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Abstract: As a common brain cancer derived from glial cells, gliomas have three subtypes:
glioblastoma, diffuse astrocytoma, and anaplastic astrocytoma. The subtypes have distinctive clinical
features but are closely related to each other. A glioblastoma can be derived from the early stage of
diffuse astrocytoma, which can be transformed into anaplastic astrocytoma. Due to the complexity of
these dynamic processes, single-cell gene expression profiles are extremely helpful to understand
what defines these subtypes. We analyzed the single-cell gene expression profiles of 5057 cells of
anaplastic astrocytoma tissues, 261 cells of diffuse astrocytoma tissues, and 1023 cells of glioblastoma
tissues with advanced machine learning methods. In detail, a powerful feature selection method,
Monte Carlo feature selection (MCFS) method, was adopted to analyze the gene expression profiles
of cells, resulting in a feature list. Then, the incremental feature selection (IFS) method was applied
to the obtained feature list, with the help of support vector machine (SVM), to extract key features
(genes) and construct an optimal SVM classifier. Several key biomarker genes, such as IGFBP2,
IGF2BP3, PRDX1, NOV, NEFL, HOXA10, GNG12, SPRY4, and BCL11A, were identified. In addition,
the underlying rules of classifying the three subtypes were produced by Johnson reducer algorithm.
We found that in diffuse astrocytoma, PRDX1 is highly expressed, and in glioblastoma, the expression
level of PRDX1 is low. These rules revealed the difference among the three subtypes, and how they
are formed and transformed. These genes are not only biomarkers for glioma subtypes, but also drug
targets that may switch the clinical features or even reverse the tumor progression.

Keywords: glioma; gene expression; Monte Carlo feature selection; Johnson reducer algorithm;
support vector machine

1. Introduction

Glioma is a general term describing a specific subgroup of brain cancers derived from glial cells [1].
Glial cells, which include oligodendrocytes [2], astrocytes [3], ependymal cells [4], and microglia [5],
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participate in the maintenance of the nerve microenvironment in the central and peripheral nervous
systems. Due to the complicated cellular components of glial cells, tumors derived from such a group
of nerve system cells with a general name, glioma, can be further clustered into various functional
subgroups; moreover, each functional group may be originally derived from a unique functional
subgroup [6,7]. Clinically, four common subgroups of glial malignancies with clear cell origins exist,
namely, astrocytoma, oligodendroglioma, microglioma, and ependymal tumor, which are derived
from astrocytes, oligodendrocytes, microglia cells, and ependymal cells, respectively [8,9].

Glioblastoma and astrocytoma are the two major subtypes of glioma with distinctive and typical
clinical indications and genetic backgrounds [10]. Glioblastoma, in particular, has emerged to be one
of the most aggressive cancers originating from the brain and has unknown cellular origins [11,12].
Clinically, in the early stage, glioblastoma is difficult to diagnose, due to its non-specific clinical features
and its rapidly worsening symptoms [13]. One of the most significant diagnoses on glioblastoma is
the recognition and distinction of primary glioblastoma from the secondary ones, due to their distinct
pathological characteristics [14]. However, distinguishing the two pathological groups using only
traditional clinical testing methods, including Magnetic Resonance Imaging (MRI), is challenging [14].
Under such circumstances, the genetic background of such subgroup of glioblastomas has been
introduced to perform differential diagnosis. A specific biomarker in glioma, Isocitrate Dehydrogenase
(NADP(+)) 1 (IDH1), is found in more than 80% of secondary glioblastomas and only 5% of primary
glioblastoma, implying that, at least in some conditions, genetic background (e.g., tumor malignancy
indicator and IDH1) may be an optimal biomarker for the recognition of certain glioma subtypes [15,16].
On the other hand, astrocytoma can be further divided into at least two subgroups: diffuse astrocytoma
and anaplastic astrocytoma [17]. Diffuse astrocytoma, also called low-grade or fibrillary astrocytoma,
is a group of primarily slow-growing brain tumors specifically originating from astrocytes, and is
different from glioblastoma on the level of cell origin and malignancy grade [18]. Furthermore,
the anaplastic astrocytoma, derived from the pathological astrocytes, is a group of high grade
(WHO level III/IV) undifferentiated gliomas with poor clinical prognosis [19]. Based on the genetic
background of astrocytoma, mutations in gene IDH1, and specific copy number alterations in the
genome, are two of the major molecular characteristics of astrocytoma [17].

Clinically, glioblastoma, diffuse astrocytoma, and anaplastic astrocytoma are the three different
glioma subtypes with distinctive clinical features and respective genetic backgrounds [10]. However,
glioblastoma can be derived from the early stage of diffuse astrocytoma, and the transition from
diffuse astrocytoma to anaplastic astrocytoma is generally varied; therefore, distinguishing the three
subgroups of gliomas, solely by means of their clinical features and identified genetic background,
is difficult. Therefore, for the early classification and diagnosis of such gliomas, the detailed potential
genetic diversity of gliomas should be further identified, and novel diagnostic criteria based on
genetic biomarkers should be formulated. Traditionally, the identification of differentially expressed
genes/biomarkers in different tumor subtypes generally rely on the bulk sequencing on the whole
cell population with multiple cell subgroups. Therefore, some potential biomarkers, and differentially
expressed genes in only one or two particular pathological cellular components, may be floated
and missed [20]. Here, based on two specific single-cell sequencing results on the three subgroups
of gliomas (glioblastoma, diffuse astrocytoma, and anaplastic astrocytoma) with confirmed mutant
IDH1 [21], we used several advanced computational methods to identify potential differentially
expressed biomarkers for the distinction of the different glioma subgroups. The Monte Carlo feature
selection (MCFS) [22] method was employed to analyze the gene expression profile of cells in three
subgroups of gliomas. A feature list was produced, which was further used in the incremental
feature selection (IFS) [23] method to extract key distinctive genes that contribute to the recognition
of each glioma subtype, with the help of support vector machine (SVM) [24]. Several key biomarker
genes, such as IGFBP2, IGF2BP3, PRDX1, NOV, NEFL, HOXA10, GNG12, SPRY4, and BCL11A,
were analyzed and an optimal SVM classifier was constructed. In addition, we set up a series of
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rules via Johnson reducer algorithm [25] for the accurate distinction of the three glioma subgroups
with vague pathological and genetic boundaries.

2. Materials and Methods

In this study, we analyzed the single-cell expression profiles of glioma tissues from the dataset
Gene Expression Omnibus (GEO) using machine learning methods. Based on the expression profiles,
we identified the discriminative genes for different glioma subtypes by applying several feature
selection methods and integrating with a support vector machine [24]. The detailed procedures are
illustrated in Figure 1.
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Figure 1. A flowchart to show the procedures of the method. The gene expression profile was analyzed
by the Monte Carlo feature selection method, yielding a feature list. Some top-ranked features were
used to produce classification rules via Johnson reducer algorithm. The incremental feature selection
method used the feature list to extract optimal features and construct the optimal classifier, with the
help of support vector machine.

2.1. Dataset

We downloaded the processed single-cell gene expression profiles of 5057 cells of anaplastic
astrocytoma tissues, 261 cells of diffuse astrocytoma tissues, and 1023 cells of glioblastoma tissues
from GEO with accession number GSE89567 [21]. Venteicher et al. [21] disaggregated the tumor
tissues into single cells and profiled them with Smart-seq2. They processed the single cell sequencing
data with the following procedures: first, the reads were mapped to the human transcriptome with
Bowtie; then, the expression values were estimated as transcripts per million (TPM) with RNA-Seq
by Expectation Maximization (RSEM). Only the cells with more than 3000 expressed genes and with
average housekeeping expression greater than 2.5 were included. The processed expression matrix
with the TPM expression values of 23,686 genes in 5057 cells of anaplastic astrocytoma tissues, 261 cells
of diffuse astrocytoma tissues, and 1023 cells of glioblastoma tissues were used to classify the cells
from different disease tissues.

2.2. Feature Selection

In this study, we first used the MCFS [22] method to select informative genes, which can be used
to classify different brain cancer subtypes and identify interpretable rules. Then, two-stage incremental
feature selection (IFS) [23] was further employed based on the ranked features to refine the final
“optimal” genes with strong discriminative power for the different subtypes of glioma.
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2.2.1. Monte Carlo Feature Selection Method

MCFS [22,26,27] is based on the extensively used decision tree and it adopts bootstrap sampling
to rank information features for supervised classifiers. The general idea of MCFS is to randomly select
several subsets from the original M features, in which each subset includes randomly selected m
features (m�M). Multiple decision trees are generated and evaluated on a bootstrapping dataset
from the original training set. Here, the number of generated decision trees is denoted as p. The above
process is repeated t times to obtain t feature subsets and p × t decision trees.

The relative importance (RI) is defined as a score of a feature involved in growing the p × t
decision trees. The RI score of feature g can be calculated as follows:

RIg =
pt

∑
τ=1

(wAcc)u IG(ng(τ))(
no.in ng(τ)

no.in τ
)

v

, (1)

where wAcc is the weighted accuracy, which is calculated as the mean accuracy of all classes; ng(τ)

indicates a node using feature g in decision tree τ; IG(ng(τ)) is the information gain of ng(τ);
no.in ng(τ) is the number of training samples in ng(τ); no.in τ is the number of samples in decision
tree τ; and u and v are two weighting factors, which were all set to 1, their default setting. After the
RI score of each feature has been calculated, all features are ranked in a feature list according the
descending order of their RI values. For formulation, this feature list was formulated as

F = [ f1, f2, . . . , fN ], (2)

where N is the total number of features.
In this study, we used MCFS software package (Version 1.2.14) [28] to rank all 23,686

genes involved.

2.2.2. Rule Learning

Based on the ranked genes from MCFS, we identified simple and interpretable rules for classifying
different glioma subtypes using a rough set-based rule-learning algorithm. We detected interactions
among the different genes that were represented as rules. A rule describes a relation between conditions
(the left-hand-side of the rule) and the outcome (the right-hand-side). For example, a rule can be
presented as an IF–THEN relationship based on expression values: IF Gene1 ≥ 5.1 AND Gene2 ≤ 8.9,
THEN subtype = “glioblastoma”. We identified the rules using the Johnson reducer algorithm [25]
implemented in the MCFS software package.

2.2.3. Incremental Feature Selection

Incremental feature selection (IFS) [23] is an ideal method used to screen a set of optimal features
to accurately distinguish samples from different groups. Here, IFS was executed on the feature list
F, in which features are ranked in descending order of their RI values. Clearly, features with high
ranks were important and positive for classification. Thus, combining some top features can help
a classification algorithm (e.g., SVM) produce good performance. There were 23,686 features in the
feature list, inducing lots of time to test all possible feature subsets. In view of this, we designed a
two-stage IFS method.

In the first stage, we used a large step of 10 to generate several feature subsets, denoted
as F1

1 , F1
2 , . . . , F1

m, where the i-th feature subset included top i × 10 features in F, that is, F1
i =

[ f1, f2, . . . , fi×10]. In other words, we constructed a series of feature subsets that contained first ten,
twenty, thirty, and so forth, features in the feature list F. Then, for each of these feature subsets, all cells
were represented by features in this set, and SVM was executed on these cell representations, evaluated
by ten-fold cross-validation. After testing all these feature subsets, we can determine the feature subset
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that can help SVM provide good performance, thereby obtaining a feature interval [min, max]. Clearly,
this interval should contain the size of feature subset that can yield the best performance for SVM.

In the second stage, we further constructed a series of feature subsets based on the interval
[min, max] obtained in the first stage. In detail, feature subsets, denoted as F2

min, F2
min+1, . . . , F2

max,
were generated, where F2

i (min ≤ i ≤ max) contained the first i features in feature list F. For example,
if min = 300 and max = 600, the second stage of IFS method constructed the feature subsets containing
first 300–600 features in the feature list F. It is clear that we did careful searching at this stage to find
a better feature subset, which may not be tested in the first stage. Similarly, the SVM was executed
on cells that were represented by features in each of these feature subsets, also evaluated by ten-fold
cross-validation. According to the predicted results, the feature subset producing the best performance
for SVM can be extracted. The features in this subset were considered as optimal features, and a
corresponding optimal classifier was built on these optimal features.

2.3. Support Vector Machine

SVM [24] is a widely used supervised-learning algorithm based on the statistical learning theory,
which is applied to handle many biological problems [29–37]. SVM performs linear classification and
non-linear classification problems. The basic principle is to infer a hyperplane with a maximum margin
between two classes of samples. The larger the margin is, the lower the generalization error becomes.
The SVM first maps the data into high-dimensional linear space via kernel trick, such as Gaussian
kernel; then, it fits the linear function in a high-dimensional space. Mainly developed for binary class
problems, SVM can be extended for multi-class problems. For multi-class classification, SVM adopts
“One Versus the Rest” strategy. Hence, to acquire m-class classifiers, SVM constructs a set of binary
classifiers svm1, svm2, . . . , svmm, in which each is trained to separate one class from the rest.

In this study, we used the tool “SMO” in Weka (version 3.8.0), which implements one type of
SVMs that is optimized by sequential minimum optimization (SMO) [38]. For convenience, this tool
was executed with its default parameters. In detail, the kernel was polynomial function and the
tolerance parameter was 0.001. The Weka software can be downloaded at a public URL [39].

2.4. Performance Measurement

In this study, we considered cells in three glioma tissues. As mentioned in Section 2.1, the anaplastic
astrocytoma tissues contained most cells (5057), while diffuse astrocytoma tissues contained least cells
(261), meaning it is an imbalanced dataset. For this type of dataset, the overall accuracy cannot correctly
indicate the quality of predicted results because it is highly related to the accuracy of the largest class.
For binary classification, Matthews correlation coefficient (MCC) [40–43] is regarded as a balanced
measure, even if the classes are of very different sizes. In this study, we employed its multiclass
version [44], which was proposed by Gorodkin, to evaluate the prediction performance using ten-fold
cross-validation [31,45–47]. It is believed that it can evaluate the performance of classifiers in a fair
circumstance. Its brief description is as below.

For example, N samples (i = 1, 2, . . . , N) and C classes (j = 1, 2, . . . , C) are formulated. Let X =

(xij)N×C be a matrix representing the predicted classes of samples, and xij ∈ {0, 1} is a binary output
variable; xij equals to 1 if the sample i is predicted to be class j; otherwise, xij is 0. The matrix
Y = (yij)N×C is defined as another matrix indicating the true classes of samples, where the binary
variable yij = 1 when the sample i belongs to class j; otherwise, it is set to 0.

The MCC can be defined as a discretization of the correlation for binary variables, which is
specified by

MCC =
cov(X, Y)√

cov(X, X)cov(Y, Y)
=

n
∑

i=1

C
∑

j=1
(xij − xj)(yij − yj)√

n
∑

i=1

C
∑

j=1
(xij − xj)

2 n
∑

i=1

C
∑

j=1
(yij − yj)

2
, (3)
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where xj and yj are the mean values of numbers of xj and yj, respectively. The value of MCC ranges
from −1 to 1; the higher the MCC value is, the better the performance the classifier achieves.

Table 1. Twenty-four detected rules for classifying different glioma subtypes.

Rules Criteria Glioma Subtype Rules Criteria Glioma Subtype

Rule1

XIST ≥ 2.725
LOC100190986 ≤ 1.956
GATM ≥ 4.826
PRDX1 ≥ 6.064

diffuse astrocytoma Rule2

XIST ≥ 3.588
LOC100190986 ≤ 1.609
SLC1A3 ≥ 5.404
HLA-B ≤ 7.228

diffuse astrocytoma

Rule3

XIST ≥ 3.132
RPL7 ≥ 9.478
RPL8 ≤ 7.502
EGR1 ≤ 6.442

diffuse astrocytoma Rule4

XIST ≥ 2.601
EIF3C ≤ 0.477
HNRNPH1 ≥ 6.813
C1orf61 ≤ 6.456

diffuse astrocytoma

Rule5
XIST ≥ 2.395
CYP51A1 ≥ 5.810
CDR1 ≥ 6.717

diffuse astrocytoma Rule6

XIST ≥ 2.395
SKP1 ≥ 6.479
SEPT7 ≥ 5.342
RPL30 ≥ 7.419

diffuse astrocytoma

Rule7
XIST ≥ 2.395
SFPQ ≥ 4.772
JAM3 ≤ 0.000

diffuse astrocytoma Rule8

XIST ≥ 3.021
RPL30 ≥ 8.453
PPIA ≥ 7.077
DDX5 ≤ 6.823

diffuse astrocytoma

Rule9 PCDHB7 ≥ 3.827
HNRNPH1 ≥ 6.670 diffuse astrocytoma Rule10 RHOB ≥ 6.545

HSPA1A ≥ 4.446 diffuse astrocytoma

Rule11

RPSAP58 ≤ 1.280
HSPA1B ≥ 5.291
PRDX1 ≤ 0.000
MARCKS ≥ 3.464

glioblastoma Rule12

TCF12 ≤ 4.952
COL20A1 ≥ 0.800
CBR1 ≥ 0.4222
MTRNR2L2 ≥ 12.850

glioblastoma

Rule13

NRCAM ≤ 0.999
HSPA1B ≥ 4.754
XIST ≥ 1.034
HSPA1B ≥ 7.275

glioblastoma Rule14

RPSAP58 ≤ 1.414
PRDX1 ≤ 1.657
MTRNR2L8 ≥ 12.074
RPL8 ≥ 7.374

glioblastoma

Rule15

NRCAM ≤ 2.392
FOS ≤ 5.642
RPL35 ≥ 6.606
C1orf61 ≥ 6.700
MARCKS ≤ 4.770

glioblastoma Rule16

FAM110B ≤ 2.527
RPSAP58 ≤ 0.165
NEAT1 ≥ 5.045
ITPR2 ≥ 2.118
HLA-C ≥ 6.293
NAPSB ≥ 4.988

glioblastoma

Rule17

FAM110B ≤ 2.607
RPSAP58 ≤ 0.000
SUSD5 ≥ 0.573
SUSD5 ≥ 2.515

glioblastoma Rule18

TCF12 ≤ 4.215
RHOB ≤ 0.180
TMBIM6 ≤ 4.695
RPS26 ≤ 5.572
JAM3 ≥ 1.876

glioblastoma

Rule19
RIA2 ≤ 3.045
PRDX1 ≤ 0.000
MCL1 ≤ 2.387

glioblastoma Rule20

NRCAM ≤ 1.090
DDX5 ≤ 6.520
SIRPB1 ≥ 1.014
EIF1 ≤ 7.690
NDUFA4 ≥ 0.811

glioblastoma

Rule21

SMOC1 ≤ 1.959
RPSAP58 ≤ 0.000
RPS26 ≤ 4.504
APOE ≤ 0.797
RPL7A ≥ 7.267

glioblastoma Rule22

NRCAM ≤ 0.548
CD97 ≥ 0.856
CYBB ≥ 5.756
RPSAP58 ≤ 0.952
ITPR2 ≥ 2.769
EIF1 ≤ 8.648

glioblastoma

Rule23
NRCAM ≤ 0.548
MT2A ≥ 8.374
PFKFB3 ≥ 4.147

glioblastoma Rule24 Other conditions anaplastic astrocytoma
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3. Results

In this study, we first used MCFS to rank the genes for different glioma subtypes. The corresponding
RI values of the 23,686 genes involved in this study, and the feature list F that was obtained by
increasing order of features’ RI values, are provided in the Table S1. We further detected 24 rules
(Table 1) based on some top-ranked genes from MCFS using Johnson reducer algorithm. More details
about these rules are discussed in Section 4. Moreover, these rules are used to classify the three glioma
subtypes (diffuse astrocytoma, glioblastoma, and anaplastic astrocytoma). We yielded a predicted
accuracy 0.923, a weighted accuracy 0.827, and an MCC of 0.764 by considering the prevalence of
different classes. The confusion map for ten-fold cross-validation was repeated three times, in which
the rules were applied to classify glioma subtypes, as shown in Figure 2, where the numbers are pooled
from running ten-fold cross-validation thrice.
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We applied SVMs to classify different glioma subtypes using the selected features from two-stage
IFS method. In the first stage of IFS method, a series of feature subsets with a step of 10, that is,
a set of feature subsets containing first ten, twenty, thirty, and so forth, features in the feature list F,
was constructed. We trained an SVM classifier on each of these feature subsets, which was evaluated
using ten-fold cross-validation. We obtained the best MCC 0.888 using the first 540 features in F.
Furthermore, the second highest MCC (0.886) was yielded by the first 370 features. In view of this,
we determined the feature interval as [300, 600]. Then, we further constructed a second series of feature
subsets with a step of one in the feature number interval [300, 600] in the second stage of IFS method,
that is, we constructed the feature subsets containing first 300–600 features in F. Similarly, by testing
on these feature subsets, we yielded the highest MCC 0.889 when the top 539 features were used to
train the SVM classifier. Meanwhile, the predicted accuracy values for three glioma subtypes (diffuse
astrocytoma, glioblastoma, and anaplastic astrocytoma) were 0.981, 0.969, and 0.871, respectively,
and the overall accuracy was 0.963. Furthermore, we showed the trends of MCCs corresponding to the
number of features involved in building the SVM classifiers (Figure 3). In Figure 3A, boundaries of
feature interval are labeled with red markers. Figure 3B zooms in the curve between 300 and 600 on the
X-axis, in which the optimal MCC value, 0.889, is marked with a red star. The predicted accuracies and
MCCs in different feature subsets are listed in Table S2. In this study, we used several feature selection
methods for constructing an SVM classifier. However, because we generated the feature list based
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on all samples before doing ten-fold cross-validation on different feature subsets, the information of
testing samples was slightly included in the training procedure, which may enhance the performance
of each classifier. Considering that the final SVM classifier gave good performance (MCC = 0.889), it is
believed that the performance of the final SVM classifier would be still good if we did a stricter test.
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4. Discussion

We presented a novel computational workflow for the identification of core distinctive expression
patterns of the three glioma subtypes and summarized a series of quantitative rules for the accurate
recognition of such subtypes. According to recent publications, all identified high-related distinctive
expressed genes and quantitative rules can be verified. Due to the limitation of the article length,
analyzing each identified gene and its corresponding rules is impossible. Therefore, we screened out
the high-ranked genes and obtained their respective optimal rules for each glioma subtype to be used
for further discussion. The detailed analysis can be seen below.

4.1. Analysis of Optimal Genes That May Contribute to the Recognition of Each Glioma Subtype

In this section, we took top nine features (genes) in the feature list yielded by the MCFS method,
which are listed in Table 2, for detailed analysis. To clearly display the expression level of three glioma
subtypes on these genes, a heatmap was plotted in Figure 4. We can figure out that these genes can
easily distinguish anaplastic astrocytoma and diffuse astrocytoma from glioblastoma. As for further
distinction on anaplastic astrocytoma and diffuse astrocytoma, though two such groups of samples
are mingled together, diffuse astrocytoma has specific and sporadic individual high expression level
on one or more of such genes, while in anaplastic astrocytoma, almost all optimal genes were not
detected. Therefore, from Figure 4, though according to the clustering results, samples of anaplastic
astrocytoma and diffuse astrocytoma are mingled and, actually, the top nine genes can still contribute
toward distinguishing samples in different types with unique expression pattern.
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Table 2. Top nine genes yielded by Monte Carlo feature selection (MCFS) method.

Rank Gene Symbol Description Relative importance (RI)

1 IGFBP2 Insulin-Like Growth Factor Binding Protein 2 0.1375
2 PRDX1 Peroxiredoxin 1 0.1226
3 NOV Nephroblastoma Overexpressed 0.1194
4 NEFL Neurofilament Light 0.1100
5 HOXA10 Homeobox A10 0.1059
6 GNG12 G Protein Subunit Gamma 12 0.0942
7 IGF2BP3 Insulin Like Growth Factor 2 MRNA Binding Protein 3 0.0891
8 SPRY4 Sprouty RTK Signaling Antagonist 4 0.0865
9 BCL11A B Cell CLL/Lymphoma 11A 0.0847
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IGFBP2, as the top gene in the feature list yielded by MCFS method, encodes one of the six similar
proteins that bind to insulin-like growth factors I and II (IGF-I and IGF-II) [48]. As for its differential
expression pattern on the three glioma subtypes, IGFBP2 has been confirmed to be highly expressed
in gliomas with high malignancies, such as glioblastoma and anaplastic astrocytoma, but expressed
low in the relatively binary astrocytoma, the diffuse astrocytoma [49,50]. Therefore, IGFBP2 may
be another potential biomarker for the distinction of the three glioma subtypes with positive IDH-1.
Similarly, another insulin-like growth factor-binding protein encoded by IGF2BP3 (rank 7) may also
be an optimal differential marker for the identification of different glioma subtypes. The next gene,
PRDX1 (rank 2), encodes an antioxidant enzyme as a member of the peroxiredoxin family [51]. As for
its expression pattern in different glioma subtypes, PRDX1 may be connected to the poor prognosis of
glioma subtypes, including glioblastoma and astrocytoma [52,53]. In addition, the expression pattern of
PRDX1 may be a potential biomarker for the recognition of astrocytoma in elderly patients, confirming
its potential role in the differential diagnosis of glioma [53]. NOV (rank 3), encodes a small secreted
cysteine-rich protein in the CCN family, and participates in fibrosis and cancer development-associated
biological processes [54,55]. According to its distinctive pathological role in different glioma subtypes,
NOV inhibits the proliferation and promotes the migration and invasion of the malignant cells in
glioblastoma [56]. However, no direct reports have been presented to summarize the role of NOV
in astrocytoma, implying the differential biological function and expression pattern of such gene in
different glioma subtypes. The next gene, NEFL (rank 4), encodes a member of the neurofilaments
and is involved in the maintenance of neuronal caliber [57]. NEFL (also known as NF68) has been
functionally connected to a ligand of PPAR gamma PGJ2, and participates in the tumorigenesis of
glioblastoma [58]. With the specific abnormal expression pattern of NEFL, glioblastoma, one of the
glioma subtypes, can be accurately identified by such a gene.

The gene HOXA10 (rank 5) is involved in a developmental regulatory system that provides cells
with specific positional identities on the anterior–posterior axis as a member of transcription factors
called homeobox genes [59,60]. The methylation and expression of HOXA10 has been functionally
connected to the stem cell pattern of glioma cells [61]. According to recent publications, the stem cell
signature of diffuse astrocytoma is quite different from the other two glioma subtypes, indicating
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that HOXA10 may be a potential biomarker for the identification of diffuse astrocytoma cells and
validating the efficacy and accuracy of our prediction [62,63]. GNG12 (rank 6), as another optimal
biomarker, contributes to the distinction of different glioma subtypes. As a modulator and transducer
in various transmembrane signaling system, such a gene is required for the guanosine triphosphatases
(GTPase) activity, which participates in the replacement of guanosine diphosphate (GDP) by GTP [64].
GTPase-associated biological processes are related to specific tumor behavior, like migration, invasion,
and proliferation, in multiple tumor subtypes, including glioma [65,66]. Considering that the
fundamental tumor behavior of the three tumor subtypes are quite different [1,67], we speculate
that one of the GTPase-associated regulators, GNG12, may have different expression pattern in glioma.
The following two optimal genes, SPRY4 (rank 8) and BCL11A (rank 9), act differentially on the
three glioma subtypes according to recent publications. No direct evidence confirmed that SPRY4
may act differentially in glioblastoma and the two astrocytomas. However, a recent study confirmed
that, in gliomas, the expression pattern of SPRY4 may be related to the cell proliferation, metastasis,
and epithelial–mesenchymal transition processes [68]. Therefore, it is reasonable for us to speculate that
SPRY4 may have a differential expression pattern in such subtypes, and act as a potential biomarker
based on its expression level [69,70]. BCL11A, encoding a C2H2 type zinc-finger protein, participates in
brain development, leukemogenesis, and hematopoiesis [71,72]. Early in 2012, as a potential oncogene,
BCL11A has been reported to contribute to glioblastoma with specific expression pattern [73]. However,
no such report has confirmed the contribution of BCL11A on astrocytoma, validating that it may be a
potential biomarker for the distinction of the three glioma subtypes.

To sum up, the top nine optimal genes have been confirmed to have specific expression patterns
in the three candidate glioma subtypes, contributing to further subclassification by recent publications
and validating the efficacy and accuracy of our study.

4.2. Analysis of Optimal Rules for Quantitative Identification of Each Glioma Subtype

Apart from potential biomarkers, we further set up a quantitative identification system involving
24 quantitative rules based on the expression level of each specific parameter (gene). According to
recent publications, the tendency and specific threshold of each rule can be confirmed, proving the
utility of these rules. Limited by the article length, we screened out the representative rules for the
identification of each glioma subtype.

Ten rules were formulated to contribute to the identification of diffuse astrocytoma involving
multiple functional genes. To validate the efficacy and accuracy of such rules, we summarized the
expression pattern of various related sequencing datasets. Due to the limitation of article length,
analyzing each rule individually is impossible. Therefore, we chose three optimal rules for further
analysis: rule 3, rule 4, and rule 5. These three rules are involved in 9 genes, each sharing a high
expression pattern of XIST with different thresholds. At relatively early stage of gliomas, the degree of
malignancy is low in diffuse astrocytoma. XIST, as the shared gene, has been confirmed to participate
in tumor-suppressive biological processes; its high expression corresponds with a specific pathological
pattern [74]. The high expression of XIST has been shared by most of the diffuse astrocytoma, validating
their efficacy and accuracy of such rules. Apart from XIST, the two homologues, namely, RPL7 and
RPL8, have also been predicted to have quantitative patterns in diffuse astrocytoma. Based on the
rules, RPL7 has a uniquely high expression pattern, while RPL8 has a relatively low expression pattern.
According to recent publications, such a pattern has been identified in the early stage of human fetal
astrocytes [75]. Considering the similarity of fetal and tumor at the differential state level, we speculate
that in the diffuse astrocytoma, the expression level of RPL7 and RPL8 may be quite different from
the other two glioma subtypes [74]. Similarly, genes like EGR1 [76], EIF3C [77], HNRNPH1 [78],
C1orf61 [79], CYP51A1 [80], and CDR1 [81], have also been validated by recent publications.

Apart from such filtered rules that contribute to the identification of diffuse astrocytoma, thirteen
rules are presented for the validation on glioblastoma. We screened out rule 11 and rule 12 for detailed
analysis. Rule 11 involves four functional genes, indicating that high expression of HSPA1B and
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MARCKS, together with the low expression of RPSAP58 and PRDX1, may indicate that a patient
may suffer from glioblastoma. HSPA1B is highly expressed in glioblastoma and is related to the
pharmacological effects of erlotinib [82]. Meanwhile, MARCKS is a prognosis reporter for glioblastoma
and contributes to the intracranial tumor proliferation rate [83]. Therefore, as a malignant tumor
subtype glioblastoma, the expression of MARCKS may be a potential biomarker for the identification
of glioblastoma. The remaining two downregulated genes, RPSAP58 and PRDX1, obtained similar
evidences [10,52]. Likewise, in rule 12, three genes, including COL20A1, CBR1, and MTRNR2L2,
are upregulated, and TCF12 are downregulated [84,85]. Compared with the other two subtypes of
astrocytoma, all these four genes have been confirmed, at the level of expression patterns, validating
the high efficacy and accuracy of this rule. Samples that do not conform to any one of the rules are
considered an anaplastic astrocytoma.

In conclusion, because of the limitation of the article’s length, we cannot analyze the rules
individually. However, all rules can be validated by recent publications, implying the efficacy and
accuracy of these quantitative rules. Therefore, based on the single-cell sequencing data, we tried to
identify the core functional markers and set up the quantitative rules for such distinction. This study
may not only screen out a group of candidate biomarkers for the recognition of different tumor
subtypes, but also provide us a novel tool for the exploration and recognition of tumor-associated genes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/7/10/350/s1,
Table S1: The involved 23,686 features are ranked by their RI values derived from MCFS method, Table S2:
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