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SUMMARY

Chemical modifications of mRNA, the so-called epitranscriptome, represent an additional layer 

of post-transcriptional regulation of gene expression. The most common epitranscriptomic 

modification, N6-methyladenosine (m6A), is generated by a multi-subunit methyltransferase 

complex. We show that alphaherpesvirus kinases trigger phosphorylation of several components of 

the m6A methyltransferase complex, including METTL3, METTL14, and WTAP, which correlates 

with inhibition of the complex and a near complete loss of m6A levels in mRNA of virus-infected 

cells. Expression of the viral US3 protein is necessary and sufficient for phosphorylation and 

inhibition of the m6A methyltransferase complex. Although m6A methyltransferase complex 

inactivation is not essential for virus replication in cell culture, the consensus m6A methylation 

motif is under-represented in alphaherpesvirus genomes, suggesting evolutionary pressure against 

methylation of viral transcripts. Together, these findings reveal that phosphorylation can be 

associated with inactivation of the m6A methyltransferase complex, in this case mediated by 

the viral US3 protein.
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In brief

Jansens et al. demonstrate that phosphorylation can be associated with inactivation of the m6A 

methyltransferase complex, in this case mediated by the alphaherpesviral US3 protein.

INTRODUCTION

Post-transcriptional modification of transcripts by N6-methyladenosine (m6A) is involved 

in several aspects of mRNA biology, and dysregulation is associated with various diseases, 

including cancer and many different viral infections (Williams et al., 2019; Barbieri and 

Kouzarides, 2020). m6A in mRNA is deposited by a multi-subunit complex called the m6A 

writer complex, in which METTL3 is the catalytic subunit (Bokar et al., 1994; Wang et 

al., 2014, 2016a; Śledź and Jinek, 2016; Wang et al., 2016b). Despite the identification 

of the components of the m6A writer complex and a wide array of studies into the role 

of m6A methylation, the regulation of the complex is still poorly understood. Studies 

showing differences in methylation levels in transcripts are typically associated with up- or 

downregulation of components of the complex (Pinello et al., 2018; Peng et al., 2019). 

However, since the discovery of the m6A writer complex, there has been speculation 

regarding potential post-translational regulation mechanisms (Bokar et al., 1994). More 

recently, SUMOylation of METTL3 has been shown to suppress m6A methyltransferase 

activity (Du et al., 2018), while WTAP and METTL3 phosphorylation moderately increased 

methyltransferase activity (Sun et al., 2020). These studies provided the first evidence for 
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post-translational regulation of the m6A methyltransferase complex, despite the relatively 

small effects on its activity.

A potential strategy for uncovering mechanisms that regulate the m6A writer complex is 

to examine virus-induced regulation of m6A levels. Studies from the 1970s showed that 

m6A levels in viral and host poly(A) RNA were markedly reduced after infection with the 

alphaherpesvirus herpes simplex virus 1 (HSV-1) (Bartkoski and Roizman, 1976, 1978). A 

recent report also showed that infection of cells with HSV-1 reduces m6A levels (Srinivas 

et al., 2021). This effect depended on the viral ICP27 transcription regulator (Srinivas et 

al., 2021). However, the early studies on the interaction of alphaherpesviruses with m6A 

showed that the reduction in m6A methylation depends on an early or catalytic late viral 

protein, while ICP27 is a non-catalytic immediate-early protein (Bartkoski and Roizman, 

1976, 1978, Tombácz et al., 2009). In addition, it is currently unknown if expression of 

ICP27 alone, in the absence of virus infection, affects m6A methylation. Therefore, it is 

unclear if ICP27 directly inhibits the m6A methylation complex or indirectly contributes to 

this inhibition by affecting expression of an early or late protein that inhibits the m6A writer 

complex.

Here, we report that infection of cells with the alphaherpesviruses pseudorabies virus (PRV) 

or HSV-1 results in a near complete loss of m6A-methylated transcripts. By detecting m6A 

levels in nascent mRNA, we demonstrate that the loss of m6A after PRV infection is due to 

inactivation of the m6A writer complex. In addition, we report that PRV infection results in 

phosphorylation of different components of the m6A writer complex, including METTL3, 

METTL14, and WTAP. Phosphorylation of METTL3 and METTL14 critically depended on 

the conserved alphaherpesvirus serine/threonine protein kinase US3 but was independent 

of its kinase activity. Expression of the US3 protein alone was sufficient to reduce m6A 

levels in the absence of infection. Our results indicate that the m6A writer complex remains 

intact in the nucleus during PRV infection but dissociates from chromatin, suggesting that in 

PRV-infected cells, the m6A writer complex may no longer be attached to nascent mRNA. 

Importantly, we show that the viral US3 protein is required for this dissociation of the m6A 

writer complex from chromatin. As a consequence, levels of m6A-methylated transcripts 

are restored in cells infected with US3null PRV. Together, these results reveal mechanistic 

insights in virus-induced inactivation of the m6A writer complex. In addition, the findings 

highlight phosphorylation as an important post-translational regulatory mechanism of the 

m6A methyltransferase complex.

RESULTS

Infection with the alphaherpesviruses PRV or HSV-1 triggers a near complete loss in m6A-
methylated mRNA and inhibition of the m6A methyltransferase complex

Early studies on m6A methylation indicated that m6A levels are reduced during infection 

of cells with the alphaherpesvirus HSV-1 (Bartkoski and Roizman, 1976, 1978). At the 

time, the proteins involved in the regulation of m6A methylation were unknown. To further 

investigate this, we used a state-of-the-art mass spectrometry approach to assess the impact 

of PRV or HSV-1 infection on the levels of m6A in mRNA in infected cells. The method 

relies on the specific digestion of m6A in the DRACH (in which D can be A, G, or U; 
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R can be A and G; and H can be A, C, or U) context, which eliminates m6A signal 

from rRNA (Salisbury et al., 2021; Mirza et al., 2022). Figures 1A and 1B show that both 

alphaherpesviruses trigger a dramatic decrease in m6A-methylated mRNA. A time-course 

assay of PRV infection showed that a substantial reduction in m6A-methylated mRNA can 

be observed from 6 h post-inoculation (hpi) onward and is virtually complete at 9 hpi 

(Figure 1C).

To assess whether the m6A writer complex is inactivated in infected cells, we determined 

m6A levels in newly formed mRNA in mock- or PRV-infected cells. We treated PRV- 

or mock-infected cells with 4-thiouridine (4SU) from 7 to 9 hpi to label RNA that was 

produced during this time period. We then purified the 4SU-labeled RNA and quantified the 

m6A levels in the mRNA fraction using mass spectrometry (Figure 1D). By determining 

m6A levels in newly formed mRNA, we can largely exclude the possibility of increased 

degradation of methylated transcripts and thus measure the action of the m6A writer 

complex. These assays show that newly formed mRNA also contain decreased levels of 

m6A in PRV-infected cells, indicating that indeed alphaherpesvirus infection results in 

inhibition of m6A methylation.

PRV infection results in phosphorylation of several m6A methyltransferase complex 
proteins via the viral US3 and UL13 protein kinases

In order to determine whether alterations in one or more of the components of the writer 

complex might explain inhibition of m6A methylation, we performed western blotting 

of several of the components of the m6A writer complex. All components of the writer 

complex appeared to be slowly and modestly downregulated during the course of PRV 

infection (Figure 2A), arguing against a rapid virus-induced degradation of the m6A writer 

complex. However, WTAP showed a prominent upshift in the apparent molecular weight on 

western blot from 6 hpi onward, suggesting virus-induced post-translational modifications 

of the m6A writer complex. Phosphatase treatment showed that the virus-induced upshift 

in the apparent molecular weight of WTAP is caused by phosphorylation (Figure 2B). 

Alphaherpesviruses encode two viral serine/threonine protein kinases, US3 and UL13. To 

assess whether these viral kinases are involved in PRV-induced phosphorylation of WTAP, 

assays were done using wild-type or isogenic US3null and UL13null PRV strains. Western 

blotting of cells infected with mutants of either of the two viral kinases revealed that the 

PRV-induced phosphorylation of WTAP is partially dependent on the viral UL13 kinase 

(Figure 2C). Transfection assays showed that the active UL13 kinase, but not the kinase-

dead (KD) version, induces a major upshift in the apparent molecular weight of WTAP. 

The US3 kinase on the other hand, induces a minor upshift of the apparent molecular 

weight of WTAP (Figure 2D). Together these data show that both of the viral kinases trigger 

phosphorylation of WTAP.

Not all protein phosphorylation events result in a visually detectable upshift in molecular 

weight on SDS-PAGE. To more sensitively assess whether other components of the 

m6A writer complex may also be phosphorylated in PRV-infected cells, we used Phos-

tag gels, which increase differences in the migration speed of phosphorylated proteins. 

Figure 2E shows that PRV infection results in phosphorylation of both METTL3 and 
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METTL14. Phosphorylation of METTL3 and METTL14 was still observed upon infection 

with UL13null virus, but not upon infection with US3null virus, showing that these 

phosphorylation events depend on the US3 protein kinase. We next performed a time-course 

assay, which showed that phosphorylation of METTL3 and WTAP can be clearly observed 

at 6 hpi, correlating well with expression of US3 and UL13 (Figure S1A). Furthermore, 

we confirmed that at 6 hpi, METTL3 phosphorylation in PRV-infected cells also depends 

on expression of US3, while both US3 and UL13 contribute substantially to WTAP 

phosphorylation at that time point (Figure S1B). To determine whether the sole expression 

of the US3 protein is sufficient to trigger phosphorylation of METTL3 and METTL14, in 

the absence of viral infection, transfection assays were performed. Expression of the US3 

kinase, but not the UL13 kinase, triggered phosphorylation of both METTL3 and METTL14 

(Figure 2F). Note that the poor expression of the kinase-inactive version of the US3 kinase, 

in line with earlier reports (Jansens et al., 2020), prevented conclusions regarding the kinase 

dependency of this phosphorylation.

In conclusion, PRV infection results in phosphorylation of several components of the m6A 

writer complex, including WTAP, METTL3, and METTL14. Phosphorylation of METTL3 

and METTL14 depends on the viral US3 protein kinase, whereas both US3 and UL13 

trigger phosphorylation of WTAP.

The m6A methyltransferase complex is inhibited in a US3-dependent manner

We next investigated whether the viral US3 and/or UL13 kinases that drive phosphorylation 

of the m6A writer complex components are involved in modulating its activity. We 

determined m6A levels in mRNA from cells infected with wild-type PRV or PRV that lacks 

either the US3 or the UL13 kinase. We observed a clear decrease of m6A levels in mRNA of 

wildtype and UL13null PRV-infected cells compared with mock-infected cells (Figure 3A). 

Cells infected with US3null PRV did not show this decrease in m6A levels compared with 

mock-infected cells (Figure 3A). Similar results were obtained using 4SU-labeled mRNA 

produced between 7 and 9 hpi, confirming that the inhibition of the m6A methyltransferase 

complex during PRV infection is US3 dependent (Figure 3B). In line with these results 

in PRV, cells infected with US3null HSV-1 did not show reduced m6A levels in mRNA 

compared with mock-infected cells, in contrast to cells infected with wild-type HSV-1 

(Figure S2).

To determine whether the expression of US3, in the absence of virus infection, is sufficient 

to inactivate the m6A writer complex, transfection assays were performed. Expression of 

the US3 protein led to a dramatic reduction of m6A in mRNA (Figure 3C), showing 

that expression of this viral protein is sufficient to inactivate the m6A methyltransferase 

complex. Kinase-dead US3 and intact UL13 (but not KD UL13) also triggered a reduction 

of m6A levels, albeit not to the same degree as observed for intact US3 (Figure 3C).

The partial reduction of m6A levels after expression of inactive US3, combined with the 

poor expression of the kinase-inactive protein (Figure 2F), prompted us to investigate 

if the impact of US3 on phosphorylation and activity of the m6A writer complex are 

independent of its kinase activity. To this end, we used a PRV mutant that expresses 

a kinase-inactive version of the US3 protein. We found that although infection with an 
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isogenic PRV mutant deleted for the US3 protein did not lead to decreased m6A levels, 

infection with a mutant expressing a kinase-inactive version of the US3 protein led to a 

decrease in m6A levels similar to wild-type PRV (Figure 3D). Interestingly, and in line with 

these results, phosphorylation of METTL3 and WTAP in infected cells at 6 hpi was also 

observed when using the PRV mutant expressing kinase-inactive US3, but not after infection 

with US3null PRV (Figure 3D), indicating that US3-induced phosphorylation of METTL3 

occurs indirectly, likely through activation of (a) cellular kinase(s).

Overall, these data indicate that expression of the viral US3 protein kinase is necessary and 

sufficient to inactivate the m6A methyltransferase complex and is independent of its kinase 

activity.

PRV infection results in US3-dependent dissociation of the m6A writer complex from 
chromatin

Next, we investigated the mechanism through which the writer complex is inactivated. 

METTL3 function requires its association with chromatin to mediate its co-transcriptional 

methylation of nascent mRNA (Ke et al., 2017; Slobodin et al., 2017). In several instances, 

loss of m6A formation has been linked to delocalization from chromatin and relocalization 

either to the nucleoplasm or cytosol. This has been seen in experiments in which m6A 

writer components WTAP, VIRMA, and ZC3H13 have been depleted, the writer complex 

was delocalized, and m6A levels in mRNA dropped (Ping et al., 2014; Wen et al., 2018; 

Yue et al., 2018). Similarly, the writer complex was recently reported to relocalize from the 

nucleus to the cytoplasm in HSV-1-infected cells (Srinivas et al., 2021). In contrast to the 

latter report, immunofluorescence assays indicated that the m6A methyltransferase complex 

subunits METTL3 and WTAP predominantly localize to the nucleus in both PRV-infected 

and mock-infected cells and co-localize with US3 (Figures 4A and S3A). However, in 

PRV-infected cells, components of the writer complex appear to be more homogeneously 

distributed in the nucleus compared with mock-infected cells. Similarly, we also did not 

observe a relocalization of the components of the m6A writer complex to the cytoplasm 

upon infection of HeLa cells with HSV-1 (Figure S3B).

To determine whether the m6A writer complex disassembles upon PRV infection, we 

performed co-immunoprecipitation assays in which immunoprecipitates of WTAP or 

METTL3 were analyzed for the presence of other components of the complex (Figures 4B 

and 4C). METTL3, METTL14, and VIRMA were found in similar or even higher amounts 

in WTAP immunoprecipitates derived from infected cells compared with uninfected cells, 

indicating that the composition of the m6A methyltransferase complex remains intact during 

PRV infection. In line with this, we could detect METTL14, WTAP, and VIRMA in 

METTL3 immunoprecipitates of both infected and uninfected cells.

Although we could not detect PRV infection-induced disassembly of the m6A writer 

complex and did not observe cytoplasmic relocation of METTL3 or WTAP, we still 

considered the possibility that the writer complex does not associate with chromatin 

after infection. To test this idea, cell lysates were separated into a fraction containing 

both cytoplasmic (i.e., tubulin) and soluble nuclear proteins (i.e., PCIF1) and a 

fraction containing chromatin-associated nuclear proteins (i.e., histone H3) (Figure 4D). 
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Interestingly, Figure 4D shows that PRV infection results in a marked dissociation of the 

m6A methyltransferase complex from the chromatin-bound fraction, as all components of 

the writer complex relocate from the chromatin-associated fraction to the soluble fraction. 

Importantly, infection with US3null PRV did not cause this chromatin dissociation of the 

m6A methyltransferase complex, suggesting that US3-triggered phosphorylation of the m6A 

methyltransferase complex leads to its dissociation from nascent mRNA.

Taken together, these data show that PRV infection triggers a US3-dependent disruption of 

m6A methylation; phosphorylation of WTAP, METTL3, and METTL14; and dissociation of 

the m6A methyltransferase complex from the chromatin-bound fraction of cells.

Inactivation of the m6A writer complex is not required for PRV replication in cell culture

We next assessed if inactivation of the m6A writer complex by the US3 protein affects 

viral replication in cell culture. We first compared viral protein expression in ST cells upon 

infection with wild-type or US3null PRV using western blot (Figure 5A). We probed for 

viral proteins that are expressed at different times in the replication cycle of PRV: the 

immediate-early protein IE180, the early protein UL13, and the late protein gD. Each 

of these proteins was expressed similarly in cells infected with wild-type or US3null 

PRV (Figure 5A), arguing against a role for m6A writer complex inhibition in viral 

protein production in cell culture. To confirm this, we investigated viral RNA expression 

using qPCR, again analyzing transcripts from different kinetic classes. Although viral 

transcript levels were overall slightly lower in US3null-infected cells, we did not observe 

any statistically significant differences between the expression of viral transcripts in wild-

type- or US3null-infected cells (Figure 5B). We also assessed the production of infectious 

particles by quantifying infectious virus particle production in cells infected with wild-type 

or US3-null PRV (Figure 5C). In line with previous reports, US3null PRV showed an only 

slightly reduced production of infectious virus compared with wild-type PRV (Figure 5C; 

De Wind et al, 1992).

m6A methylation has been described to be a major regulator of the type I interferon (IFN) 

signaling pathway (Rubio et al., 2018; Winkler et al., 2019), which affects the replication 

of several viruses (Kennedy et al., 2016; Courtney et al., 2017; Tsai et al., 2018; Kim et 

al., 2020; Lu et al., 2020). To determine whether the inhibition of the m6A writer complex 

by the US3 protein constitutes an IFN evasion mechanism, we infected ST cells with either 

wild-type or US3null PRV and determined the expression of different interferon-stimulated 

genes (ISGs). We performed these experiments either with or without addition of interferon 

alpha (IFNa) and with or without treatment with a newly developed METTL3 inhibitor 

(Yankova et al., 2021). Treatment with this inhibitor was confirmed to reduce m6A levels 

by more than 75% (Figure S4). We reported earlier that PRV suppresses IFN signaling by 

degrading Janus kinases in a proteasome-dependent manner (Yin et al., 2021). Cells were 

therefore treated with the proteasome inhibitor MG132 to allow detectable expression of 

ISG transcripts. No difference was observed in the expression of ISG15, ISG54, or 2′5′OAS 
ISG transcripts after infection with either wild-type or US3null PRV (Figure 5D).

To assess whether there was an overall difference in the expression of all ISGs in US3null-

infected cells compared with wild-type-infected cells, we performed RNA sequencing 
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(RNA-seq) of ST cells that were either mock infected or infected with wild-type or 

US3null virus. We then determined the fold changes of porcine ISG transcript between 

mock-infected cells and wildtype- or US3null-infected cells. Overall, there was no statistical 

difference between expression of ISGs in wild-type- and US3null-infected cells (Figure 5E). 

In addition, we used the RNA-seq dataset to assess more generally whether host transcripts 

that are known to be m6A methylated (or unmethylated transcripts) show differences in 

stability in ST cells infected with either wild-type or US3null PRV. The data showed that 

there is no difference in stability of methylated cellular transcripts in US3null-infected cells 

compared with wild-type PRV-infected cells (Figure 5F).

Finally, we wondered whether the PRV-induced inactivation of the m6A writer complex 

may correlate with a selection pressure on the genome of PRV. We therefore quantified 

the frequency of the m6A consensus sequence (DRACH) in all known eukaryotic virus 

genomes. We discovered that the DRACH motif is significantly de-enriched in the genomes 

of alpha- but not beta- or gammaherpesviruses, suggesting that there is an evolutionary 

pressure against the incorporation of methylation sites in alphaherpesvirus genomes (Figure 

5G). Interestingly, this effect can still be observed when accounting for the nucleotide 

composition of the genomes and hence taking into account the high GC content of 

some alphaherpesviruses, such as PRV and HSV-1 (Figure S5). Of additional interest, 

the latter analysis shows a significant enrichment of the DRACH motif in the genomes 

of gammaherpesviruses, in line with the notion that viral transcripts of different members 

of this herpesvirus subfamily are m6A methylated, which is thought to be important for 

different aspects of the biology of these viruses (Tan et al., 2017; Ye et al., 2017; Hesser et 

al., 2018; Baquero-Perez et al., 2019; Lang et al., 2019; Dai et al., 2021; Tang et al., 2021; 

Xia et al., 2021; Zheng et al., 2021; Macveigh-Fierro et al., 2022).

In conclusion, we show that the inactivation of the m6A writer complex is not essential 

for viral replication in the ST cell line and that no general differences on either ISG 

transcripts or cellular m6A-containing transcripts can be observed between wildtype- and 

US3null-infected ST cells. However, the data indicate a conserved evolutionary pressure 

against m6A methylation sites in the genomes of alphaherpesviruses.

DISCUSSION

The vast majority of m6A in mRNA is produced by a multi-subunit complex called 

the m6A writer complex (Bokar et al., 1994; Geula et al., 2015). The catalytic subunit 

METTL3, together with METTL14 and WTAP, make up the core of this enzymatic complex 

(Liu et al., 2014; Ping et al., 2014). Although phosphorylation of METTL3 and WTAP 

has been previously reported, this resulted in a relatively minor increase in methylation 

activity (Sun et al., 2020). Therefore, it was not clear if the m6A writer complex can be 

regulated by phosphorylation and how phosphorylation would affect the writer complex. 

Here, we describe an unprecedented inhibition of methylation activity mediated by an 

alphaherpesviral protein kinase, US3. M6A levels in cells infected with wild-type PRV 

expressing the US3 kinase are reduced up to 95%, while expression of the US3 kinase in the 

absence of an infection background reduces m6A levels by 85%, which are unprecedented 
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reductions in m6A levels that have not been observed using any type of treatment or protein 

expression modulation.

Several components of the m6A writer complex were phosphorylated during PRV infection. 

The most apparent modification of the m6A writer complex upon infection was the 

phosphorylation of WTAP. WTAP phosphorylation is mediated by both the US3 and the 

UL13 viral kinases. Although transfection of the UL13 kinase resulted in a mild drop in 

m6A levels, a virus mutant lacking the UL13 protein kinase triggered a similar decrease 

in m6A methylation as wild-type virus, showing that the UL13 kinase is dispensable for 

inactivation of the writer complex during infection. Besides phosphorylation of WTAP, 

we also observed phosphorylation of METTL3 and METTL14. Although METTL3 and 

METTL14 phosphorylation was not observed by an upshift on standard SDS-PAGE, 

phosphorylation was readily detectable using Phos-tag gels. Unlike the phosphorylation of 

WTAP, these modifications were induced only by expression of the US3 protein kinase, and 

the emergence of METTL3 phosphorylation correlates well with the loss of m6A. We found 

that expression of the US3 protein kinase is necessary and sufficient for the phosphorylation 

of METTL3 and METTL14.

Our results are in accordance with early research from the 1970s that showed that HSV-1 

infection leads to an inhibition of m6A methylation via an early and/or late viral protein, 

possibly with catalytic activity (Bartkoski and Roizman, 1976, 1978). US3, which is a viral 

early protein in both HSV-1 and PRV, matches these criteria. In line with our results on PRV, 

we found that inhibition of the m6A writer complex in HSV-1-infected HEK293T cells also 

depends on expression of US3. With regard to how expression of US3 leads to inhibition 

m6A methyltransferase activity, we found that the m6A writer complex is relocated from 

the chromatin-bound fraction to the soluble nuclear fraction upon PRV infection, suggesting 

that the writer complex detaches from nascent mRNA. The relocation is US3 dependent, 

therefore correlating with the inactivation of the m6A writer complex. Although we 

observed a US3-dependent relocation of the components of the m6A methyltransferase 

complex from the chromatin-bound fraction to the soluble fraction, immunofluorescence 

indicated that this was not associated with a relocation of METTL3 or WTAP from the 

nucleus to the cytoplasm. The latter is in contrast to a recent report showing that HSV-1 

infection triggers a substantial relocation of the m6A methyltransferase complex to the 

cytoplasm (Srinivas et al., 2021). Although it is possible that HSV-1 and PRV interact with 

m6A methylation of transcripts differently, our assays on HSV-1-infected cells do not point 

to a cytoplasmic relocation of the m6A writer complex. Although speculative at this point, 

it is possible that these differences reflect differences in cell type or particular methodology, 

including fixation and permeabilization protocols.

The fact that US3 triggers phosphorylation of several critical components of the m6A 

methyltransferase complex complicates the identification of the exact phosphorylation sites 

and their contribution to inactivation of the complex. Interestingly, the inactivation of the 

m6A writer complex occurs independently of the kinase activity of the US3 protein. This 

indicates that the observed phosphorylations are driven by (a) cellular kinase(s) and that US3 

co-opts an existing cellular pathway. As such, experiments aimed at further identifying the 

mechanism of US3-mediated inactivation of the writer complex may ultimately facilitate the 
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detection of specific regulatory pathways that enable endogenous kinase pathways to inhibit 

m6A levels in mammalian cells.

Despite the near complete loss of m6A in infected cells, the role of the inactivation of the 

m6A writer complex during virus infection remains elusive. m6A methylation is important 

in the infection cycle of several different viruses, with direct effects of m6A in viral 

RNA, as seen in HIV-1, simian virus 40 (SV40), and influenza (Kennedy et al., 2016; 

Lichinchi et al., 2016; Tirumuru et al., 2016; Courtney et al., 2017; Tsai et al., 2018; Tsai 

et al., 2021). Also, a growing body of evidence indicates a role of m6A in type I IFN 

signaling in response to viral infections, as seen in human cytomegalovirus (HCMV), human 

metapneumovirus, and respiratory syncytial virus (RSV) (Rubio et al., 2018; Gokhale et al., 

2019; Winkler et al., 2019; Lu et al., 2020; McFadden et al., 2021; Xue et al., 2021). A PRV 

mutant lacking the US3 kinase replicates at a similar efficiency as wild-type PRV in vitro, 

showing no major differences in either viral mRNA and protein expression or viral titers 

reached. We also did not observe significant differences in ISG expression after infection 

with wild-type or US3null PRV, nor did we observe a general effect on the expression of 

typically methylated transcripts compared with unmethylated transcripts. However, we do 

show that the DRACH motif, the consensus sequence for m6A methylation by METTL3, is 

significantly de-enriched in the genomes of alphaherpesviruses. This indicates a significant 

evolutionary pressure against m6A methylation of viral transcripts of alphaherpesviruses. 

Although our data are in line with other studies indicating that the US3 protein of 

alphaherpesviruses is dispensable for virus replication in cell culture, US3null mutants 

of alphaherpesviruses are severely attenuated in vivo (Deruelle and Favoreel, 2011). It is 

therefore likely that virus-induced inhibition of m6A methylation is not critical for virus 

replication in cell culture but may play an important role during in vivo infection of the host, 

which will be addressed in future assays.

In summary, the present study shows that expression of the alphaherpesvirus US3 protein 

kinase leads to phosphorylation and inactivation of the m6A writer complex. Inactivation 

of the m6A writer complex correlates with its phosphorylation and its dissociation from 

chromatin. These results contribute to our understanding of alphaherpesvirus biology as well 

as, more generally, the regulation of m6A methylation.

Limitations of the study

Our experiments show that m6A methylation can be regulated in an unprecedented manner 

and provide insights on how alphaherpesviruses interact with RNA processing pathways. 

However, there are some limitations to this study that we would like to discuss. The 

main limitation is that although we showed that phosphorylation of components of the 

writer complex correlates with the loss of m6A methylation, we were unable to identify 

the specific residues that are phosphorylated. As such, it is not yet clear if and which 

phosphorylation is causal for the inactivation of the writer complex. A second limitation is 

that although we show that there appears to be evolutionary pressure against methylation 

of alphaherpesvirus transcripts, it is still unclear how inhibition of m6A methylation 

contributes to the complex virus-host interplay of alphaherpesviruses.
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STAR★METHODS

Detailed methods are provided in the online version of this paper and include the following:

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the Lead Contact, Herman W. Favoreel 

(herman.favoreel@ugent.be).

Materials availability—Unique reagents generated in this study will be available upon 

MTA completion.

Data and code availability

• The accession numbers for the RNA-seq data reported in this paper are Gene 

Expression Omnibus (GEO): GSE201012.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

ST cells—Swine testicle (ST) cells were cultured at 37°C in a humidified atmosphere at 

5% CO2. Cells were cultured in Eagle’s Minimal Essential Medium (MEM, ThermoFisher) 

supplemented with 10% fetal calf serum (FCS), 1 mM sodium pyruvate, 105 U/L penicillin, 

100 mg/L streptomycin and 50 mg/L gentamycin. Cells were obtained from the American 

Type Culture Collection (ATCC) and were not authenticated by authors. Cells were tested 

to be free of mycoplasma contamination via de LookOut Mycoplasma PCR detection kit 

(SigmaAldrich).

Human cell lines—HEK293-T and HeLa cells were cultured at 37°C in a humidified 

atmosphere at 5% CO2. Cells were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM, ThermoFisher) supplemented with 10% FCS, 105 U/L penicillin, 100 mg/L 

streptomycin and 50 mg/L gentamycin. Cell lines were kept at 37°C in a humidified 

atmosphere at 5% CO2. Cells were obtained from the ATCC and were not authenticated 

by authors. Cells were tested to be free of mycoplasma contamination via de LookOut 

Mycoplasma PCR detection kit (SigmaAldrich).

Viruses—Wild type HSV-1 F strain and its isogenic US3null mutant were described 

previously (Ejercito et al., 1968; Ryckman and Roller, 2004). Wild type PRV NIA3 and 

isogenic US3null and UL13null mutants were previously described (de Wind et al., 1990; 

De Wind et al, 1992; Kimman et al., 1992). Parental PRV Becker strain and its isogenic 

mutants that lack expression of US3 (US3null) or express a point mutated US3 in which a 

catalytic aspartate residue was replaced by an alanine residue (D223A, kinase inactive US3) 

were described earlier (Smith et al., 2004; Smith and Coller, 2008).
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METHOD DETAILS

Infections—Confluent cells were inoculated at a multiplicity of infection (MOI) of 10 

plaque-forming units (PFUs)/cell and analysed at 16 hpi unless indicated otherwise.

Transfections—HEK293-T cells were used for transfection assays to obtain a sufficiently 

high transfection efficiency. Cells were transfected with 3 μg of plasmid DNA and 5 μL 

PEI for each well of a 6 well plate using JetPEI (Poly-plus) according to the manufacturer’s 

instructions. The plasmids encoding wild type NIA3 US3 protein (pKG1) and kinase dead 

US3 protein with a K138Q mutation (pHF61) were described previously (Geenen et al., 

2005; Deruelle et al., 2007). Transfected cells were lysed and analysed at 48 hpt.

Construction of expression vectors encoding wild type or kinase dead 
PRV UL13—Plasmids encoding wild type or kinase dead (KD) UL13 were generated 

by PCR amplification of UL13 from wild type NIA3 PRV or pGS1018 PRV 

encoding kinase inactive UL13 carrying a D194A alanine substitution for a catalytic 

aspartate residue (Coller and Smith, 2008), followed by ligation in the pcDNA3.1 

backbone. In brief, UL13 was amplified with primers containing BamHI and XbaI 

restriction sites (forward: GGCGGACGGATCCCTGCTGACCCAATGGCTG reverse: 

CGCCCCGCTCTAGAACCGCAGGAAGGTGC) and using Herculase II Fusion DNA 

Polymerase (Agilent). The amplified fragment was purified and digested overnight. 

After purification, the digested fragment was ligated into a BamHI/XbaI digested 

pcDNA3.1 vector using the rapid DNA ligation kit (ThermoFisher). Ligated plasmids were 

electroporated into DH5alpha cells and positive colonies were checked by sequencing.

Cell treatments—The METTL3 inhibitor STM2457 was purchased from 

MedChemExpress and used at a concentration of 30 μM starting from 2 h before infection. 

The 26S proteasome inhibitor MG132 was purchased from Merck and treatment was 

performed 2 hpi at a concentration of 10 μM. A plasmid encoding recombinant porcine 

IFN-alpha (IFNa) was kindly provided by Simon Yongming (Kansas State University, USA). 

This plasmid was transfected into HEK293-T cells, and supernatant was collected at 48 

hpt. The amount of IFNa secreted in the supernatant was measured by enzyme-linked 

immunosorbent assay (ELISA) as described before (Lamote et al., 2017). IFNa treatment 

was performed by treating the cells with 300 ng/mL IFNa at 4 hpi.

RNA isolation and m6A quantification—Total RNA was isolated using the RNeasy 

mini kit (Qiagen) according to the manufacturer’s instructions, including homogenization 

using the QIAshredder kit (Qiagen). DNase treatment was performed on-column to 

eliminate DNA contamination (Qiagen). Newly transcribed RNA was isolated following 

a protocol adapted from a method previously described (Garibaldi et al., 2017). Briefly, ST 

cells were infected with wild type, US3null, UL13null or mock infected. At 7 hpi, complete 

growth medium containing 500 μM 4-thiouridine (4SU) (Merck) was added to the cells. 

After 2 h of incubation, the cells were lysed using rlt buffer (Qiagen). 4SU labeled RNA 

was biotinylated using EZ-Link HPDP-Biotin (ThermoFisher). 100 μg of total RNA was 

incubated with 0.2 mg/mL biotin-HPDP in 1 mL of a buffer containing 10 mM Tris-HCl 

and 1 mM EDTA. After 90 min of incubation at room temperature, total biotinylated RNA 
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was subjected to the RNA cleanup protocol of the RNeasy mini kit (Qiagen). The RNA was 

then heated to 65°C for 10 min, followed by 5 min on ice. 100 μL of streptavidin beads 

were added to the biotinylated RNA (Miltenyi Biotec). After 15 min of incubation at room 

temperature, biotinylated RNA was isolated on a μMACS column (Miltenyi Biotec). Finally, 

the biotinylated RNA was eluted via two elution steps using 100 mM DTT and the resulting 

RNA was precipitated in ethanol and resuspended in molecular grade water.

To specifically quantify m6A levels in mRNA, a sequential digestion protocol was used 

to only free m6A in the GAC context (Salisbury et al., 2021; Mirza et al., 2022). m6A 

in contaminating rRNA is not present in the GAC consensus sequence and is thus not 

digested. Cap m7G is first removed in order to normalize mRNA m6A to cap m7G by 

digesting the total RNA with 200 U of yDcpS (NEB) for 2 h at 37°C in a thermomixer. 

Next m6A in the GAC context is freed by digestion with 2 U RNAse T1 (Invitrogen) for 

2 h at 37°C in a thermomixer, followed by digestion with 2 U of S1 nuclease (Invitrogen) 

for 1 h at 37°C in a thermomixer. The resulting product in then precipitated in methanol. 

The supernatant of the precipitation is used for LC-MS/MS using a platform comprised 

of an Agilent Model 1290 Infinity II liquid chromatography system coupled to an Agilent 

6460 Triple Quadrupole mass spectrometer equipped with Agilent Jet Stream Technology. 

Chromatography of metabolites utilizes aqueous normal phase (ANP) chromatography 

on a Diamond Hydride column (Microsolv). Mobile phases consist of 50% isopropanol, 

containing 0.025% acetic acid (A), and 90% acetonitrile containing 5 mM ammonium 

acetate (B). To eliminate the interference of metal ions on chromatographic peak integrity 

and electrospray ionization, EDTA was added to the mobile phase at a final concentration 

of 5 μM. The following gradient was applied at the flow rate of 0.4mL/min: 0–1.0 min, 

99% B; 1.0–5.0 min, to 30% B; 5 to 8min, to 0% B; 8 to 29min, 0% B, followed by 

a re-equilibration at 99% B for 5min. The column compartment temperature was set at 

28°C. The injection volume was 2ul. MRM data was acquired in positive ion mode. Source 

parameters for m6A measurement were as follows: gas temperature, 230°C; gas flow, 6 

L/min; nebulizer, 26 psi; sheath gas temperature, 400°C; sheath gas flow, 11 L/min; capillary 

voltage, 2600V; nozzle voltage, 300V; delta EMV, 200V. The source parameters for m7GMP 

were the same as for m6A except the capillary voltage was set at 1400V. m6A standard was 

purchased from Selleckchem (S3190). m7G standard was purchased from Jena Bioscience 

(NU-1135S).

Sequencing and analysis—RNA isolations were performed using the RNeasy mini kit 

(Qiagen) according to the manufacturer’s procedure, including homogenization using the 

QIAshredder kit (Qiagen). DNase treatment was performed on-column to eliminate DNA 

contamination (Qiagen). Concentration and quality of the total extracted RNA was checked 

via the Quant-it Ribogreen RNA assay (Life Technologies) and the RNA 6000 nano chip 

(Agilent Technologies). The QuantSeq 3′ mRNA library prep FWD kit (Lexogen) was used 

for library preparation. Library QC was performed using the high sensitivity DNA chip 

(Agilent technologies). Sequencing was performed on the NextSeq 500 SR 76 high output 

system (Illumina). All sequencing data was deposited in GEO under the following accession 

number: GSE201012.
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To determine the difference in gene expression of m6A-methylated transcripts compared to 

unmethylated transcripts, differential expression was determined for transcripts binned by 

the amount of m6A residues they contain. Reads were aligned to the Sscrofa11.1 genome 

using STAR (Dobin et al., 2013). Differential expression was determined using DESeq2 

(Love et al., 2014).

Western blotting—Unless indicated otherwise, cells were lysed at 48 hpt or 16 hpi in 

RIPA buffer (Abcam) with cOmplete mini EDTA free protease inhibitor cocktail (Roche) 

and PhosStop (Roche). Cell lysates were separated on a 10% polyacrylamide gel, followed 

by blotting on PVDF membrane (Amersham). Blots were blocked in 5% nonfat milk diluted 

in 0.1% Tween-20 in PBS for 1 h at room temperature. Primary antibodies were incubated 

overnight at 4°C. Following 3 consecutive 5 min washes in PBS-T, the membranes were 

incubated with the secondary antibody for 1 h at room temperature. Following 3 more 

5 min washes, the blots were detected using Pierce enhanced chemiluminescence (ECL) 

substrate (Thermo Scientific), ECL Plus substrate (GE Healthcare), or SuperSignal West 

Femto maximum sensitivity substrate (Thermo Scientific) on a ChemiDoc MP imaging 

device (Bio-Rad). Phos-tag gels were analysed identically, except using a lysis buffer 

lacking EDTA and performing EDTA treatment of the gels before blotting to remove 

zinc ions for optimal transfer efficiency. Phos-tag gels were purchased from Fujifilm. 

Western blot assays were performed using primary antibodies against alpha-tubulin (Abcam 

ab40742, 1/1,000), METTL3 (Abcam ab1953521/1,000), METTL14 (Abcam ab252562, 

1/500), WTAP (Cell Signaling Technologies 56501S, 1/1,000), VIRMA (Cell Signaling 

Technologies BET A302-124A, 1/1,000), PCIF1 (Proteintech 16082-1-AP,), histone H3 

(Proteintech 17168-1-AP, 1/1,000), PRV US3 (Olsen et al., 2006, 1/100), PRV UL13 (Van 

Cleemput et al., 2021, 1/1,000), PRV gD (Nauwynck and Pensaert, 1995, 1/100), PRV gE 

(Nauwynck and Pensaert, 1995, 1/100) and PRV IE180 (Gomez-Sebastian and Tabares, 

2004, 1/1,000).

Cell fractionation—Cells were collected by scraping followed by centrifugation at 700 g 

for 7 min at 4°C. The pellet was washed once with PBS. The cells were then lysed for 10 

min on ice in lysis buffer containing 1% Nonidet P-40 in TNE with cOmplete mini EDTA 

free protease inhibitor cocktail (Roche). The insoluble fraction was then centrifuged at 10 

000 g for 10 min. The supernatant was collected and contains the cytoplasm and soluble 

nuclear proteins. The pellet was first washed using Nonidet P-40 lysis buffer. The pellet 

was then lysed further for 30 min at 4°C using RIPA buffer (Abcam) with cOmplete mini 

EDTA free protease inhibitor cocktail (Roche) on a Vibrax shaker (IKA). The insoluble 

fraction was centrifuged at 10 000 g for 10 min. The supernatant was collected and contains 

chromatin bound proteins.

Immunoprecipitation—Cells intended for immunoprecipitation were lysed in lysis buffer 

containing 1% Triton-X in TBS with cOmplete mini EDTA free protease inhibitor cocktail 

(Roche). The lysate was diluted ½ in water before the addition of the IP antibody. 

WTAP was immunoprecipitated using sc-374280 antibody (Santa Cruz Biotechnology, 

Inc.), METTL3 was immunoprecipitated using ab195352 antibody (Abcam). After 4 h 

of incubation, the lysate/antibody mixture was added to magnetic protein A/G beads 
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(ThermoFisher). After another 4 h of incubation, beads were washed 5 times using 

wash buffer containing 450 mM NaCl and 50 mM Tris pH 7.5, and boiled in Laemmli 

Buffer. Immunoprecipitates were analyzed using Western blotting as described above. If the 

detection antibody was raised in the same species as the immunoprecipitation antibody, blots 

were detected using Veriblot reagent (Abcam).

Immunofluorescence—Cells were fixed using 3% paraformaldehyde for 10 min after 

which they were permeabilized using methanol for 10 min. Primary antibodies were 

incubated overnight at 4°C. Following three washing steps with PBS, cells were incubated 

with secondary antibody for 1 h at 37°C at a 1/200 dilution. After three more washing 

steps with PBS, cells were mounted using glycerine-DABCO. Samples were imaged using 

a Leica SPE laser scanning confocal microscope (Leica). Immunofluorescence assays were 

performed using primary antibodies against METTL3 (Abcam ab195352, 1/100), WTAP 

(Cell Signaling Technologies 56501S, 1/100), METTL14 (Abcam ab98166, 1/100), PRV 

US3 (Olsen et al., 2006, 1/100) and HSV-1 ICP4 (Santa Cruz Biotechnology sc-56986, 

1/100).

RNA isolation and real time quantitative PCR (RT-qPCR)—Total RNA isolations 

were performed using the RNeasy minikit (Qiagen) according to the manufacturer’s 

instructions. Purified RNA was treated with RNase free DNase I (New England Biolabs) 

at 37°C for 10 min to remove contaminating DNA. To stop DNase I activity, EDTA 

(Invitrogen) was added at a final concentration of 5 mM and samples were incubated at 75°C 

for 10 min. Reverse transcription was carried out with 500 ng RNA using an iScript cDNA 

synthesis kit (Bio-Rad) according to the manufacturer’s instructions. Quantitative PCR was 

performed using a StepOnePlus real-time PCR system (Applied Biosystems, Thermo Fisher 

Scientific) with SYBR green master mix (Applied Biosystems). The relative expression of 

each gene was analyzed by the double delta threshold cycle method and normalized to the 

level of expression of the 28S rRNA gene, which has been validated as a reference gene as 

previously described (Romero et al., 2020). Primers used for the different genes are listed in 

Table S1.

Virus titrations—Confluent ST cell monolayers were infected at a MOI of 0.1 for 24 h. 

Virus inoculum was washed away at 2 hpi, and the cells were washed twice with PBS. The 

cells were treated with sodium citrate buffer, pH 3.0 (40 mM sodium citrate, 10 mM KCl, 

135 mM NaCl), for 2 min at room temperature to remove all remaining infectious virus from 

the input (Piret et al., 2002). Following two more washing steps with PBS, fresh ST medium 

was added.

Infectious virus in the supernatants was titrated by 1/10 serial dilution assays on ST cells and 

four experimental repeats were performed. The characteristic PRV-derived cytopathic effect 

served as a readout. Titers are expressed as the log10 of the TCID50/ml.

QUANTIFICATION AND STATISTICAL ANALYSIS

For the statistical analysis of the results either a two sided students t-test was used, or a one 

way ANOVA with a Dunnett test for multiple comparisons. p-values < 0.05 were considered 
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to be significant. Analysis and visualization was performed in Graphpad Prism, except for 

Figures 5E and 5F, which were generated in R using ggplot2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Alphaherpesvirus infection leads to a near complete loss of m6A levels in 

mRNA

• Viral US3 kinase triggers phosphorylation and inactivation of the m6A writer 

complex

• m6A writer complex inactivation correlates with its dissociation from 

chromatin

Jansens et al. Page 21

Cell Rep. Author manuscript; available in PMC 2022 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Alphaherpesvirus infection results in a decrease in m6A-methylated mRNA
Quantification of m6A levels using mass spectrometry in (A) mRNA from mock-infected or 

PRV-infected ST cells at 16 hpi (n = 3 biological replicates), (B) mRNA from mock-infected 

or HSV-1-infected HEK293-T cells at 16 hpi (n = 3 biological replicates), (C) mRNA 

from PRV-infected ST cells at different time points post-inoculation (n = 2 biological 

replicates), and (D) 4SU-labeled mRNA produced between 7 and 9 hpi of mock-infected and 

PRV-infected ST cells (n = 5 biological replicates). Statistical significance was calculated by 

unpaired Student’s t test. *p < 0.05; ***p < 0.001.
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Figure 2. PRV infection triggers phosphorylation of the m6A writer complex
(A) Western blotting of a time-course experiment of different components of the m6A writer 

complex upon infection of ST cells with PRV at an MOI of 10 (n = 2 biological replicates).

(B) Western blotting of WTAP in mock- or PRV-infected ST cells at 16 hpi that were either 

or not treated with λ-phosphatase (n = 3 biological replicates).

(C) Western blotting of ST cells infected with wild-type (WT) PRV or isogenic PRV 

strains lacking expression of either of the viral protein kinases at 16 hpi (n = 3 biological 

replicates).

(D) Western blotting of HEK293-T cells transfected with either viral protein kinase at 48 

h post-transfection (hpt) (n = 3 biological replicates). Kinase-dead (KD) US3 and UL13 

contain a point mutation in the ATP binding site or the catalytic site, respectively.

(E) Phos-tag assays of ST cells mock-infected or infected with WT PRV or isogenic PRV 

strains lacking expression of US3 or UL13 at 16 hpi.

(F) Phos-tag assays of HEK293-T cells transfected with either of the viral protein kinases at 

48 hpt.

See also Figure S1.
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Figure 3. PRV infection leads to US3-dependent inactivation of the m6A writer complex
(A) Mass spectrometry-based quantification of m6A levels in total mRNA from ST cells 

infected with wild-type PRV strain NIA3 or isogenic PRV lacking either of the viral protein 

kinases at 9 hpi (n = 5 biological replicates).

(B) 4SU-labeled nascent mRNA produced between 7 and 9 hpi from mock-infected ST cells 

or ST cells infected with wild-type PRV strain NIA3 or isogenic US3null or UL13null PRV 

(n = 5 biological replicates).

(C) Total mRNA from HEK293-T cells transfected with an empty vector or either of the 

active or kinase-dead viral kinases (n = 3 biological replicates).

(D) Total mRNA from ST cells infected with wild-type PRV strain Becker or isogenic PRV 

lacking the US3 protein or PRV expressing a kinase-inactive US3 protein (KD) at 9 hpi (n = 

3 biological replicates).

(E) Phos-tag assays of mock-infected ST cells or ST cells infected with wild-type PRV strain 

Becker or isogenic PRV lacking the US3 protein or expressing a kinase-inactive US3 protein 

at 6 hpi.

See also Figure S2. Statistical significance was calculated by one-way ANOVA. *p < 0.05; 

**p < 0.01; ***p < 0.001.
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Figure 4. Chromatin dissociation of the m6A writer complex upon PRV infection
(A) Immunofluorescence imaging of METTL3 and WTAP in ST cells infected with wild-

type PRV- or mock-infected for 8 h (n = 3 biological replicates). Scale bar, 5 μm.

(B and C) ST cells were mock infected or infected with wild-type or isogenic US3null PRV 

for 16 h, after which WTAP (B) or METTL3 (C) was immunoprecipitated. The different 

components of the m6A writer complex were then detected using western blotting and 

quantified using densitometry (n = 2 biological replicates).

(D) ST cells were mock infected or infected with wild-type PRV or isogenic US3null or 

UL13null PRV and at 16 hpi fractioned in soluble and chromatin-bound lysates, followed 

using Western blotting for several components of the writer complex.

See also Figure S3.
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Figure 5. Inactivation of the m6A writer complex is not essential for viral replication, but m6A 
consensus sites are significantly underrepresented in alphaherpesvirus genomes
(A) ST cells were infected with wild-type or isogenic US3null PRV for different times, and 

viral protein levels were determined using western blotting.

(B) ST cells were infected with wild-type or isogenic US3null PRV for different times, and 

viral transcript levels were determined using qPCR. Data are represented as mean ± SEM (n 

= 3 biological replicates).

(C) ST cells were infected with wild-type or isogenic US3null PRV at an MOI of 0.1 for 24 

h, and infectious viral particle counts were determined by titrations. Data are represented as 

mean ± SEM (n = 3 biological replicates).

(D) ST cells were infected with wild-type or isogenic US3null PRV for 8 h and treated with 

MG132 from 2 hpi. At 4 hpi, cells were either or not treated with 300 ng/mL IFNa. ISG 

Jansens et al. Page 26

Cell Rep. Author manuscript; available in PMC 2022 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transcript levels were determined using qPCR. Data are represented as mean ± SEM (n = 3 

biological replicates).

(E) Fold changes of all porcine ISGs were determined using RNA-seq in wild-type 

or US3null-infected ST cells compared with mock-infected ST cells (n = 2 biological 

replicates).

(F) Cumulative fold change of m6A-methylated or non-methylated host transcripts as 

measured using RNA-seq comparing wild-type PRV-infected and isogenic US3null PRV-

infected ST cells. ST cells were harvest at 16 h after infection. Host transcripts were binned 

on the basis of the number of m6A sites, with the red line representing unmethylated 

transcripts (n = 2 biological replicates).

(G) All available eukaryotic virus genomes were downloaded (n = 5,516 genomes), and the 

frequency of the DRACH motif (in which D can be A, G, or U; R can be A or G; and H can 

be A, C, or U) was analyzed and compared with the subfamilies alphaherpesvirinae (n = 43 

genomes), betaherpesvirinae (n = 23 genomes), and gammaherpesvirinae (n = 39 genomes). 

The red dotted line represents the theoretical random frequency of the DRACH motif.

See also Figures S4 and S5. Statistical significance was calculated by unpaired Student’s t 

test or one-way ANOVA. ****p < 0.0001.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Alpha-tubulin Abcam ab40742

METTL3 Abcam ab195352

METTL14 (WB) Abcam ab252562

METTL14 (IF) Abcam ab98166

WTAP (WB) Cell Signaling Technology 56501S

WTAP (IP) Santa Cruz Biotechnology sc-374280

VIRMA Cell Signaling Technology BET A302-124A

PRV US3 Olsen et al., 2006 N/A

PRVUL13 Van Cleemput et al., 2021 N/A

PRV gE Nauwynck and Pensaert, 1995 N/A

PRV gD Nauwynck and Pensaert, 1995 N/A

PRV IE180 Gomez-Sebastian and Tabares, 
2004

N/A

HSV-1 ICP4 Santa Cruz Biotechnology sc-56986

PCIF1 Proteintech 16082-1-AP

Histone H3 Proteintech 17168-1-AP

Anti-mouse HRP Secondary Agilent P0447

Anti-rabbit HRP Secondary Agilent P0448

Bacterial and virus strains

PRV NIA3 WT de Wind et al., 1990 N/A

PRV NIA3 US3null De Wind et al, 1992 N/A

PRV NIA3 UL13null Kimman et al., 1992 N/A

PRV Becker VP26-mRFP WT Smith et al., 2004 N/A

PRV Becker VP26-mRFP US3null Coller and Smith, 2008 N/A

PRV Becker VP26-mRFP US3 KD Coller and Smith, 2008 N/A

HSV1 F WT Ejercito et al. (1968) N/A

HSV1 F US3null Ryckman and Roller, 2004 N/A

Chemicals, peptides, and recombinant proteins

STM2457 METTL3 inhibitor Selleck Chemicals HY-134836

MG132 26S proteasome inhibitor Merck C2211

4-thiouridine Merck T4509-25MG

EZ-Link HPDP-Biotin Thermo Fisher 21341

MEM Gibco 41090-028

DMEM Gibco 61965-026

Dithiothreitol (DTT) Calbiochem 3860-5GM

yDcpS NEB M0463S

Rnase T1 (1000 U/μl) Thermo Fisher Scientific EN0541
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REAGENT or RESOURCE SOURCE IDENTIFIER

S1 Nuclease (100 U/μl) Thermo Fisher Scientific EN0321

Herculase II Fusion DNA Polymerase Agilent 600677

m6A standard for LC-MS/MS Selleckchem S3190

m7G standard for LC-MS/MS Jena Bioscience NU-1135S

RIPA buffer Abcam ab156034

cOmplete mini EDTAfree protease inhibitor Roche 11836170001

PhosStop Roche 4906845001

PVDF membrane Amersham 10600023

VeriBlot IP Detection Reagent (HRP) Abcam ab131366

Pierce enhanced chemiluminescence (ECL) substrate Thermo Scientific 32106

ECL Plus substrate GE Healthcare RPN2236

SuperSignal West Femto maximum sensitivity substrate Thermo Scientific 54095

BamHI-HF New England Biolabs R3136

XbaI New England Biolabs R0145

Nonidet P-40 lysis buffer Merck 11332473001

Protein A/G beads Thermo Fisher 88802

Hoechst 33342, Trihydrochloride, Trihydrate Thermo Fisher Scientific H1399

Recombinant DNA

pKG1 plasmid (containing NIA3 US3 sequence) Geenen et al., 2005 N/A

pHF61 plasmid (containing kinase dead US3 K138Q) Deruelle et al., 2007 N/A

Plasmid containing NIA3 UL13 sequence This paper N/A

Plasmid containing kinase dead UL13 D194A This paper N/A

Plasmid containing porcine IFNa sequence Yongming, Kansas State 
University

N/A

Critical commercial assays

Phostag gels Fujifilm 198-17981

SYBR Green PCR Master Mix Applied Biosystems 4309155

RNeasy Mini Kit Qiagen 74106

mMACS Streptavidin Kit Miltenyi Biotec 130-074-101

iScript cDNA Synthesis Kit Bio-Rad 1708891

On-column RNase-Free DNase Set Qiagen 79254

DNase I (RNase-free) BioLabs 79254

Rapid DNA ligation kit ThermoFisher K1422

JetPEI Poly-plus 101000053

QIAshredder Qiagen 79654

Deposited data

Raw data RNA-seq This paper Gene expression omnibus 
(GEO): GSE201012

Experimental models: Cell lines
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REAGENT or RESOURCE SOURCE IDENTIFIER

ST cells ATCC RRID:CVCL_2204

HEK293T cells ATCC RRID:CVCL_0063

HeLa cells ATCC RRID:CVCL_0030

Oligonucleotides

Oligonucleotides for RT-qPCR Table S1 N/A

UL13 forward primer for cloning GGCGG 
ACGGATCCCTGCTGACCCAATGGCTG

This paper N/A

UL13 reverse primer for cloning CGCCC 
CGCTCTAGAACCGCAGGAAGGTGC This paper N/A

Software and algorithms

GraphPad Prism GraphPad Software Inc https://www.graphpad.com/

RStudio 2021.09.2 RStudio www.rstudio.com

R-4.1.2 R project https://www.r-project.org/

STAR 2.7.4a Dobin et al., 2013 https://github.com/alexdobin/
STAR

DESeq2 Love et al., 2014
https://bioconductor.org/
packages/release/bioc/html/
DESeq2.html

ImageJ NIH Image for the Macintosh https://imagej.nih.gov/ij/

Leica LAS X confocal microscopy software Leica Microsystems https://www.leica-
microsystems.com/products/
microscope-software/p/leica-
las-x-ls/
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