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Molecular mechanisms of Ebola virus pathogenesis:
focus on cell death
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Ebola virus (EBOV) belongs to the Filoviridae family and is responsible for a severe disease characterized by the sudden
onset of fever and malaise accompanied by other non-specific signs and symptoms; in 30–50% of cases hemorrhagic
symptoms are present. Multiorgan dysfunction occurs in severe forms with a mortality up to 90%. The EBOV first
attacks macrophages and dendritic immune cells. The innate immune reaction is characterized by a cytokine storm, with
secretion of numerous pro-inflammatory cytokines, which induces a huge number of contradictory signals and hurts
the immune cells, as well as other tissues. Other highly pathogenic viruses also trigger cytokine storms, but Filoviruses are
thought to be particularly lethal because they affect a wide array of tissues. In addition to the immune system, EBOV
attacks the spleen and kidneys, where it kills cells that help the body to regulate its fluid and chemical balance and
that make proteins that help the blood to clot. In addition, EBOV causes liver, lungs and kidneys to shut down their functions
and the blood vessels to leak fluid into surrounding tissues. In this review, we analyze the molecular mechanisms at the
basis of Ebola pathogenesis with a particular focus on the cell death pathways induced by the virus. We also discuss how
the treatment of the infection can benefit from the recent experience of blocking/modulating cell death in human degenerative
diseases.
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Facts

� The knowledge about Ebola-dependent pathogenesis is
limited owing to the need of work into biosafety level 4
(BSL4) laboratories and this represents a significant barrier
for experimental study.

� Life cycle modeling systems, including minigenome
systems and transcription- and replication-competent
virus-like particle (VLP) systems, allow modeling of the
virus life cycle under BSL2 conditions; however, all
current systems model only some aspects of the virus
life cycle relying on plasmid-based viral protein
expression.

� Cytopathic effect have been observed in in vitro filovirus-
infected cells, but the mechanisms leading to cell death in
EBOV infection are far from being understood.

� Electron microscopic analysis of tissues from EBOV-
infected animals indicate that infected cells do not
undergo apoptosis, but show vacuolization and sign of
necrosis.

Open Questions

What are the mechanisms that control cell fate in EBOV-
infected cells?
How different steps of EBOV life cycle interct/interfere with cell
death machinery (apoptosis and autophagy)?
The modulation of cell death pathways could represent
potential therapeutic strategy against EBOV infection?

The virus structure. The Ebola virus (EBOV) belongs to the
family Filoviridae. Filoviruses are membrane-enveloped
filamentous viruses that contain a negative sense single-
stranded RNA. The virus shape is very variable with long
tubes and many turns and branches. Morphologically, when
studied under the electron microscope, the viral particles look
like long stretched filaments with some particles tending to
curve into an appearance looking like the number '6'. The
long filaments are 80 nm in diameter and either 800–1000
nanometers long. RNA is only 1% of the mass of the virus.1
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The large virus structure is composed of three compartments
the nucleocapsid, the matrix space and the envelope.
EBOV does an incredible job being composed of only seven

genes, coding for eight proteins (Figure 1). The seven genes
are for the nucleoprotein (NP), the viral proteins VP24-VP30-
VP35-VP40, L (polymerase) and the glycoprotein (GP).2 The
surface GP is coded by the GP gene, and is expressed in two
molecular forms (GP1 andGP2) that are generated by anRNA
editing mechanism; it has important roles in virus infection and
pathogenesis, and its expression is tightly regulated during
virus replication. It has been recently demonstrated that the
level of GP1 and 2 expression regulates the virus production
and release.3 The NP embeds the genetic material, forming
with proteins VP30 and VP35, a large complex that is involved
in synthesizing virus RNAs. Separate genes code for proteins
VP40 and VP24 localized in virus matrix space.4,5

Five species of EBOV are known all named after the region
where has been identified: Bundibugyo, Reston, Sudan, Taï
Forest (formerly Côte d'Ivoire ebolavirus) and Zaire.
The two Zaire (EBOV) variants causing human outbreaks in

2014 in West Africa countries (mainly Guinea Konacry, Sierra
Leone and Liberia) and in the Democratic Republic of Congo
have been demonstrated, using phylogenetic analysis, to be
distinct from each other and from variants known from
previous EVD outbreaks. The two viruses have been named
'Makona' after the Makona River close to the border between
Liberia, Guinea, and Sierra Leone (Ebola virus/H.sapiens/
2014/Makona) and 'Lomela' after the Lomela River in
Democratic Republic of Congo (Ebola virus/H.sapiens/2014/
Lomela).6

Virus entry. EBOV enter the human body via mucosal
surfaces, abrasions and injuries in the skin or by direct
parental transmission.7 EBOV then attacks many other

organs; in fact, the virus is able to invade almost all human
cells using different attachment mechanisms for each cell
type, except for lymphocytes. It has been proposed that
EBOV can enter the target cells by using different uptake
mechanisms including lipid raft, receptor-mediated endocy-
tosis and macropinocytosis (Figure 2).8–12 Recent reports
have shown that cytoskeletal proteins dynamics, and the
involvement of the class I phosphatidylinositol-3 kinase–Akt
pathway are critical for EBOV uptake.13 However, the size of
EBOV particles, which have a uniform diameter of 80 nm,
varies dramatically in length ranging from 600–1400 nm, and
peak infectivity is associated with 805-nm particles.14 Thus,
the size of EBOV particles argues against host cell entry by
caveolae (typical for particle sizes ranging from 50–100 nm)
or 'canonical' clathrin-coated pits (typical for particles size,
200 nm).15 Another group of proteins involved in Filovirus
entry are the β1-integrins,16 which are involved in the uptake
of a variety of different viruses.17 Interestingly, detailed study
on one of these integrins, the α5β1-integrin, has demon-
strated that it is involved not in EBOV internalization, but
rather in the regulation of endosomal cathepsin required for
EBOV fusion.18

The cholesterol-enriched lipid raft microdomains seem to be
very important for EBOV entry. In fact, it has been shown that
EBOV entry requires functional rafts. In keeping with this
assumption, Filoviruses released from infected cells contain
raft-associated molecules, suggesting that viral exit occurs at
the rafts. There is a consensus to accept that the plasma
membrane raft microdomains represent the gateway for the
entry and exit of Filoviruses and generation of VLPs.19

The EBOV entry is mediated by the viral spike GP, which
docks viral particles to the cell surface. However, additional
host factors shuttling from the plasma membrane to the
endosomal compartment are required because, subsequent

Figure 1 Overview of EBOV gene products and their interactions with the host cell. There are seven genes in the Ebola virus: the NP, the viral proteins VP24-VP30-VP35-
VP40, L (polymerase) and the GP. Figure summarizes the function of genes products within EBOV biology, together with the existing knowledge on host cell factors and functions
affected by each EBOV proteins
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to internalization, the virus utilizes the conventional endolyso-
somal pathway and is trafficked through early and late
endosomes before membrane fusion takes place (Figure 2).
Using a genome-wide haploid genetic screen in human cells to
identify host factors required for EBOV entry, it has been
shown that the membrane fusion mediated by the EBOVGPs,
as well as the viral escape from the vesicular compartment
require the Niemann-Pick C1 (NPC1) protein, independent of
its known function in cholesterol transport. The screen also
identified the six members of the homotypic fusion and
vacuole protein sorting (HOPS) multisubunit tethering com-
plex, which are involved in the fusion of endosomes to
lysosomes, as essential intracellular partners of the virus. In
line with these findings, cells defective for the HOPS complex
or primary fibroblasts derived from human NPC1 disease
patients, are resistant to Ebola infection virus..20–22

Fusion of the viral and cellular membrane is mediated by
GP2,23 which results from proteolytic cleavage of GP1 by the
endosomal proteases cathepsin B and cathepsin L.24 Inter-
estingly, the cathepsin dependence of virus entry seems to be
cell-type specific. Although virus entry into Vero cells is
dependent on the activity of both cathepsin B and cathepsin L,
infection of human dendritic cells (DCs) by EBOV does not
require active cathepsin L.25 Fusion of the viral and cellular
membrane leads to the release of the viral nucleocapsid into
the cytoplasm of the infected cell where transcription and
replication of the viral genome take place. Viral budding occurs

either at intracellular membranes, the multivesicular bodies or
at the plasma membrane.

Ebola-induced Major Pathogenetic Events

The complex array of pathogenetic events involved in the
severe clinical manifestation of Ebola derives from a number of
mechanisms. They include the direct cytopathogenic effects of
the virus, that causes the destruction of infected cells, and
indirect effects, that represent an amplifying mechanism
leading to the destruction/impairment of several crucial body
functions, as those played by the innate and adaptive immune
system and by the endothelium.
Analyses of human samples obtained from succumbed

patients or from experimentally infected animal models
indicated that monocytes/macrophages, DCs, fibroblasts,
hepatocytes, adrenal cells and epithelial cells can be
productively infected by this virus. Furthermore, various
studies suggested that monocytes/macrophages and DC are
the early replication sites during EBOV infection.26–28 These
cells also have key roles in the dissemination of the virus by
migrating out of the spleen and lymph nodes to other tissues.29

Several immunological mechanisms are involved in the
pathogenesis of EBOV infection involving both innate and
adaptive immune response. In particular, innate immune
deregulation (Figure 3) involves inhibition of type-I IFNs
response, perturbation of cytokines/chemokines network,
functional impairment of DC and natural killer (NK) cells.

Figure 2 Ebola virus entry. EBOV binds to receptors on the cell surface through the viral spike protein, GP. The virus is then internalized via macropinocytosis and trafficked to
endosomal compartments, where the cysteine proteases cathepsin B (CatB) and cathepsin L (CatL) digest GP to a 19 kDa form (GP2). Within the late endosome/lysosome, the
viral GP2 interacts with NPC1 allowing fusion between the viral and endosomal membranes. After fusion, the viral nucleocapsid is released into the cytoplasm, where the genome
is replicated
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Adaptive immune deregulation involves both humoral and cell
mediated immune arms (Figure 4).

Inhibition of type-I IFNs response. Type-I IFNs response is
one of the early and key innate mechanisms involved in the
antiviral immune response. A protective role of IFN-α was
suggested during EBOV infection, as the early IFN-α

production was correlated to survival in a mouse model of
EBOV infection30 and in humans.31 Nevertheless, several
observations in vitro and in vivo strongly suggest that EBOV
is able to evade type-I IFNs response (IFN-α and IFN-β;
Figure 3a).32,33 Inhibition of type-I IFNs was initially described
in EBOV-infected endothelial cells,34 and seems to have a
key role in filorus pathogenesis. Moreover, EBOV infection of

Figure 3 EBOV infection induces innate immune cell dysfunctions. (a) EBOV infection is able to impair type-I IFNs production by infected cells and to block IFN response in
uninfected cells; (b) EBOV infection is able to induce massive cytokines/chemokines production by monocytes/macrophages; (c) EBOV infection is able to impair DC maturation
and to deregulate cytokine production. (d) EBOV infection is able to induce massive NK apoptosis, thus avoiding NK function and impairing NK-mediated DC maturation help

Figure 4 EBOV infection induces adaptive immune cell dysfunctions. (a) Antibodies production represents the best correlate of protection during EBOV infection. Two
different forms of EBOV GP, soluble GP (sGP) and glycosylated-GP (GlycGP), are able to drive antibodies shielding and misdirection. (b) EBOV infection of DC results in a
deregulated DC/T synapse, characterized by an effective MHC-peptide/TCR interaction (signal 1), in a high inflammatory microenvironment (deregulated signal 3) in the absence
of co-stimulatory accessories molecules on DC surface (ineffective signal 2). The inappropriate DC/T-cell interaction induces T-cell apoptosis, avoids CD4 T-cell clonal expansion,
thus blocking all CD4 T-cell helper functions such as CD8-mediated cytotoxicity and antibodies-production by B cells
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peripheral blood mononuclear cells (PBMC) failed to induce
type I IFNs and inhibited IFN-α production induced by double-
stranded RNA.35 Several viral proteins are involved in this
process. The VP35 has been shown to suppress IFN-β
production through multiple inhibitory effects that include
the disruption of RIG-1 pathway by preventing IRF-3
phosphorylation,36 the inactivation of IRF-7,37 and the
inhibition of activation of IFN-inducible dsRNA and
Dicer-dependent protein kinase R.38 In addition, other
studies suggest a role of VP24 in disrupting both type-I and
type II IFNs signaling, by inhibiting the transcription of
antiviral genes. Specifically, VP24 prevents the nuclear
accumulation of dimerized phosphorylated STAT-1,39 which
participates in both type I (i.e., STAT-1/STAT-2 phosphory-
lated-dimer) and type II (STAT-1/STAT-1phosphorylated-
dimer) signal propagation cascades.40,41 Finally, recent
observations showed that residues within the transmembrane
domain of GP contribute to the inhibition of tetherin activity, a
type-I IFN-inducible cellular factor able to prevent enveloped
virus budding from plasma membranes.42,43 Several possible
mechanisms have been proposed such as interference with
tetherin integrity, steric interference between viral and cellular
membranes and exclusion of tetherin from the region of
plasma membrane from which EBOV bud.44

Cytokines/chemokines deregulation. In vitro studies
showed that EBOV infection is able to induce a massive
cytokines/chemokines production by PBMC or monocytes/
macrophages (Figure 3b).35,45 Indeed, virion attachment and
entry into human macrophages profoundly affects early
cellular gene expression. Several inflammatory mediators
are induced within the first hour of EBOV exposure, that is,
prior to virus gene expression, suggesting a direct role of the
GP present on virion surface in inducing an initial inflamma-
tory response.45 Moreover, the ability of shed GP (resulting
from the cleavage of surface GP by the cellular metallopro-
tease TACE) in inducing inflammatory mediators release has
been recently shown.46 Shed GP is able to bind and activate
non-infected DC and macrophages mainly through TLR4
engagement, inducing the secretion of pro- and anti-
inflammatory cytokines. This newly discovered activation
mechanism of non-infected immune cells by shed GP could
have an important role in the establishment of systemic
inflammation during infection, provoking the excessive
cytokine storm that appears to be detrimental to survival
after infection.
Massive pro-inflammatory cytokines/chemokines release

was confirmed during in vivo EBOV infection both in animal
models47 and in humans.31,48–51 Different profiles were
associated to different clinical outcome, consistent with the
idea that systemic inflammation may contribute to a fatal
outcome. Survivors of Ebola infection showed an early and
short-lived rise in serum cytokines/chemokines, indicative of
innate immune response activation, whereas fatal infection
is associated to a deregulated inflammatory immune
response.48 Delayed elevation in serum viral RNA, concurrent
with a delayed inflammatory cytokine and chemokine
response seems to be associated with survival In the
macaque model.52

In two recent and relatively large studies on human
infection, non-survivors develop extremely high levels of
pro-inflammatory cytokines (IL-1β, IL-1RA, IL-6, IL-8, IL-15
and IL-16), chemokines (MIP-1α, MIP-1β, MCP-1, MIF, IP-10
GRO-α and eotaxin) that began rising shortly after disease
onset and continued to rise until the last sampling within
2–3 days before death.49,51 In contrast, sCD40L, that may
represent ongoing repair of altered endothelium by activated
platelets, was detected at high levels in survivors and has
been proposed as a novel biomarker of clinical outcome.49

Interestingly, other soluble mediators have been proposed as
markers of survival/fatality (IFN-α, IFN-γ, IL-12, IL-17 and
TNFα) but different studies showed contrasting results,
probably owing to different time of sampling.31,48–51 It is
interesting to note that IL-10 may have a critical role in
modulating the inflammation/regulation profile. Although IL-10
was mildly elevated in survivors, probably as a feedback
mechanism to control the inflammatory response, the increase
was short lived, as would be expected once cytokine levels
returned to normal levels. However, IL-10 was 6- to 10-fold
higher in fatal cases and remained elevated until death.31,48–50

Thus, suggesting that EBOV-infected macrophages and DC
produce inflammatory mediators and chemokines able to
recruit additional macrophages and DC to areas of infection,
making more target cells available for viral exploitation and
further amplifying an already deregulated host response.48

As disease progresses, abnormal production of nitric oxide
has been shown,53 inducing several pathological disorders
including apoptosis of bystander lymphocytes, tissue damage
and loss of vascular integrity, which might contribute to virus-
induced shock. Subsequent extensive viral replication leads to
increased levels of additional pro-inflammatory cytokines,
which then triggers the coagulation cascade. Moreover, death
and hemorrhage were associated with elevated thrombomo-
dulin and ferritin levels. An increase of ferritin was also
observed in other viral hemorrhagic fever infections such as
Dengue54 and Crimean Congo hemorrhagic fevers.55 Other
soluble mediators were found associated with hemorrhagic
manifestation, such as MCSF, MIP-1α, IP-10 and sICAM. In
one possible model, these cytokines could recruit leukocytes
to areas of inflammation, and the production of adhesion
molecules, such as ICAM, would facilitate leukocyte adhesion,
rolling, and diapedesis. This would leave an activated,
leukocyte-enriched, procoagulant endothelium, causing
deregulated hemostasis, which could manifest clinically as
hemorrhage.49 Overall, virus-induced expression of these
mediators seems to result in an immunological imbalance,
thus contributing to the pathogenesis and disease
progression.

DC infection and functional impairment. The ability of
EBOV to infect and replicate in DC has been demonstrated
in vitro56–58 and in vivo.29 Interestingly, infected DC exhibited
relatively little cell death over 6 days of infection.57 This
sustained ability to survive while infected could offer the virus
opportunities to disseminate in vivo.
Immature DC function as sentinels of the adaptive immune

system. EBOV-infected DC failed to produce cytokines,
including type-I IFNs, and were unable to perform a correct
maturation process (Figure 1c).30,56,57 Specifically, EBOV
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infection induced 'aberrant' DC maturation, evidenced by
upregulation of cell-surface CD40 and CD80, only small
increase of CD86 and HLA-DR, absence of CD11c, CD83
upregulation and failure to decrease CCR5, increased
expression of cytokine, chemokine, antiviral and anti-
apoptotic genes, without significant changes for the expres-
sion of lymph node homing receptors or T-cell co-stimulatory
molecule genes.56,59 Aberrant expression of cytokines,
chemokines and DC differentiation impairment observed
during EBOV infection resulted mainly from the cooperative
effect of two different viral proteins VP35 and VP24.60 As
expected, the aberrant DC differentiation results in ineffective
DC-/T-cell synapses that are unable to induce a correct
adaptive immune response (Figure 4). Indeed, EBOV- infected
DCs failed to stimulate T-cell proliferation,30,56,57 suggesting
that EBOV suppression of DC function prevent initiation of
adaptive immune responses and facilitate uncontrolled,
systemic virus replication. On the other hand, the downstream
effects of antigen-presenting cell dysfunction are profound
with a marked lack of adaptive immunity noted in fatal cases of
filovirus infection.
In the context of innate immune response, a decisive role of

NK cells in inducing a protective immunity by EBOV-like
particle administration was suggested in a mouse model.61

VLPs directly activated human NK cells in vitro inducing pro-
inflammatory cytokine production and CD95L- or perforin-
mediated cytolysis of target cells.62 Differently from what
happens in wild-type mice, treatment of NK-deficient or
-depleted mice with VLPs had no protective effect against
EBOV infection and NK cells treated with VLPs protected
against EBOV infection when adoptively transferred to naive
mice.61 Nevertheless, a massive loss of NK cells was
observed in vivo during Ebola infection both in mice63 and in
non-human primates29,64 (Figure 3d). It is well known that NK
cells have a crucial role for their ability to mediate direct
protective cytotoxicity and to drive adaptive immune response
by helping DC maturation.65,66 Thus, the massive NK cell loss
in the peripheral blood may have impact on the failure of
infected cells clearance but also be partially responsible for
the unbalanced maturation signals for DC (Figure 3d).

Adaptive immune response impairment and lymphocytes
loss. An effective immune response needs the coordinate
activities of both humoral and cellular arms. In recovered
patients, robust immune responses, with early and increasing
levels of IgM and IgG, was developed during the acute phase
of EBOV infection,67 followed by clearance of circulating viral
replication markers, although fatal infections were character-
ized by impaired humoral responses, with absent virus-
specific IgG and barely detectable IgM.48 Interestingly,
humoral immune response seems to be long lasting, as
survivors of EBOV infection have been recently shown to
present serum-neutralizing activity and GP-specific IgG 12
years after infection.68 Several mechanisms have been
developed by EBOV to escape humoral immune response
(Figure 4). Recently a role of heavy glycosylation of the
mucin-like domain of viral GP in shielding the cell-free virus
from access to potential virus-neutralizing antibodies was
described.69 Moreover, EBOV is able to produce a secreted
form of GP that can modulate or misdirect host immune

response.70,71 In particular, soluble GP promote immune
evasion by serving as an antibody decoy for GP or by
presenting alternative non-neutralizing antibody epitopes.72

During Ebola infection, the antibody titer represents the best
correlate of protection,73,74 however several evidences sug-
gest a key role of T cells in mediating a protective immune
response.74–76 The transfer of both serum and splenocytes
from Ebola VLP-vaccinated mice, but not serum or spleno-
cytes alone, conferred protection against lethal-EBOV infec-
tion, suggesting that both B and T lymphocytes are absolutely
required for VLP-mediated protection against EBOV
infection.74 Studies measuring the antigen-specific T-cell
response are limited by the difficulty to obtain viable PBMC
samples and to perform T-cell functional assay in BSL4
facilities. In recovered patients, early and increasing levels of
IgG were followed by a parallel activation of cytotoxic T cells,
which was indicated by the upregulation of FasL, perforin,
CD28 and IFN-γ mRNA in PBMC.77 Notably, T-cell activation
was observed at the time of viral clearance, indicating that
cytotoxic responsesmay also be implicated in the resolution of
infection through Fas/FasL and perforin pathways. In contrast,
in fatal cases, early expression of IFN-γ was paralleled by a
massive increase of the apoptotic marker CD95, and was
followed by the disappearance of T-cell related mRNA
(including CD3 and CD8) in the days preceding death.
Moreover, DNA fragmentation in blood leukocytes was
observed, indicating that massive intravascular apoptosis
occurred during the days immediately preceding death.77

The ability of EBOV-infected PBMC to induce lymphocyte
apoptosiswas shown in vitro35 and confirmed in vivo in mice,61

in non-human primate animal models29 and in humans.51

In human fatal cases of EBOV infection, a massive CD4 and
CD8 T-lymphocyte loss was observed: CD4 and CD8
lymphocytes represented only 9.2% and 6% of PBMC in fatal
cases, comparedwith440 and 20% in healthy individuals and
survivors. Respectively, 54.1% and 75.8% of these cells
expressed CD95, values about 10 times higher than those
observed in the healthy individuals, suggesting apoptotic
mechanisms largely through Fas/FasL interaction.51 Interest-
ingly, despite the apparent lack of virus-specific IgG in non-
human primates and in non-surviving human patients,64,77 in
non-human primates the number of CD20+ B lymphocytes in
the blood appears not to be significantly altered after the
filovirus infection.
T-cell apoptosis can be the result of a deregulated DC/T

synapse during EBOV infection. It is well known that T-cell
activation needs a coordination of three different signals
(Figure 4): (i) TCR recognition of MHC-peptide; (ii) binding of
several co-stimulatorymolecules between DC and T cells; and
(iii) balanced ensemble of soluble factors in the microenviron-
ment. A well-orchestrated DC/T-cell interaction of all three
signals is necessary to effectively activate CD4 T cells that, in
turn, exploit all their help activities, such as clonal expansion of
specific T-cell clones, driving CD8 T-cell cytotoxicity, and
sustaining antibody-producing B cells. During EBOV infection,
we can speculate that T/DC synapsis is ineffective as it is
characterized by TCR/MHC-peptide recognition (signal 1) in a
high inflammatory microenvironment (deregulated signal 3)
but in absence of co-stimulatory accessory molecules on DC
surface (ineffective signal 2). As well known, this inappropriate
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interaction induces T-cell apoptosis, thus blocking all T-cell
helper functions on CD8-mediated cytotoxicity and the
production of antibodies by B cells (Figure 4). The final result
is a marked collapse of adaptive immune response.
Notably, in a mice model, a residual T-cell function is

observed in the remaining cells despite their massive loss in
numbers.63 The number of functional T cells that are
generated during the late phase of infection is likely too low
to control high viral titers although they are sufficient upon
transfer to newly infected animals to induce disease control.78

Studies in mouse model indicate that although immediate
control of EBOV infection may be achieved by CD8+ T cells, B
and CD4+ T cells are important for long-term control and
clearance of virus replication.75 During Ebola infection,
lymphoid depletion and necrosis have also been reported in
spleen, thymus and lymph nodes of dying patients, as well as
and in experimentally infected non-human primates. Studies
carried out, after the 2000 Ebola outbreak in Uganda, showed
a drastic decrease in the number of circulating T lymphocytes
in succumbing people but not in survivors. Interestingly,
despite the large loss of lymphocytes occurring during the
infection, no signs of virus infection in lymphocytes could be
detected, suggesting a bystander mechanism of apoptosis.
The molecular mechanism leading to the apoptosis induction
in bystander lymphocytes during the Ebola infection is not
defined, however it has been proposed that it results from the
activation of several different cell death modalities. These
might include the death receptors pathways mediated by both
TNF-related apoptosis-inducing ligand and Fas, stimulated by
soluble mediators or possibly by direct interactions between
lymphocytes and EBOV proteins. In addition, recent studies
have shown that EBOV does not induce apoptosis in infected
cells but rather leads to a non-apoptotic form of cell death, that
ultrastructural analysis indicates to represent necrotic cell
death.79

These findings highlight a key pathogenetic role for the
TNF-α in this process, shedding some light on possible
molecular mechanisms involved and indicating some potential
therapeutic targets.

Cytopathogenesis of Non-immune Cells

Although the classic severe EBOV disease presentation is
characterized by hemorrhagic events (petechiae, ecchymosis,
mucosal hemorrhages and visceral hemorrhagic effusions),
studies defining the molecular mechanisms of endothelial
impairment are elusive. The major pathogenetic events for the
endothelial cells seem to be determined by the EBOVGP. The
GP has been suggested to have a key role in the induction of
cytotoxicity and injury in endothelial cells, which is character-
ized by cell rounding and detachment associated by down-
regulating cell-adhesion molecules typical of anoikis.80

It has been shown that VLPs consisting of the EBOV matrix
protein VP40 and GP (1,2) can activate endothelial cells and
induce a decrease of their barrier function. In contrast, the
soluble GP does not activate endothelial cells or change the
endothelial barrier function. Interestingly, the VLP-induced
decrease in barrier function is further enhanced by TNF-α,
which is known to induce a long-lasting decrease in

endothelial-cell barrier function and is hypothesized to have
multiple roles in EBOV pathogenesis.81

Over the last decade, the knowledge of cell death signals
involved in disease pathogenesis totally changed. Indeed, in
addition to apoptosis, multiple forms of regulated necrosis
have been shown to have a key role in pathologies such as
sepsis, inflammatory diseases and infectious disorders.82,83 In
particular, the regulation of necroptosis in vivo is currently
under the focus of many laboratories.84,85 Considering the
essential role of TNFα in modulating necroptosis/apoptosis or
cell survival, it would be very interesting to determine whether
during the EBOV infection the reported necrosis is because of
the activation of this cell death modality.
The liver is another important target for EBOV,86–89 probably

having an important role in the disease pathogenesis and
hepatocellular necrosis have been reported both in patients
and in experimental animal models.90 Indeed, the hemor-
rhagic events typical of the classic Ebola infection could be
related to impaired synthesis of blood coagulation protein/
enzymes owing to the severe hepatocellular necrosis.91 In a
recent study, 399 microRNAs were identified by deep
sequencing of tissues of the Black flying fox (a confirmed
natural reservoir of the human hemorrhagic fever-inducing
pathogens), which has a key role in protecting these animals
from developing the disease. Of the microRNAs identified,
several were predicted to target genes involved in the DNA
damage response, apoptosis and autophagy.92 These find-
ings underlie the important link between the hemorrhagic fever
pathogenesis and the role played by autophagy in the
organism homeostasis. Autophagy aids in the removal of
pathogens (a process called xenophagy) by working in
conjunction with the innate immune system.93–96 However,
several microorganisms have evolved unique mechanisms to
circumvent, suppress or exploit autophagic machinery to
ensure their own survival and replication.97,98 For instance,
HSV-1 and HIV-1 block autophagy to abrogate their degrada-
tion through this pathway by blunting autophagosome
formation or interrupting autophagosome–lysosome fusion,
respectively.99–102 By contrast, pathogens such as polio
and dengue activate autophagy to enhance their own
replication.103 Ebola VLP containing VP40, GPandNP protect
rodents and non-human primates from lethal-EBOV infection,
thus representing as good candidates for vaccine. Various
findings indicate that eVLP stimulate early innate immune
responses through TLRs and type-I IFNs signaling pathways
to protect the host from EBOV infection. Interestingly, both
TLRs and type-I IFNs mediate induction of autophagy
promoting the autophagosome fusion with pathogen-
containing phagosomes leading to the elimination of intracel-
lular pathogens.104 In addition, proteins that regulate transport
and fusion events between vesicles are important in autopha-
gosome formation andmaturation. Rab 7, a protein involved in
transport to late endosomes and in the biogenesis of the
perinuclear lysosome compartment, is required for the normal
progression of autophagosomes to autophagolysosomes.105

EBOV VP24 has been shown by a mass spectrometry
approach to interact with many proteins which modulate
endosomal trafficking such as Rab-11B and Rab-7a.106

A very recent study identified a role for two-pore channels
(TPCs) in EBOV infection.104 The blockade of the TPC
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function by the selective inhibitor bis-benzylisoquinoline
alkaloid, tetrandrine, prevents EBOV from escaping the
endosomal network into the cell cytoplasm, and consequen-
tely the virus spreading. TPCs are localized in endosomes and
lysosomes and their stimulation by nicotinic acid adenine
dinucleotide phosphate (NAADP) mediates the release of
cytosolic Ca++.105 Interestingly we reported that the activation
of TPCs by NAADP leads to an induction of autophagy.105 In
keeping with these findings, it has been shown that tetrandrine
is a potent autophagy agonist. In fact, low dose of this
compound induce the formation of autophagolysosomes and
the accumulation of GFP-LC3 puncta.107 These findings
suggest an important role of autophagy in the host response
to EBOV infection. Future studies should address this
hypothesis.

Conclusions and Future Perspectives

The ongoing Ebola epidemics, determined by a separate
clade of EBOV, from the previously identified strains,108 has
led to 410 000 deaths so far, significantly highliting the need
for specific therapies. At the moment, no approved vaccine or
drug is available for Ebola. Experimental vaccines and
treatments for Ebola are under development, but they have
not yet been fully tested for safety or effectiveness. Current
experimental approaches for treatment, or post-exposure
prophylaxis of EBOV diseases, are based on: antivirals
directly targeting the virus (i.e., small molecules inhibiting viral
polymerase, phosphor-oligonucleotides to block viral protein
production, single or multiple small interfering RNAs to silence
viral genes); compounds targeting host functions required for
viral replication and spread (i.e., multi-ion channel inhibitor and
adrenoceptor antagonist as inhibitor of filovirus cell entry;
selective estrogen receptor modulators to control late viral
entry); immune-modulating drugs, aiming at promoting of host
defense and modulate the harmful host immune responses
(i.e., compounds addressing coagulation factors and/or
cytokines activity, multiple interferons and anti-opioid pep-
tides); single or multiple mono or polyclonal antibodies for viral
neutralization and killing of infected cells; passive transfers of
immunity using convalescent plasma; vaccines for post-
exposure treatment; finally, advanced life support is recog-
nized as a key intervention to sustain and restore perturbed
vital functions in infected patients.109–111

EBOV is able to evade innate and adaptive (both humoral
and cellular) responses by encoding for multiple viral proteins
that inhibit both type-I IFNs synthesis and response, by
masking viral epitopes by glycosylation processes, by dereg-
ulating inflammatory response, by preventing DC maturation,
thus resulting in a catastrophic failure of innate and adaptive
immunity. Thus host factors have a key role for viral replication
and release, and may represent good targets for therapeutic
strategies. Among host factors representing potentially pro-
mising targets for anti-Ebola strategies, newly discovered
mechanisms may provide a new perspective for elaborating
innovative strategies. In particular, we can take some
advantage from the knowledge of cell death in the Ebola
pathogenesis to open up the way to new strategies toward the
development of antiviral therapeutic approaches. Considering
the similarities between the role played by TNF in the

pathogenesis of bacterial sepsis and the EBOV infection, it
might be possible to envisage the treatment of hemorrhagic
fevers with anti-TNF antibodies which are known to protect
from sepsis.108 TNF inhibition can be achieved with several
commercially available monoclonal antibodies or with a
circulating receptor fusion protein.108 The anti-TNF mono-
clonal antibody biologics are all currently approved by the US
Food and Drug Administration for human use and there are no
major side effects for short-term treatments as in the case of
the EBOV infections. Studies in patients with sepsis have
shown that acute statin treatment reduces the risk of
developing severe sepsis (multi-organ failure) by 83%, and
multi-organ failure is what kills people with EBOV infection.
Moreover, acute treatment with statins and other immunomo-
dulatory agents (e.g., ACE inhibitors, ARBs etc.) significantly
improves the 30-day survival in patients hospitalized with
pneumonia and sepsis.112

Another possible attempt would be to prevent cell death and
in particular necroptosis. For this it would be very important to
test in animal models the effects of necrostatin1 which has
been shown to be a potent inhibitor of this form of programmed
necrosis. In connection with this, when the EBOV-infected
cells were treated with dsRNA-dependent caspase recruiter
(dsCARE) virus titers were strongly reduced.79

Finally, on the basis of our hypothesis that autophagy can
help the host’s innate immune response to fight the EBOV
infection, the treatment with autophagy inducers such as
rapamycin, resveratrol and other compounds should be tested
in animal models.113 Thus from these considerations it is
possible to conclude that alternative strategies to combat the
hemorrhagic viral infections exist, although the development of
a specific vaccine is for sure the best approach to prevent
these pandemic infections.114,115
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