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ABSTRACT: Annulations that combine diacceptors with bis-nucleophiles
are uncommon. Here, we report the synthesis of 1,4-dioxanes from 3-
aryloxetan-3-ols, as 1,2-bis-electrophiles and 1,2-diols. Brønsted acid Tf2NH
catalyzes both the selective activation of the oxetanol, to form an oxetane
carbocation that reacts with the diol, and intramolecular ring opening of the
oxetane. High regio- and diastereoselectivity are achieved with unsymmetrical
diols. The substituted dioxanes and fused bicyclic products present interesting
motifs for drug discovery and can be further functionalized.

Annulation reactions combine two functionalized compo-
nents to construct valuable ring systems, often in one

pot.1 These take various forms, but typically, reactants will
each contain nucleophilic and electrophilic sites, such as the
Robinson annulation, or proceed in a concerted manner such
as the Diels−Alder reaction. More unusual is the involvement
of bis-electrophiles and bis-nucleophiles. Examples that
successfully form substituted saturated rings through the
combination of diacceptor fragments with bis-nucleophiles
are rare.2−4 This is due to the low occurrence of reactive bis-
electrophiles, whereas conversely, 1,2-bis-nucleophiles are
readily available. Hence, methods to exploit new bis-electro-
philes offer the potential to rapidly access new chemical space.
The 1,4-dioxane ring is an important class of saturated

heterocycle and is present in a wide range of bioactive
compounds (Figure 1A).5 Cyclic sp3-rich fragments have
received increased recent interest in medicinal chemistry given
the potential positive effect on pharmacokinetic properties and
three-dimensional scaffolding.6 Despite this, synthetic methods
to access 1,4-dioxanes are limited, and multistep processes are
often required.7 Typically, complex hydroxy-ether precursors
bearing a leaving group or pseudoleaving group (e.g., an
epoxide) are prepared through lengthy synthetic sequences to
assemble the 1,4-dioxane ring through an intramolecular
cyclization (Figure 1B).8 Such strategies do not readily allow
the rapid generation of further analogues that may be necessary
in library synthesis in medicinal chemistry, as each example
requires a separate synthetic sequence.
Oxetanes offer intriguing potential as synthetic intermediates

due to their moderate ring strain (106 kJ mol−1; cf. 112 kJ
mol−1 for epoxides and 25 kJ mol−1 for THFs),9 which can be
modulated by substituents. 3,3-Disubstituted oxetanes display
high stability toward external nucleophiles, which has led to
this substitution pattern in particular being adopted in

medicinal chemistry.10,11 However, they can remain suscep-
tible to ring opening by internal nucleophiles (i.e., intra-
molecular processes), especially under acidic conditions.11,12

This intramolecular cyclization strategy has been successfully
employed for the synthesis of heterocycles from prefunction-
alized oxetane intermediates.13,14 In particular, Sun has
exploited this in the enantioselective syntheses of heterocycle
derivatives employing a chiral phosphoric acid catalyst. This
has included the enantioselective synthesis of 1,4-dioxanes
from preformed hydroxy-ether-containing oxetanes (Figure
1C).15 Kuduk recently reported tandem amination and oxetane
opening for the preparation of benzomorpholines.16

Recently, oxetanols have displayed potential to operate as
bis-electrophiles. We have developed methods for the
formation of oxetane carbocations using Lewis acid catalysts
to dehydrate 3-aryloxetan-3-ols.17,18 Specifically, reaction with
4-substituted phenols gave a Friedel−Crafts reaction at the 2-
position of the phenol and was followed by opening of the
oxetane ring by the phenolic oxygen under the Lewis acidic
conditions to yield dihydrobenzofurans (Figure 1D).17

Similarly, Sun reported the synthesis of indolines using
In(OTf)3 as a Lewis acid catalyst.19

Here, we report the activation of oxetanols with HNTf2 as a
Brønsted acid catalyst with 1,2-diols as bis-nucleophiles to
yield functionalized 1,4-dioxanes (Figure 1E). This provides an
unusual annulation reaction exploiting readily available diol
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substrates suitable for divergent synthesis, including cyclic diols
to form saturated bicyclic heterocycles. The reaction occurs
diastereoselectively, is metal-free, and generates water as the
only byproduct.
Initial attempts to use diols with our previously reported

conditions using Li catalysis, as successful for phenol
nucleophiles, showed no reaction between 4-methoxyphenyl
oxetanol 1a and ethylene glycol (Table 1, entry 1). Only
starting material 1a was recovered which was attributed to
chelation of the diols to the metal catalyst that led to
deactivation.20

Other Lewis acids were similarly unsuccessful. Instead, we
investigated strong Brønsted acids.21 Using catalytic TfOH, we
were delighted to obtain dioxane 2 in 42% yield (entry 2). A
switch to toluene as solvent and an increase in catalyst loading
to 10 mol % further improved the yield (entries 3−5).
Acetonitrile was then investigated as a more polar solvent that
could stabilize the oxetane carbocation and solubilize polar
substrates (entry 6). The acid catalyst was changed from
TfOH (a fuming liquid) to the more practical Tf2NH (a solid;
entry 7).22 Further small modifications in temperature and
concentration led to the optimal conditions with a yield of 95%
of 2 (entries 8−9). Interestingly, no products from the Ritter

reaction, i.e., attack of acetonitrile at the carbocation, were
observed when conducting the reaction in the absence of
nucleophile (Supporting Information Table S1). Importantly,
though 5 equiv of nucleophile led to the highest yields of 2,
lowering the equivalents of diol to 3 or 1 maintained a high
yield (entries 10 and 11). Using the diol as a limiting reagent
with a slight excess of oxetanol (1.3 equiv) led to 96% of 1,4-
dioxane 2 (Supporting Information Table S1).
With optimized conditions in hand, the scope of the reaction

was explored with a series of oxetanols and 1,2-diols (Scheme
1).
PMP-dioxane 2 was obtained in 90% yield on a 5.5 mmol

scale, generating 1.11 g of the desired product and highlighting
the scalability of the protocol. Further substitution patterns
were tolerated in moderate to high yields with electron-rich
aromatic substituents (3−10). The successful reaction of
ortho-substituted examples 3 and 5 is noteworthy because in
the presumed planar carbocation structure ortho-substituents
may clash with the oxetane methylene groups.23 Dioxane 6
bears the 3,4,5-trimethoxyphenyl pharmacophore, a motif
present in prominent bioactive compounds such as colchicine,
mescaline, and eudesmic acid derivatives but which has been
challenging to activate through an oxetane carbocation.18,23 A
different alkoxy substituent was tolerated (7), as well as free
(8) and protected phenols (9−10). TIPS-protected dioxane
10 was partially deprotected by catalytic amounts of the acid
catalyst. Interestingly, other aromatic rings like 1,3-benzodiox-
ole and methoxynaphthalene were incorporated in good yields
(11 and 12), as well as less electron-rich substrates, albeit in
reduced yields (13 and 14).
Next, the scope of 1,2-diols was explored (Scheme 1B,C).

The reaction temperature was lowered to 30 °C to improve
diastereo- and regioselectivities without suffering from a

Figure 1. (A) Medicinally relevant 1,4-dioxane rings. (B) Traditional
synthetic approaches. (C) Synthesis of 1,4-dioxanes from prefunction-
alized oxetane ethers. [BA]* = chiral Brønsted acid catalyst. (D)
Lewis-acid-catalyzed synthesis of dihydrobenzofurans and indolines
from oxetanols and phenols. (E) This work: synthesis of 1,4-dioxanes
directly from oxetanols and 1,2-diols using Brønsted acid catalysis.

Table 1. Selected Optimization for the Formation of 1,4-
Dioxane 2 from Oxetanol 1a and Ethylene Glycol

entrya catalyst (mol %) T (°C) solvent (concN; M) yield (%)b

1 Li(NTf2) (11)
c 40 CHCl3 (0.5) 0 [RSM]

2d TfOH (5) 40 CHCl3 (0.5) 42
3d TfOH (5) 40 CH2Cl2 (0.5) 55
4d TfOH (5) 40 toluene (0.5) 68
5d TfOH (10) 40 toluene (0.5) 73
6d TfOH (10) 40 MeCN (0.5) 84
7 Tf2NH (10) 40 MeCN (0.5) 86
8 Tf2NH (10) 40 MeCN (0.3) 91
9 Tf2NH (10) 50 MeCN (0.3) 95 (91)e

10f Tf2NH (10) 50 MeCN (0.3) 90
11g Tf2NH (10) 50 MeCN (0.3) 80

aReactions run on a 0.25 mmol scale. bYield calculated by analysis of
the 1H NMR spectrum of the crude mixture of the reaction using
1,3,5-trimethoxybenzene as an internal standard. Isolated yields in
parentheses. cWith 5.5 mol % of Bu4NPF6 as an additive. dReaction
run for 16 h. It was shown that there is no difference in yield between
16 and 24 h (Supporting Information Table S1). eIsolated on a
0.91 mmol scale in a separate reaction. fUsing 3.0 equiv of ethylene
glycol. gUsing 1.0 equiv of ethylene glycol. RSM = Returned starting
material. See Supporting Information Table S1 for full optimization
details.
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reduced yield. Further improved dr was obtained at 0 °C but in
lower yields (Supporting Information Table S2). 1,1-
Disubstituted 1,2-diols were successful coupling partners, and
1,4-dioxanes were obtained in good yields and excellent
regioisomeric ratios (15−17; Scheme 1B). Interesting
spirocyclic dioxanes were synthesized by employing cyclic
1,1-disubstituted diols as nucleophiles. Monosubstituted diols
led to a mixture of regio- and diastereoisomers (Supporting
Information Scheme S1).
A series of acyclic and cyclic cis- and trans-1,2-disubstitued

diols were probed to obtain monocyclic (18 and 19) and
bicyclic dioxanes (20−25) in useful yields and high
diastereoselectivities (Scheme 1C; see Supporting Information
Scheme S2 for a discussion on the origins of diastereose-
lectivity). Notably, there was no erosion of enantiomeric excess
when using an enantiopure diol (20), and further heterocycles
such as a tetrahydrofuran (24) and pyrrolidine ring (25) could
be incorporated. The fused dioxane-pyrrolidine motif is
present in a number of bioactive compounds (e.g., C, Figure
1A).5,24

The protocol was extended to the synthesis of other ring
systems (Scheme 1D). 1,2-Ethanedithiol and 2-mercaptoetha-
nol could be used as bis-nucleophiles after slight adaptations of

the reaction conditions to minimize overreactivity (26 and 27,
Supporting Information Tables S3 and S4). Catechol led to a
mixture of 1,4-dioxane 28, dihydrobenzofuran, and diary-
loxetane (Supporting Information Table S5). Glycolic acid was
a successful coupling partner and yielded dioxanone 29 in 69%
yield under the standard conditions.
Several 1,4-dioxanes were further characterized by X-ray

crystallography (2, 16, 18, 21, 21′, and 23; Scheme 1). The
crystal structures revealed a preference of the CH2OH group
for the equatorial position, leaving the aromatic substituent
axial. The crystal structures also confirmed the relative
stereochemistry of the major diastereomeric products in
Scheme 1C, which was also independently assigned by NOE
spectroscopy. Interestingly, the relative configuration of minor
diastereomer 21′, which was isolated and separated from 21 by
column chromatography, was also confirmed by X-ray
crystallography.
Further derivatization of the 1,4-dioxane products demon-

strated their stability and potential as functionalizable building
blocks (Scheme 2). Alcohol 2 was oxidized with potassium
permanganate to carboxylic acid 30. Alkylation of the alcohol
installed an alkyne click handle (31), and a nucleophilic
aromatic substitution reaction introduced a medicinally

Scheme 1. Annulation of Oxetanols and 1,2-Diols for the One-Pot Formation of 1,4-Dioxanesa

aReactions on a 0.25 mmol scale unless otherwise stated. Isolated yields are reported. Diastereomeric (dr) and regioisomeric (rr) ratios determined
from the 1H NMR spectrum of the crude reaction mixture. bReaction run on a 5.5 mmol scale. cReaction run on a 0.22 mmol scale. d18% of phenol
8 was also isolated. eReaction run for 32 h. fReaction run on a 0.136 mmol scale and the product isolated as a mixture of regioisomers with the
indicated rr. gProduct isolated as a mixture of diastereomers with the indicated dr. hAn additional 11% of a diastereomeric mixture was isolated (dr
67:33). jReaction run at 50 °C. kAdditional 10% of a diastereomeric mixture was isolated (dr 26:74). lAdditional 20% of a diastereomeric mixture
was isolated (dr 39:61). mReaction run at 0−30 °C and using 1.2 equiv of bis-nucleophile (see Supporting Information Table S3). nReaction run
on a 0.38 mmol scale (oxetanol) at 0−23 °C and using 0.75 equiv of bis-nucleophile (see Supporting Information Table S4). Yield based on bis-
nucleophile. oUsing TfOH (5 mol %) in CHCl3 (0.5 M) at 25 °C (see Supporting Information Table S5).
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important pyridine ring (32). Selective triflation of phenol 8 in
the presence of the aliphatic alcohol allowed a Suzuki cross-
coupling reaction to expand the range of functionality on the
aromatic ring (Scheme 2B).
Mechanistically, two possibilities may be considered, where

the order of key steps of hydroxyl substitution and oxetane ring
opening are reversed (see the Supporting Information, page
S19 for further discussion). Based on our observations and
prior studies,15,17 we propose a catalytic cycle whereby the
oxetanol first selectively reacts at the hydroxyl group,
promoted by the Brønsted acid catalyst, to generate an
oxetane carbocation (I and II; Scheme 3). Trapping of the
carbocation by ethylene glycol leads to an oxetane ether
intermediate (III), which is typically not observed25 and
rapidly opens the protonated oxetane ring to form a 1,4-

dioxane and regenerate the catalyst upon a final deprotonation
(IV).
Overall, oxetanols can act as 1,2-bis-carbocation synthons in

the reaction with diols in an unusual annulation reaction to
form dioxanes. 1,4-Dioxanes are formed in high yield from
readily available oxetan-3-ols and 1,2-diols using Brønsted acid
catalysis. A wide range of mono- and bicyclic dioxanes were
generated in good yields and high regio- and diastereoselectiv-
ities, including fused ring and spirocyclic examples. The
methodology was extended toward the synthesis of other
heterocycles such as dioxanones and 1,4-dithianes. The
products were diversified at the methanol handle through
oxidation and alkylation reactions. This work further
demonstrates the value of oxetanes as unusual synthons that
allow for nonclassical retrosynthetic disconnections, providing
a useful tool for the construction of complex molecules.
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