sacheck et al. FASEB 2007 Denervation 
Spinal Cord

cDNA array R. Norvegicus 8,734 Gastrocnemius Case vs 
Control

Welle et al. Physiol. 
Genomics

2003 Aging Affymetrix HG-
U133A/B

H. Sapiens 44,928 Vastus Lateralis Case vs 
Control

Stevenson et al. J Physiol. 2003 Unloading Affymetrix 
U34A

R. Norvegicus 8,799 Soleus Time course

Jagoe et al. FASEB 2002 Fasting cDNA array M. Musculus 8,734 Gastrocnemius Case vs 
Control

Lecker et al. FASEB 2004 Systemic 
wasting states

cDNA array R. Norvegicus 8,734 Gastrocnemius Case vs 
Control
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cle type or microarray platforms, but rather influenced
from the type of stimulus inducing atrophy. Except for
some little differences, dendrograms of Figure 2 underline
the presence of two broad groups with similar profiles of
over represented functional categories: i) unloading [33],

ageing [32], long-term denervation response [37], dener-
vation and spinal cord isolation [5] and ii) fasting [20],
systemic muscle wasting [4] and short-term response to
denervation [34]. It should be noted that the gene expres-
sion studies of Sacheck et al. [5] and Lecker et al. [4] have

Numbers of differentially expressed genes in the atrophy datasets analyzed in this study and overlaps across each of themFigure 1
Numbers of differentially expressed genes in the atrophy datasets analyzed in this study and overlaps across 
each of them.
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been performed using respectively rat muscle mRNAs
hybridised to a human cDNA microarray and rat muscle
mRNAs hybridised to a mouse cDNA microarray. A possi-
ble problem of the use of heterologous microarray plat-
forms and hybridizations is probe-target sequence
mismatches. In the presence of such sequence mis-
matches, relative hybridization intensities will reflect both
differences in transcript abundance (the object of inter-
est), as well as differences in hybridization kinetics. Gilad
et al. [38] showed that sequence divergence between
probes in the platform and test RNA can have substantial
effects on estimates of expression levels, even for evolu-
tionary close species such as human and chimpanzee.
Thus, Sacheck et al. [5] and Lecker et al. [4] results should
be used carefully even if the use of group of genes such as
GO/KEGG categories rather than single genes should
reduce possible biases. Nevertheless, our analysis shows
that expression datasets are separated in two groups of
similarity, according to the nature of the stimulus induc-
ing atrophy: long-term versus short-term. In this case the
use of short and long term is referred to the time required
for the development of atrophy condition rather to the
time points used for expression profiling in the experi-
mental design. Then, excluding Sacheck et al. [5] datasets,
ageing, unloading and two-months denervation seems to
be representative of atrophy stimuli to which muscle react
slower than fasting, denervation (from 1 to 14 days) and
systemic states.

Enrichments of putative transcription factor binding site 
(TFBS)
We have performed a search of putative TFBS separately
for up or down regulated genes of each datasets. Table 5
lists the TFBS families that are enriched in the sequences
of genes whose expression is altered in different types of
muscle atrophy. As expected, the binding site of some
known TF that contribute to skeletal muscle differentia-

tion and gene expression (Myf, Mef2A, Sp1, SRF) have
been detected as enriched in most of the atrophy datasets.
Instead, some enriched TFBS correspond to transcription
factors whose role in muscle atrophy was not yet evi-
denced. For example, DeltaEF1/ZEB1 is a transcriptional
activator that in smooth muscle is directed at least in part
toward mesenchymal genes such as collagens, smooth
muscle actin and myosin, vimentin, and genes in the vita-
min D signalling pathway, which is important in mesen-
chymal differentiation [39]. Recently, Chen et al. [40]
demonstrate a cooperation between FoxO and deltaEF1 in
activating growth suppressive genes in B lymphocytes.
FoxO plays a central role in the development of muscle
atrophy. Sandri et al. [16] in fact, showed that FoxO tran-
scription factor induces the atrophy-related ubiquitin
ligase atrogin-1 and MURF-1, and that their activation in
skeletal muscle is sufficient to induce marked atrophy.
Interestingly, several TFBS identified as enriched in the
upstream/downstream regions of the differentially
expressed genes, are recognized by TF whose mRNA
results in turn differentially expressed. This is the case of
MAX (up-regulated), MYC (down-regulated), and MEF2A
(up-regulated). Further description and discussion of the
results of TFBS search in atrophy datasets follow in the
next section.

Molecular networks
We constructed a general atrophy network, generated by
the combination of dataset-specific networks, integrating
expression levels and molecular interaction information.
Under the assumption of linear relationship between
transcript and protein levels, differential gene expression
could give a clue of protein deregulation and of the alter-
ation of signalling cascades to which they belong. In the
network, nodes represent proteins whose level could be
altered as a consequence of the muscle atrophic process,
and edges represent functional interactions between

Table 2: Number of differentially expressed genes of the datasets included in the meta-analysis.

Authors Up-regulated Down-regulated Tot. N. Probes

Kostrominova et al. (75) 6.4% (29) 2.5% 1,176

Raffaello et al. (370) 18% (404) 20% 2,061

Sacheck et al. (923) 10% (545) 6% 9,130

Welle et al. (194) 1.6% (264) 2.2% 11,991

Stevenson et al. (316) 7.8% (436) 11% 4,029

Jagoe et al. (413) 4.7% (412) 4.7% 8,734

Lecker et al. (496) 5.7% (550) 6.3% 8,734

Percentage values are calculated with respect to the total number of probes in the microarray platform used in each study.
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nodes. Additional file 1 shows the complete network. The
usual approach for functional interpretation of such huge
network is based on network decomposition and extrapo-
lation of most significant interactions. Hub proteins tend
to be master genes responsible not only of the stability of
the entire network but also of sub-networks. They repre-
sent key regulatory elements important to understand
pathways involved in a physiological or pathological
event. Therefore, we choose to select that proteins and
specific module networks to: i) highlighting relevant
interaction network ii) reducing network noise and iii)
finding cluster representing protein complexes parts of
key pathways. We select highly connected nodes (hub)
and their nearest edges producing an highly-connected
sub-network reported in Figure 3.

The molecular network is characterized by few highly con-
nected nodes (SMAD3, SMAD4, MYC, CDKN1A, PCNA,

CAV1, COL1A1, YWHAE, NFKBIA, ARF1, CDC42) most
of which are present in more than 3 datasets (yellow
nodes). Molecular network can be divided into regions
representative of different cellular mechanisms: a) the
TGF-β pathways that appears as the core pathway of the
general atrophy network, b) the NFKB pathway and its
correlated responses, c) the negative regulation of cell
cycle, d) the response to apoptosis and inflammation.

TGF-β pathway
The molecular network assigns a central position to the
up-regulation of SMAD3/4 and CDKN1A/p21 and to the
down-regulation of MYC. Smad3 in fact, can mediate
transcriptional repression of the growth-promoting gene
MYC [41]. A complex containing Smad3, the transcription
factors E2F4/5 (that recognizes the E2F1 site which is also
over-represented in the sequence of genes of the datasets),
DP1, and the co-repressor p107 is situated in the cyto-

Table 3: Common KEGG pathways enriched in the different expression datasets.

K L J R W St Sc Tot Expr.

Array platform type Membrane cDNA cDNA cDNA Affy Affy cDNA
Muscle fibre composition fast Mixed mixed fast mixed slow mixed
Organism RN RN MM MM HS RN RN
Energy Metabolism
Nitrogen metabolism X X X X X X 6 -
Carbon fixation X X X X X X 6 -
Crebb Cycle X X X X X 5 -
Oxidative phosphorylation X X X X 4 -
Carbohydrate Metabolism
Glycolysis/Gluconeogenesis X X X X X 5 -
Pyruvate metabolism X X X X X 5
Citrate cycle (TCA cycle) X X X X X 5
Pentose phosphate pathway X X X X 4 -
Glyoxylate and dicarboxylate metabolism X X X X 4
Butanoate metabolism X X X X 4
Amino Acid Metabolism
Cysteine metabolism X X X X X 5
Phenylalanine, tyrosine and tryptophan biosynthesi X X X X X 5
Valine, leucine and isoleucine degradation X X X X X 5
Lysine degradation X X X X 4
Phenylalanine metabolism X X X X 4
Methionine metabolism X X X X 4
Urea cycle and metabolism of amino groups X X X X 4
Neurodegenerative Diseases
Neurodegenerative Disorders X X X X 4
Parkinson's disease X X X X 4
Alzheimer's disease X X X X 4
Other
Glutathione metabolism X X X X X 5
Proteasome X X X X X 5 +
Ribosome X X X X X 5
Focal adhesion X X X X 4
Insulin signalling pathway X X X X 4
Complement and coagulation cascades X X X X 4

K: Kostrominova et al.; L: Lecker et al.; J: Jagoe at al.; R: Raffaello et al.; W: Welle et al.; St: Steavenson et al.; Sc: Sacheck et al. X indicates if the 
category is significantly enriched in the corresponding study (FDR < = 0.1). In the organism row: RN is Rattus Norvegicus, MM Mus Musculus, HS 
Homo Sapiens. The Expr column indicates the up (+) or down (-) regulation of genes belonging to each class. When the sign is not reported it means 
that gene belonging to that class are characterised by a mixed expression regulation.
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Table 4: Common GO categories enriched in the different expression datasets.

K L J R W St Sc Tot

Array platform type Membrane cDNA cDNA cDNA Affy Affy cDNA
Muscle fibre composition Fast mixed mixed fast mixed slow mixed
Organism RN RN MM MM HS RN RN
Biological Process
Response to radiation X X X X X 5
Response to hypoxia X X X X X 5
Glucose homeostasis X X X X X 5
Cellular metabolism X X X X 4
Ion homeostasis X X X X 4
Macromolecule metabolism X X X X 4
Muscle development X X X X 4
Negative regulation of enzyme activity X X X X 4
Regulation of cell growth X X X X 4
Transport X X X X 4
Biomineral formation X X X X 4
Biosynthesis X X X X 4
Muscle contraction X X X X 4
Osteoblast differentiation X X X X 4
Regulation of coagulation X X X X 4
Response to chemical stimulus X X X X 4
Autophagy X X X 3
Striated muscle contraction X X X 3
Adult behaviour X X X 3
Catabolism X X X 3

Molecular Function
Coenzyme binding X X X X X X 6
Transferase activity, transferring alkyl or aryl (other than methyl) groups X X X X X X 6
Oxidoreductase activity X X X X X X 6
Cytoskeletal protein binding X X X X X X 6
Growth factor binding X X X X X 5
Primary active transporter activity X X X X X 5
Carbon-oxygen lyase activity X X X X X 5
Ligand-dependent nuclear receptor activity X X X X X 5
Phospholipid binding X X X X X 5
Translation factor activity, nucleic acid binding X X X X X 5
Cation transporter activity X X X X 4
Peptidase activity X X X X 4
Hydrolase activity, acting on glycosyl bonds X X X X 4
Metal ion transporter activity X X X X 4
Electron carrier activity X X X X 4
Intramolecular transferase activity X X X X 4
Iron-sulfur cluster binding X X X X 4
L-ascorbic acid binding X X X X 4
Ligase activity, forming carbon-oxygen bonds X X X X 4
Diacylglycerol binding X X X X 4
Fatty acid binding X X X X 4
GTP-dependent protein binding X X X X 4
Transcription factor binding X X X X 4
Transferase activity, transferring phosphorus-containing groups X X X X 4

Cellular Component
Cytoplasm X X X X 4
Glycerol-3-phosphate dehydrogenase complex X X X X 4
Intracellular non-membrane-bound organelle X X X X 4
Mitochondrial envelope X X X X 4
Organelle inner membrane X X X X 4
Ribonucleoprotein complex X X X X 4
Ribosome X X X X 4
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plasm. In response to TGF-β, this complex moves into the
nucleus and associates with Smad4, recognizing a com-
posite Smad-E2F site on MYC flanking region for repres-
sion [41]. One of the paradoxes encountered by
investigators studying Myc function is the observation
that both Myc over and underexpression results in apop-
tosis. The link between Myc deficiency and apoptosis is
less clear, but may also be mediated through a mitochon-
drial pathway [42]. SMAD complexes also could induce
the transcriptional activation of genes encoding CDKN2B
and p21/CDKN1A. This latter protein is upregulated in
atrophic conditions and plays an important role in the
inhibition of cell cycle progression [43]. Seoane et al. [44]
identified FOXO proteins as key partners of Smad3 and
Smad4 in the TGF-β-dependent generation of a CDKN1A/
p21 activation complex. FoxO factors are under the nega-
tive control of the phosphatidyl insositol 3-kinase (PI3K)
growth-promoting pathway [45]. In response to
mitogenic signals, PI3K activates Akt, a protein kinase that
phosphorylates FOXO, barring them from the nucleus
and thus from target genes [46]. The present identification
of FOXO factors as Smad partners in CDKN1A/p21 activa-
tion provides a link between the TGF-β/Smad and PI3K/
AKT pathways and suggests a broader role for FoxO pro-
teins as signal transducers. This link is particularly impor-
tant considering that there are accumulating evidences
that the PI3K/AKT pathway, a crucial intracellular signal-
ling mechanism underlying muscle hypertrophy [47], pre-
vents the induction of the two muscle-specific ubiquitin-
ligases, atrogin-1 and Murf-1 in several models of muscle
wasting [4,5]. Moreover, the mechanism for this preven-
tion involves Akt-mediated inhibition of the FoxO family
of transcription factors [16,17]. CDKN1A/p21 can associ-
ate to the proliferating cell nuclear antigen (PCNA), an
auxiliary factor for delta and epsilon DNA polymerases.
Cayrol et al. [48] demonstrated that the activation of
CDKN1A/p21 may reduce cell cycle progression by inhi-
bition of PCNA function resulting in cell cycle arrest both
at G1 and G2. The consequence of this arrest could be that
muscle cells undergo apoptosis (see Figure 3) or differen-
tiation. In fact, Shen et al. (2006) [49] proposed the
involvement of CDKN1A/p21 in the survival of muscle
satellite cells. These cells are fundamental for the recovery

of the tone when muscle tissue recoveries from an atrophy
status, so the activity of CDKN1A/p21 is fundamental in
this context.

Apoptosis, membrane trafficking and cytoskeletal organization
Cell cycle arrest in muscle cells can lead to apoptosis or
differentiation. The apoptosis area of the network
includes some members of the BCL2 family (such as BAD,
BCL2L1, BAX and BCLAF1) well known to be involved
apoptosis, as well as RAF1 and YWHAE proteins. This last
gene product belongs to the highly conserved 14-3-3 fam-
ily of proteins whose isoforms are associated with several
intracellular signalling molecules in the regulation of var-
ious cellular functions, including cell cycle control, prolif-
eration, transformation, and death by apoptosis.

On the other hand, differentiation and fusion of muscle
cells into multinucleated myotubes is accompanied by a
dramatic reorganization of the Golgi complex [50]. Schu-
bert et al. [51] shows that skeletal muscle differentiation
involves CAV-1 and CAV-2 genes down-regulation (evi-
denced also in this network). Many membrane-bound
organelles, including endoplasmic reticulum (ER) and
mitochondria, remain intact during mitosis. However the
Golgi apparatus, which functions at the crossroads of
many membrane trafficking pathways within cells [52],
reversibly disassembles [53]. ARF1, a protein involved in
the vesicular trafficking through Golgi, is also involved in
myoblast differentiation during myotubes formation. In
fact, it has been shown that myoblast expressing a mutant
form of ARF1 fail to undergo differentiation and fusion
[16]. Altan-Bonnet et al. [54] suggested that the inactiva-
tion of ARF1 early in mitosis could provide the release of
a variety of proteins (whose functions are necessary for
DNA replication, chromosome condensation, segrega-
tion, and cytokinesis) into the cytoplasm in a timely way
so that they can carry out their respective mitosis-related
activities. In fact, the blocking of ARF1 inactivation pre-
vented membrane dissociation of many peripheral Golgi
proteins and impaired two key events of mitosis, chromo-
some segregation and cytokinesis. ARF1 was found up-
regulated in association to CDC42, a Rho protein whose
activation is sufficient to promote cellular senescence such

Insulin-like growth factor binding protein complex X X X 3
Intracellular membrane-bound organelle X X X 3
Intracellular organelle X X X 3
Organelle membrane X X X 3
Soluble fraction X X X 3
Intracellular X X X 3
Organelle envelope X X X 3
Proteasome complex (sensu Eukaryota) X X X 3
Basement membrane X X X 3
Cytoskeleton X X X 3

Symbols are as in the Table 3. X indicates if the category is significantly enriched in the corresponding study (FDR < = 0.1).

Table 4: Common GO categories enriched in the different expression datasets. (Continued)
Page 9 of 20
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Dendrograms showing the GO category enrichment similarities among atrophy gene expression datasetsFigure 2
Dendrograms showing the GO category enrichment similarities among atrophy gene expression datasets. GO 
functional categories (biological process, molecular function and cellular component) and KEGG pathways have been analysed 
separately. Muscle fibre compositions, microarray platform type and organism have been indicated to evaluate whether these 
features could influence the structure of dendrograms.



BMC Genomics 2008, 9:630 http://www.biomedcentral.com/1471-2164/9/630
Table 5: Over represented transcription factor binding sites shared by differentially expressed genes across the different atrophic 
states.

Up or down regulated genes TFBS Denervation Fasting Ageing Diseases Unloading tot

- SP1 X X X X 4
- MZF1_1–4 X X X X 4
- Myf X X X 3
- Roaz X X X 3
- deltaEF1 X X X 3
- HAND1-TCF3 X X 2
- HNF4 X X 2
- MAX X X 2
- MEF2A X X 2
- NHLH1 X X 2
- PPARG X X 2
- REL X X 2
- RELA X X 2
- SRF X X 2
- TEAD X X 2
- ZNF42_5–13 X X 2
- Arnt-Ahr X 1
- ELK4 X 1
- Hox11-CTF1 X 1
- MYC-MAX X 1
- Myb X 1
- NF-kappaB X 1
- NFKB1 X 1
- NR2F1 X 1
- RREB1 X 1
- Spz1 X 1
- TCF1 X 1

+ NHLH1 X X X 3
+ Staf X X X 3
+ TEAD X X X 3
+ ZNF42_1–4 X X X 3
+ Ar X X 2
+ E2F1 X X 2
+ ELK4 X X 2
+ MAX X X 2
+ Pax4 X X 2
+ RREB1 X X 2
+ SP1 X X 2
+ deltaEF1 X X 2
+ Arnt-Ahr X 1
+ Bapx1 X 1
+ CREB1 X 1
+ ELK1 X 1
+ ESR1 X 1
+ FOXD1 X 1
+ FOXF2 X 1
+ Foxq1 X 1
+ HLF X 1
+ Hox11-CTF1 X 1
+ IRF2 X 1
+ MEF2A X 1
+ MYC-MAX X 1
+ Myb X 1
+ NFIL3 X 1
+ NFKB1 X 1
+ RELA X 1
+ RORA1 X 1
Page 11 of 20
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as muscle-ageing phenotype with muscle mass reduction.
Furthermore, Takano et al. [55] suggested that Rho pro-
teins play a critical role in muscle differentiation in rela-
tion to motility, shape and control of the actin
cytoskeleton, possibly by regulating the expression of
myogenin and MEF2 genes. In addition, the Rho and
Cdc42 GTPases have also been implicated in TGF-β signal
transduction.

Inflammatory response and reorganization of the extracellular 
matrix
Extracellular matrix (ECM) of connective tissues is impor-
tant for force transmission and tissue structure mainte-
nance in tendons, ligaments, bone and muscle. Several
genes codifying ECM proteins (COL1A1, MMP2, MMP9,
FN1, TIMP2) and implicated in its reorganization as well
as in inflammatory processes have been identified in the
atrophy networks. These data fit with the knowledge that
muscle remodelling in consequence to atrophy includes
an increased turnover of several ECM molecules.

Short-term muscle response to atrophy induction
We have studied the presence of TFBS in the flanking
regions of genes that are differentially expressed in at least
three of the datasets pertaining to muscle short-term
response to atrophy (less than 14 days after atrophy
induction). The result of this analysis is reported in Table
6. A TFBS that appears to be over-represented is that rec-
ognized by MAX transcription factor. MAX gene is over-
expressed in the same datasets, suggesting that these puta-
tive binding sites may be active.

With the same approach described above, we have con-
structed a molecular network using datasets describing the
short-term response to atrophy induction. Additional file
2 reports the complete network and Figure 4 shows a
selection of the highly connected nodes. The goal of the
analysis was the identification of pathways responsible of
the initial phase of muscle remodelling. Interestingly, we
found that a large area of the network contains genes
related to proteasome and catabolism, suggesting that
protein degradation is an early muscle reaction probably
inhibited or balanced in long-term atrophy. Some muscle
specific proteins, such as TNNT1, TNNI2 and some pro-
teins related to energy production (NDUFA5, ATP2A2)
with ARNTL, VEGFA and TPM2 seem to be involved in the
process of muscle wasting. Few genes related to apoptosis

(BAD and NRAS) are connected to a larger group of genes
involved in the insulin signalling pathways (TSC2,
RPS6KA1, CSNK2A2). The insulin receptor and insulin-
like growth factor 1 receptor (IGF-1R), when activated by
their ligands, control metabolism, cell survival, and pro-
liferation in a variety of tissues, muscle included. Regula-
tion of their activity is still under strong investigation. The
over expression of GNB2L1/RACK1 inhibits phosphoryla-
tion of AKT induced by IGF-1. This result suggests that
GNB2L1/RACK1 has a particular role in regulating Akt
activation and cell survival [56]. CSNK2A1/CKII is a pro-
tein kinase that phosphorylates in vivo and in vitro a vari-
ety of transcription factors, either gene expression
activators, such as Myc, c-Jun, Sp1, or repressors. Phos-
phorylation can result in either positive or negative mod-
ulation of their activity [57].

The transcription factors MYC and MAX represent hub
proteins also in the specific network that describes the
molecular interactions involved in the early steps of mus-
cle atrophy and their central role in the general biological
processes related to atrophy is therefore reinforced.
SMAD, that has been identified as one of the hub proteins
in the general atrophy network (Figure 3), in this network
seems to be replaced by JUN, JUNB and STAT3 (Figure 4).
JUN is a transcriptional activator associated with rapid cel-
lular growth and was found down-regulated in the expres-
sion studies of muscle atrophy performed by Lecker et al.
[4] and Sacheck et al. [5]. It has been shown that SMAD3
and 4 proteins interact with AP-1 family of transcription
factors among which are included some members of the
Jun family like JUN, JUNB and JUND [58]. Genes of the c-
Jun family together with Myc are called immediate early
genes (IEGs), that are genes activated transiently and rap-
idly in response to a wide variety of cellular stimuli [59].
These genes play important roles in signal transduction
and transcriptional regulation in normal cells coupling
extracellular stimuli to changes in cellular phenotype.
Thus, many of IEGs encode TFs that are rapidly induced in
response to a wide list of physiological and pathological
conditions. Therefore, this seems to be in good agreement
with our identification of c-JUN family as hub proteins in
the short-term muscle response to atrophy. In fact,
impairment of the of the AP-1/c-jun signalling cascade by
c-JUN down regulation in vivo, is able to partially coun-
teract muscle mass loss in a rat model for cachexia [60].

+ RXR-VDR X 1
+ SRF X 1
+ TP53 X 1
+ ZNF42_5–13 X 1

X indicates if the specific TFBS category is significantly enriched in that specific study. (-) TFBS enriched in the up/downstream regions of down-
regulated genes; (+) TFBS enriched in the up/downstream regions of up-regulated genes

Table 5: Over represented transcription factor binding sites shared by differentially expressed genes across the different atrophic 
states. (Continued)
Page 12 of 20
(page number not for citation purposes)



BMC Genomics 2008, 9:630 http://www.biomedcentral.com/1471-2164/9/630

Page 13 of 20
(page number not for citation purposes)

Atrophy molecular networkFigure 3
Atrophy molecular network. The whole molecular network was constructed through the integration of single networks 
computed from different atrophy expression datasets (denervation, unloading, fasting, diseases, ageing). Gene/protein nodes 
are represented by squares with identification symbols. Squares with red borders indicate up regulated nodes, whereas green 
borders indicate down regulated nodes. Colour of the symbol area identifies the expression dataset in which the correspond-
ing gene was calculated as differentially expressed. Selection of network areas (black oval contours) has been performed focus-
ing on hub genes/proteins. The whole network from which this zoomed network has been obtained is available in Additional 
file 1.
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Conclusion
In this work we applied a meta-analysis approach in order
to verify the similarities in the molecular pathways under-
lying diverse skeletal muscle atrophies induced by differ-
ent stimuli. Transcriptome data has been integrated with
molecular interaction data, in order to construct a general
network descriptive of the molecular processes involved
in the establishment and maintenance of muscle atrophy.

We found a general down-regulation of genes involved in
energy production and carbohydrate metabolism and, in
contrast, up-regulation of genes with role in protein deg-
radation and catabolism. This result was expected, since
muscle wasting that accompanies atrophy is caused by
imbalance between protein synthesis and protein degra-
dation. According to the gene networks, it appears that the
short-term response of muscle to atrophy is involving
slightly different functional classes and members than the
long-term response. The general molecular network that
we have constructed from the analysis of specific networks
obtained for different types of muscle atrophy gives a
complete overview of the interconnected molecular path-
ways that have been implicated in muscle degeneration
caused by atrophy. The analysis of the network has
revealed some key factors (hub genes/proteins) that may
have central roles in molecular processes associated to
atrophy.

As most of the biological networks, the topology of the
atrophy network we have assembled has a scale-free struc-
ture characterised by hundreds of nodes with only few of
them showing a high number of connections. These hub
nodes point to six different pathways that could be there-
fore considered as central for muscle atrophy process;
these are the TGF-β pathway, apoptosis, membrane traf-
ficking/cytoskeleton organization, NFKB pathway,
inflammation and reorganization of the extracellular
matrix.

The molecular pathway for protein degradation is present
only in the network representing muscle short-term
response to atrophy. This result supports the hypothesis
that protein degradation is an early response to the stim-
ulus inducing atrophy that is subsequently hidden proba-
bly by biological processes of muscle adaptation to
atrophy. The central role in the atrophy network is
assigned by our analysis to the TGF-β pathway with
SMAD3/4, MYC, MAX and CDKN1A in the general net-
works that are substituted by JUN, MYC, GNB2L1/RACK1
in the short-term network.

Considerable progresses have been made in the identifica-
tion of cellular signals regulating skeletal muscle atrophy,
but our knowledge about the molecular mechanisms
underlying atrophy is still partial. To date, there are no
pharmacological treatments for disuse atrophy and elec-
trical stimulation to maintain muscle tone is still the pri-
mary method used to inhibit muscle loss during extended
periods of inactivity. For muscle diseases, sodium butyrate
has been used to ameliorate a symptoms of SMA [61] and
the only established treatment for muscular dystrophy is
the use of steroids such as prednisone and deflazacourt
[62-64]. These treatments however can only slightly coun-
teract the important loss of muscle tissue associated to
muscular dystrophies, while are producing significant side
effects. Furthermore, the gene manipulation experiments
that have been successful at maintaining muscle mass
[65,66] have not been yet translated into therapeutic strat-
egies. In summary, despite the progresses that have been
made in identifying key elements associated with skeletal
muscle changes during growth [11,21,67], apoptosis
[68,69], and protein degradation [70-72], there has been
limited success in attenuating the effects of atrophy on
muscle tissues associated to pathophysiological processes.
Genomic studies at transcriptional and proteomic level
are revealing that the dissection of signalling pathways
has not completely defined all the required elements nec-
essary to maintain muscle mass neither identified whether
a common "atrophy program" is activated by the various
perturbations that produce the atrophic response. A major
challenge now is to complete the description of the path-
ways responsible for the multiple intracellular signalling
cascades in atrophic skeletal muscle and their intercon-

Table 6: Transcription binding sites enriched in the flanking 
regions of genes that were calculated as differentially expressed 
in all 4 expression datasets of short-term muscle response to 
atrophy.

TF Target TFBS hits Z-score Fisher score

Hox11-CTF1 17 15.97 5.031e-04

TEAD 65 14.69 1.232e-03

MAX 123 13.15 9.861e-04

RREB1 14 12.4 4.909e-03

SP1 315 10.86 1.786e-03

Myf 167 10.62 9.581e-02

SRF 13 10.61 1.351e-02

ZNF42_1–4 1287 10.13 4.823e-02

NHLH1 71 7.984 6.462e-03

NR3C1 31 7.805 6.044e-03
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nections, trying to identify some key factors that could be
further studied as potential target for therapeutic purpose.
In this perspective, we think that our approach has given
a good contribution: in fact we were able to identify some
proteins and transcription factors, such as SMAD3/4,
GNB2L1/RACK1, MYC, MAX and JUN whose functions
have been studied extensively in tumours [73-75] and in
some atrophy models [59,60,76]. We suggest that these
proteins could play important roles in the response of
muscle to atrophy, and that further investigations on their

role in skeletal muscle will greatly contribute to the com-
prehension of this complex process.

Methods
Data Collection
Expression datasets selected in this study are publicly
available at Gene Expression Omnibus (GEO) database at
NCBI or freely accessible to Author's web site. Only data-
sets whose raw data were publicly available have been
considered in this study. Datasets analyzed were produced

Network of short-term muscle response to atrophyFigure 4
Network of short-term muscle response to atrophy. This molecular network has been constructed through the integra-
tion of single networks derived from expression datasets pertaining to muscles before 14 days from atrophy induction, and 
focusing on the hub genes/proteins. The complete network from which this zoomed network has been obtained is available in 
Additional file 2.
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by the following Authors: i) Kostrominova et al. [37], con-
cerning long-term denervation in rat, using membrane
arrays (GSE1741), ii) Raffaello et al. [34] concerning
molecular alterations at one, three, seven, and fourteen
days after denervation in mouse (GSE1893), iii) Sacheck
et al. [5], describing expression changes in disuse atrophy
induced by denervation or spinal cord isolation in rat
(available at http://agoldberg.med.harvard.edu/muscle
database/), iv) Welle et al. [32], a study of gene expression
changes related to skeletal muscle ageing in human by oli-
gonucleotyde array (GSE362), v) Stevenson et al. [33], an
investigation on molecular alterations in skeletal muscle
due to muscle inactivity in rats (generously provided by
the Authors), vi) Jagoe et al. [20], who used cDNA micro-
arrays to define transcriptional changes triggering muscle
atrophy and energy conservation due to food deprivation
in mice, vii) Lecker et al. [4], who identified a common set
of transcriptional adaptations underlying the loss of mus-
cle mass caused by cancer cachexia, renal failure and dia-
betes. These two last datasets are available at http://
agoldberg.med.harvard.edu/muscledatabase/. We down-
load and then analysed only microarray experiments
obtained through hybridization of rat muscle mRNAs to
mouse array platforms. A detailed description of datasets
included in the meta-analysis is available in Table 1.

Statistical Analysis
Normalization
Expression quantification for Affymetrix CEL files [32,33]
has been done using EntrezGene Custom CDF (corre-
sponding to 11,991 transcript for HG-U133A and 4,029
for the U34A) annotation files proposed by Dai et al. [77],
then rma algorithms [78] have been performed with
WGAS web tool [79] for normalizing data. Raw data
derived by two-colour cDNA microarray have been nor-
malized using lowess algorithm [80] with MIDAW web
tool [81].

Identification of differentially expressed genes
Permutational t-test has been performed to identify differ-
entially expressed genes in all those studies with the case
vs control experimental design. P-values and Q-values
(false discovery rate, FDR) [82] have been used as ranking.
Q-values for each gene has been defined as: Q = (p*n)/i,
where p is the p-value of the gene, n the total number of
genes and i is the number of genes at or better than p. In
the case of time-course experimental design, permuta-
tional two-way ANOVA has been performed considering
in the model treatment effect and (time × treatment)
interaction. In this way we identified genes differentially
expressed between normal and atrophic samples across
and within time points.

Unfortunately not all the datasets contain sufficient num-
bers of biological replicates as required for powerful infer-

ence. In particular, Lecker et al. [4] and Sacheck et al. [5]
performed less than 3 replicates respectively for each type
of samples analyzed (uremia, diabetes and tumour) and
for each disuse-induced atrophy (denervation or spinal
cord) they preferred the use of pooled samples. Fold
change cut-off, usually applied to microarray data in case
of insufficient number of replicates, leads to large number
of false positive. Therefore, to settle this problem, we
decided to combine muscle wasting experiments and atro-
phy induced by denervation plus by spinal cord damage
respectively in two separate datasets. Then, we constructed
an expression matrix where the number of rows matches
the number of genes represented in the microarray plat-
form used by Lecker et al. [4] and where there are 5 col-
umns as the number of experiments: 1 experiment for
diabete, 2 experiments for tumor and 2 experiments for
uremia. The same approach has been used for Sacheck et
al. [5] dataset: the final expression matrix is composed by
as many rows as the number of genes of the array used in
Sacheck et al. [5] and 4 columns equal to the number of
experiments: 2 experiments for 3 days denervation, 2
experiments for 3 days spinal cord. In this way, sample
replicates increase and t-test approach can be applied. Sta-
tistical test for the identification of differentially expressed
genes has been applied to these two final matrices. A FDR
≤ 0.1 has been used to choose significant gene lists. Statis-
tical inference has been performed with R software http:/
/www.r-project.org with DAAG package.

Meta-analysis and gene list comparison
Given the different model organisms used in expression
studies (Homo Sapiens, Mus Musculus and Rattus Norvegi-
cus) we used HomoloGene database to identify homolo-
gous genes in order to match different studies. Homo
Sapiens has been used as reference organism. After homol-
ogous conversion of all the lists of differentially expressed
genes, we followed an approach highly similar to those
proposed by Rhodes and colleagues [83] to identify a sig-
nificant meta-signature, defined as a selected set of genes
common to j of the S total number of datasets. The
number j is defined through a permutational approach.
The idea is to compare the observed number of significant
genes shared by at least j studies (observed gene enrich-
ment) with the number of significant genes shared by at
least j studies obtained by chance (random gene enrich-
ment). Permutational steps are as follows: i) Q values of
each dataset are randomly permutated so that genes in
each signature (list of differentially expressed genes)
change at random, but the number of genes in each signa-
ture remains the same, ii) the number of genes differen-
tially expressed common to at least j datasets are
calculated for j ranging from 2 to the total number of data-
sets, iii) step i) and ii) are repeated 1000 times, iv) average
and empirical confidence intervals (at confidence level
95%) of the number of random gene enrichment for each
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j (across the 1000 simulations) are calculated. Then, we
compared the observed number of genes shared by at least
j studies with the confidence interval obtained through
the permutational approach and choose that js showing a
significant difference between observed and random
number of gene enrichment. Finally among these js we
select the minimum j such that the ratio between the
expected and observed number of gene shared is less than
10%.

Functional classification and transcription factor binding 
site search for differentially expressed genes
Functional classification of gene lists has been performed
for each dataset. Differentially expressed gene has been
associated to one or more Gene Ontology (GO) categories
and KEGG metabolic pathways using BABELOMICS tool
[84]. Class enrichment (with respect to the entire plat-
form) has been calculated with the hypergeometric distri-
bution (Fisher exact test). The hypergeometric
distribution is used to obtain the chance probability of
observing the number of genes from a particular GO/
KEGG category among the selected differentially
expressed genes. The probability P of observing at least k
genes of a functional category within a group of n genes is
given by:

where f is the total number of genes with the same GO
class (in the microarray platform) and g is the total
number of genes within our platform. Then, the lists of
the significantly enriched GO categories and KEGG path-
ways (FDR < = 0.1) for each study have been compared.

Over-represented putative transcription factor binding
sites have been detected for the lists of differentially
expressed genes with oPOSSUM web tool [85]. The
default parameters suggested by the Authors have been
used to find TFBSs in the genomic flanking regions
upstream and downstream the sequences of co-expressed
genes. Two statistical measures (Z-score and Fisher exact
one-tail probability) were calculated to determine which
TFBS were significantly over-represented in the examined
flanking regions. Z-score > 6 and Fisher p-value < 0.01
were used as significant cut-off thresholds.

Networks constructions
Gene expression levels and molecular interaction infor-
mation have been integrated in order to construct a
molecular network of atrophy. Protein interaction file has
been downloaded from the NCBI ftp site. NCBI integrates

protein interaction information from three different
source databases: BIND (Biomolecular Interaction Net-
work Database, http://www.bind.ca) [86], BioGRID (Bio-
logical General Repository for Interaction Datasets, http:/
/www.thebiogrid.org/) [87], HPRD (Human Protein Ref-
erence Database, http://www.hprd.org) [88]. From the
entire file we selected only those interactions where one or
both of the two partner proteins were produced by genes
differentially expressed in our datasets. Cytoscape soft-
ware [89] has been adopted to visually integrate molecu-
lar information. Nodes of the networks correspond to
genes differentially expressed in datasets while edges cor-
respond to protein interactions. BINGO plug-in [90] has
been used to assess over representation of gene ontology
categories in the considered biological networks.
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was constructed through the integration of single networks computed from 
different atrophy expression datasets (denervation, unloading, fasting, 
diseases, ageing). Gene/protein nodes are represented by squares with 
identification symbols. Squares with red borders indicate up regulated 
nodes, whereas green borders indicate down regulated nodes. Colour of the 
symbol area identifies the expression dataset in which the corresponding 
gene was calculated as differentially expressed.
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