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a b s t r a c t 

Background: Intervertebral disc (IVD) degeneration is one of the primary causes of low back pain (LBP) and 

despite a prominent prevalence, present treatment options remain inadequate for a large portion of LBP patients. 

New developments in regenerative therapeutics offer potentially powerful medical tools to modify this pathology, 

with specific focus on (stem) cell transplantations. Multiple clinical trials have since reported overall beneficial 

outcomes favoring cell therapy. Nonetheless, the significance of these improvements is often not (clearly) dis- 

cussed. As such, this narrative review aims to summarize the significance of the reported improvements from 

human clinical trials on IVD-targeted cell therapy. 

Methods: Through a comprehensive narrative review we discuss the improvements in pain, disability, quality of 

life, and imaging modalities and reported adverse events following cell therapy for discogenic pain. 

Results: Most clinical trials were able to report clear and significant improvements in pain and disability out- 

comes. Imaging and quality of life improvements however were not as clearly reported but did present some 

enhancements for a select number of patients. Finally, whether cell therapy can outperform placebo treatment 

remains intangible. 

Conclusions: Our review highlights the clinical significance of observed trends in pain and disability improvement. 

Nevertheless, reporting quality was found unsatisfactory and large-scale randomized controlled studies remain 

small in number. Future studies and articles should put more emphasis on improvements in imaging modalities 

and compare outcomes to (placebo) control groups to fully elucidate the efficacy and safety of cellular therapeutics 

against LBP. 
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Low back pain (LBP) remains one of the primary causes of disabil-

ty worldwide, precipitating large economic and social costs to societies

1–3] . Low back pain is a multifactorial and complex symptom, that

an originate from a variety of pathophysiological conditions. Regard-

ess, intervertebral disc (IVD) degeneration is a well-established source

f back pain, and is believed to form a plurality of LBP cases [4] . Disc

egeneration involves a loss in integrity and function of the IVD; specifi-

ally, the central nucleus pulposus (NP), annulus fibrosis (AF), and end-

late regions. This process may emanate or be exacerbated by wear-and-

ear and aging of the IVD or as a consequence of traumatic injury that

xceeds the disc‘s internal regenerative ability. Specifically, a decline in

iable NP cell numbers and their activity diminishes the capacity of the

isc to maintain its specialized matrix composition [ 5 , 6 ], leading to a

radual reduction in proteoglycan density and collagen architecture dis-

rganization. This impacts the overall IVD biomechanical limits. Loss of
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isc resilience may result in multiple spinal disorders e.g., spinal steno-

is, disc herniation, spinal deformities, etc. Moreover, the degenerative

VD now accommodates senescent and catabolic cells, which secrete

ighly inflammatory and catabolic factors, thereby potentially attract-

ng immunogenic and inflammatory cells into the otherwise immune-

rivileged IVD [7] . Among the secreted factors are angiogenic and neu-

ogenic stimulants, which in turn, can vascularize and neo-innervate the

nner regions of the otherwise largely avascular and non-innervated disc

 8 , 9 ]. Finally, the inflamed disc might provoke neighboring nerve, vas-

ular, muscle, and tendon structures, thereby promoting pain sensation

n the respective tissues. 

Contemporary treatments for discogenic back pain remain largely

uboptimal, as they fail to target the underlying pathophysiology. Treat-

ent might comprise the prescription of analgesics or physical therapy.

lternatively, in more severe cases, surgery might be indicated, involv-

ng the immobilization or total removal of the affected IVD. For disc

emoval, the disc will be excised and replaced by either an artificial
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isc implant or induced to fuse into a boney segment by bone induc-

ng components. Both arthroplasty and spine fusion are becoming more

revalent, despite controversy surrounding their efficacy [ 10 , 11 ]. Taken

ogether, these conservative and surgical interventions forming the cur-

ent medical “tool box ” for the practitioner remain suboptimal and a

reatment strategy between conservative treatment and surgical inter-

ention is bitterly lacking [12] . 

Evidently, a large unmet medical and socioeconomic need exists for

ffective therapies able to alleviate discogenic back and neck pain. Up-

oming regenerative therapies e.g., gene therapy [13] , growth factor

njection [14] , tissue engineering [15] , hold great promise as they aim

o target the degeneration cascade underlining the discogenic pain. In

articular, cell transplantation has gained significant momentum in the

eld [12] , with multiple clinical trials being reported in recent years.

owever, the field is progressing rapidly, with increasing numbers of

linical trials being published [ 12 , 16 ]. Moreover, the full potential of

ell therapy against LBP remains ambiguous, and recent literature re-

iews focusses predominantly on qualitative outcomes of the clinical

rial. This narrative review discusses the finding of 41 individual reports

f 31 separate clinical trials and case reports, aims to assess the impact

f cell transplantation through summarizing the rate of score improve-

ents reported in order to determine the alleviation of pain and dis-

bility and improving quality of life (QoL) outcomes, so as to determine

hether investigatory cell transplantation products are able to demon-

trate beneficial effects for LBP patients. Similarly, imaging modality

utcomes will be examined to review the ability of transplanted cells to

romote the repair of disc anatomy and hydration as a potential regen-

rative therapeutic. Finally, a careful review of reported serious adverse

vents (SAE) and adverse events (AE) will be used to grasp the overall

afety profile of these cellular products. 

ell therapy 

Cellular therapy against discogenic pain involves the transplantation

f de novo cells in order to (i) replenish or replace (damaged) endemic

ells, (ii) activate or alter the (damaged) endemic cell’s behavior, and/or

iii) recruit endemic cells into the site of concern [17] . In general, cel-

ular therapy is well-established in the form of bone marrow transplan-

ation for leukemia patients [18] , however, its employment for other

athologies and applications has only recently evolved into clinically

pproved products [19] . Cell therapy for the IVD has first been reported

n 1994 [16] and has since been shown incredibly effective as a regen-

rative product in multiple animal studies [20–23] . As presented in the

xcellent review of Williams et al. [16] different cells types have been

hown to possess the capacity to limit, halt, or even reverse IVD de-

eneration in multiple disc degeneration models, including reports of

istological improvements, improvement in imaging modalities, and in-

ammation inhibition. However, questions remain regarding the trans-

atability of these animal observations to a human disc environment.

articularly, as human discs are maintained by different cell types, and

nvolve different disc dimensions and biomechanical limits [ 5 , 24–27 ]. 

Nevertheless, in the past decade, initial pilot studies and phase I/II

rials have been completed and reported. Since, multiple reviews on

n-human cell therapy for IVD repair and discogenic pain have been

eported [ 17 , 28–33 ], nonetheless, they often qualitatively describe the

mpact of the cell transplantation products on pain, disability, or imag-

ng outcomes, but fail to give a clear, quantitative, and fair impression

n the concrete impact of these claimed improvements. Ideally, through

eta-analysis the impact of cell therapy is explored and such reports

ave been published [ 34 , 35 ]. Nonetheless, these reviews are severely

imited by the still small number of controlled studies that can be in-

luded for analysis, and subsequently small patient cohorts and het-

rogenous study designs regarding outcome parameters and patient in-

ications. 

For this narrative review, we examine multiple reports and studies

ncluding case reports, case series, pilot studies, and clinical trials [36–
2 
6] ( Table 1 ). Note that in our review, reports discussing the same clin-

cal trial (e.g., reports with multiple follow-up periods) are reported as

 single study, referred to by the first-author of the most recent pub-

ication. The identified treatments involved predominantly intradiscal

ransplantation, as well as one case series of intravenous (IV) cell ad-

inistration [47] . The cell transplantation was employed as a treatment

trategy to directly alleviate discogenic pain, to improve outcomes (or

imit the deterioration of the IVD) following microdiscectomy, or could

e employed to prevent discogenic pain and/or degeneration as a risk

rom adjacent disc disease. For each identified study we aimed to report

utcomes as a change from baseline (both in absolute and as a percent-

ge) and indicate whether these differences were statistically significant.

oreover, where a controlled group was included, a comparison state-

ent has been included. 

ain alleviation 

The primary reason LBP patients present themselves to their prac-

itioner is mostly for the pain associated with LBP, as such the prime

utcome to be assessed focuses on the alleviation of pain outcomes.

hese are commonly measured through visual analog scores (VAS; in

m or mm) or numerical rating scale (NRS), thereby providing the pa-

ients subjective interpretation of their perceived pain levels. From our

eview, it is evident that the intervention of cell transplantation is able

o alleviate pain in all published cases. Only the work of Haufe and

ork [76] , which presents the first identified IVD-based cell therapy

rial, examining the transplantation of hematopoietic stem cells (HSC),

ailed to report any pain improvement in any of their 10 treated cases

-year post-transplantation. Other studies employing mesenchymal stro-

al cells (MSC), chondrogenic cells, or mixed cell population were able

o present an alleviation of pain scores compared to baseline ranging

rom 28% [36] to 88% [64] ( Table 2 ). 

upplementation of microdiscectomy surgery 

Interestingly, both minimum and maximum pain improvements

ame from studies that supplemented discectomy procedures with cell

ransplantation. The 28% was observed in the work of Yoshikawa et al.,

hich examined the impact of transplanting bone marrow derived MSC

ollowing disc fenestration of two cases followed for 2 years, while

he 88% pain alleviation ( = 6.3 cm VAS) was reported by Xuan et al.

64] who transplanted autologous IVD-derived cells from the micro-

issected tissue in 18 cases followed for up to 6 years. Moreover, Xuan

t al. [64] were able to compare the effect of their cell therapy to a

roup subjected to microdiscectomy only, which reported a significant

mprovement in pain for the cell-treated cohort. It should however be

oted that this significant improvement at the 6-year follow-up involved

 difference of about 1 cm VAS compared to the control group, suggest-

ng that the main source of pain improvement is likely resulting from

he microdiscectomy itself. A similar study by Meisel et al. treating mi-

rodiscectomy patients with autologous IVD derived-cells, was similarly

ble to report alleviation in pain (a 42% reduction), which resulted only

n a slight trend of enhanced pain outcomes compared to a discectomy-

nly cohort. Also, Xu et al. [74] reported enhanced pain outcomes for

he cell-treated cohort following microdiscectomy, however, VAS scores

ere only about 1 cm lower than microdiscectomy-only cohorts. These

ata do suggest that cell therapy can enhance the pain-outcomes follow-

ng microdiscectomy, although the clinical impact appears to be mini-

al. 

ell therapy directed against discogenic pain 

Patients treated through cell transplantation as a direct therapeutic

or their discogenic pain show overall clearer benefits in pain allevia-

ion. Here the reduction ranges from 31% [66] to 85% [37] pain re-

uction compared to baseline levels, which represents a VAS reduction
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Table 1 

General overview of included clinical studies and human case reports examining the effect of cell transplantation for low back pain alleviation or disc degeneration repair. 

Author Year Ref FU (y) Site Mode Product Cell density Volume and carrier n Control(s) n Efficacy Safety Type 

Yoshikawa 2010 [36] 2 ID Autologous BM-MSC Unclear 0.54mL collagen 

sponge 

2 - - ✔ ✔ Mesenchymal 

stromal cells 

Orozco 2011 [37] 1 ID Autologous BM-MSC 10 ×10 6 /mL 0.5-1.5mL saline 10 - - ✔ ✔ 

Centeno 2017 [ 38 , 39 ] 6 ID ∗ Autologous BM-MSC 23 ×10 6 /disc 1-3mL 10-20% PL/PBS 33 - - ✔ ✔ 

Noriega 2021 [40–42] 3.5 ID Allogenic BM-MSC 12.5 ×10 6 /mL 2mL saline Unclear Muscle anesthetic Unclear ✔ ✔ 

Papadimitriou 2021 [ 43 , 44 ] 2 ID Autologous BM-MSC 1 ×10 6 /mL 1mL 20% serum/F12 10 - - ✔ ✔ 

Amirdelfan 2021 [ 45 , 46 ] 3 ID Allogenic MPC High: 18 ×10 6 /disc 

Low: 6 ×10 6 /disc 

2mL HA 60 HA (Vehicle) 

Saline (Placebo) 

20 

20 

✔ ✔ 

Jung 2013 [47] < 0.5 IV Autologous AD-MSC Unspecified Unspecified 3 - - ✘ ✔ 

Piccirilli 2017 [48] 1 ID Autologous AD-MSC Unspecified 1mL solution 2 - - ✘ ✔ 

Kumar 2017 [49] 1 ID Autologous AD-MSC High: 20 ×10 6 /disc 

Low: 10 ×10 6 /disc 

2mL HA 5 

5 

- - ✔ ✔ 

Bates 2022 [50] 1 ID Autologous AD-MSC 10 ×10 6 /disc 1mL saline 9 - - ✔ ✔ 

Zhang 2022 [51] 2 ID Autologous AD-MSC High: 20 ×10 6 /disc 

Mid: 10 ×10 6 /disc 

Low: 5 ×10 6 /disc 

2mL HA 25 

25 

25 

Saline (Placebo) 25 ✘ ✘ 

Pang 2014 [52] 2 ID Allogenic UC-MSC 10 ×10 6 /mL 1mL solution 2 - - ✔ ✔ 

Meisel 2006 [53–55] 2 ID Autologous IVD-C Unspecified Unspecified 12 Discectomy-only 16 ✔ ✘ Chondrogenic 

cells Mochida 2015 [56] 3 ID Autologous NPC ∼1.5 ×10 6 0.7 mL saline 9 - - ✔ ✔ 

Tschugg 2017 [ 57 , 58 ] < 0.5 ID Autologous IVD-C Unclear PEG + serum + media 12 Discectomy + 
HA (Vehicle) 

12 ✘ ✔ 

Schwan 2017 [59] n.a. ID Autologous IVD-C Unspecified Saline OR 

‘polymerizing-scaffold‘ 

10 Discectomy-only 10 ✘ ✔ 

Beall 2020 [60] 1 ID Allogenic NPC Unclear 1.75mL NP tissue 16 Saline (Placebo) 

Conservative care 

4 

4 

✔ ✔ 

Hunter 2022 [ 61 , 62 ] 1 ID Allogenic NPC Unclear 1.75mL NP tissue 140 Saline (Placebo) 

Conservative care 

39 

39 

✔ ✔ 

Foley 2022 [63] 1.5 ID Allogenic NPC High: 9 ×10 6 /disc 

Low: 3 ×10 6 /disc 

1mL HA 20 

20 

Saline (Placebo) 

HA (Vehicle) 

10 

10 

✔ ✔ 

Xuan 2022 [64] 6 ID Autologous IVD-C 4-7 ×10 6 /disc 1-3mL saline 18 Discectomy-only 22 ✔ ✔ 

Coric 2013 [65] 1 ID Allogenic AC 10 ×10 6 /mL 1-2mL fibrin 15 - - ✔ ✔ 

Comella 2017 [66] 1 ID Autologous SVF 30-60 ×10 6 /1-3 disc 1mL PRP 15 - - ✔ ✔ Mixture of 

cells Pettine 2017 [67–69] 3 ID Autologous BMC 130 ×10 6 /mL 2-3mL solution 26 - - ✔ ✔ 

Wolff 2020 [70] 1 ID Autologous BMC Unspecified 3mL solution 33 - - ✔ ✔ 

Ramos 2020 [71] 1 ID Autologous BMC Unspecified Unspecified mL PRP 1 - - ✘ ✔ 

El-Kadiry 2021 [72] 1 ID Autologous BMC Unspecified 1-6mL solution 13 - - ✔ ✔ 

Jerome 2021 [73] < 0.5 ID Autologous BMC Unspecified Unspecified 3 - - ✘ ✔ 

Xu 2021 [74] 2 ID Autologous BMA Unspecified ∼1.25mL gelatin 

sponges 

15 Discectomy-only 

Discectomy + AF 

suture 

15 

15 

✔ ✔ 

Subach 2011 [75] 1 ID Autologous 

BMA + AT + Plasma 

Unspecified 3mL solution 1 - - ✘ ✔ 

Haufe 2005 [76] 1 ID Autologous HSC Unspecified Unspecified 10 - - ✔ ✘ 

Efficacy and Safety columns represent whether outcomes are reported presenting overall improvements in pain, disability, quality of life, or image modalities or the presence of (serious) adverse events following cell 

therapy respectively; ✔ : reported, ✘ : not reported. ∗ MSC was transplanted intradiscally, treatment was complemented with epidural injection of PL. Abbreviations: AC – Articular cartilage derived cells, AD-MSC- 

Adipose derived mesenchymal cells, AF – Annulus fibrosis, AT – Adipose tissue, BMA – Bone marrow aspirate, BMC – Bone marrow concentrate, BM-MSC - Bone marrow derived mesenchymal stromal cells, FU –

(maximal) Follow up, HA – Hyaluronic acid, HSC – Hematopoietic stem cells, ID – Intradiscal, IV – Intravenous, IVD-C – Intervertebral disc derived cells, MPC - Mesenchymal precursor cells, N.A. – Not applicable, NP 

– Nucleus pulposus, NPC – Nucleus pulposus cells, PBS – Phosphate buffered saline, PEG - Polyethylene glycol, PL – Platelet lysate, PRP – Platelet rich plasma, REF – Reference, and SVF – Stromal vascular fraction, 

and UC-MSC – Umbilical cord mesenchymal stromal cells. 
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Table 2 

Overview of improvements in pain outcomes resulting from cell transplantation. 

Author Ref 

FU 

(y) Improved? 

Improvement to baseline at max FU 

(Percentage change from baseline) 

Improvement compared to control groups 

(Percentage change from baseline) Type 

Yoshikawa [36] 2 ✔ VAS scores improved ( = 28%) n.a. Mesenchymal 

stromal cells Orozco [37] 1 ✔ Significant 49mm VAS lumbar pain reduction 

( = 71%) 

Significant 32mm VAS sciatic pain reduction 

( = 85%) 

n.a. 

Centeno [ 38 , 39 ] 6 ✔ Significant 1.9 NPS reduction ( = 37%) 

Average reported SANE-rating was 53 

n.a. 

Noriega [40–42] 3.5 ✔ Significant reduction in VAS scores Cell-treated resulted in significant improvement, 

while control did not, with trend of stronger pain 

reduction 

[41] 1 ✔ Significant 20mm VAS reduction ( = 30%) Trend of slightly enhanced pain reduction 

(Placebo: 15mm [ = 24%]) 

Papadimitriou 

[ 43 , 44 ] 2 ✔ 2.8 point NRS back pain reduction ( = 38%) 

2.3 point NRS leg pain reduction ( = 47%) 

n.a. 

Amirdelfan 
§

[ 45 , 46 ] 3 Significant 32mm VAS pain reduction low dose 

( = 46%) 

Significant 42mm VAS pain reduction high dose 

( = 59%) 

MIC ( ≥ 30%): low dose was 53% and high dose 

was 57% 

CSC ( ≥ 50%): low dose was 43% and high dose 

was 50% 

High dose had significant higher VAS reduction 

than placebo ( = 24%), but not carrier group 

( = 42%) 

High dose significant higher MIC ( ≥ 30%) and CSC 

( ≥ 50%) rates than placebo (20%), but not carrier 

(45% & 35%) 

Jung [47] < 0.5 n.a. - - 

Piccirilli [48] 1 n.a. - - 

Kumar [49] 1 ✔ Significant 3.6cm VAS back pain reduction 

( = 55%) 

6 pts showed ≥ 50% VAS improvement 

n.a. 

Bates [50] 1 ✔ 56% of pts reported ≥ 50% NPRS pain 

improvement 

78% of pts report general NPRS improvement 

Second injection improved by 40% and worsened 

for 40% of pts 

n.a. 

Zhang [51] 2 n.a. - - 

Pang [52] 2 ✔ 5cm VAS reduction ( = 66%) n.a. 

Meisel [53–55] 2 ✔ 8mm VAS improvement ( = 42%) † 

5 point QBPD improvement ( = 37%) † 
Trend of enhanced outcomes in QBPD and VAS 

scores compared to discetomy-only group 

Chondrogenic 

cells 

Mochida [56] 3 ✔ 1.5 JOA-LBPsubscale improvement ( = 56%) n.a. 

Tschugg [ 57 , 58 ] < 0.5 ? - - 

Schwan [59] n.a. ? - - 

Beall [60] 1 ✔ 43mm VAS improvement ( = 78%) Trend of enhanced VAS improvement compared to 

placebo control 

Clear trend of enhanced VAS improvement to 

conservative treatment before crossover 

Hunter [ 61 , 62 ] 1 ✔ 35mm VAS improvement ( = 54%) 

63% of pts reported ≥ 50% VAS improvement 

67% of pts reported ≥ 20 mm improvement 

(Crossover: 70% and 91% respectively) 

31mm VAS reduction for placebo 

Trend higher portion of ≥ 50% VAS and ≥ 20mm 

change than placebo (53% and 57% respectively) 

Foley [63] 1.5 ✔ Significant 40mm VAS change for high dose 

( = 59%) compared to MCID 

Trend of VAS improvement both doses 

Trend of enhanced outcomes for high dose group 

compared to control groups 

Xuan [64] 6 ✔ Significant 6.3cm VAS improvement ( = 88%) Significant enhanced improvement compared to 

discetomy-only cohort 

Coric [65] 1 ✔ Significant 2.6 point NRS improvement ( = 46%) n.a. 

Comella [66] 0.5 ✔ Significant 2.0cm VAS improvement ( = 36%) 

Significant 0.8 PPI improvement ( = 31%) 

Slight trend improvement in Dallas Pain 

Questionnaire 

n.a. Mixture of 

cells 

Pettine [ 68 , 69 ] 3 ‡ ✔ Significant 60mm VAS decrease ( = 73%) n.a. 

[67] 1 ✔ Significant 46mm VAS improvement ( = 58%) n.a. 

Wolff [70] 1 ✔ 39% of pts reported ≥ 50% NRS improvement n.a. 

Ramos [71] 1 n.a. - - 

El-Kadiry [72] 1 ✔ Significant 3.8cm VAS improvement ( = 63%) 

17.2 BPI improvement ( = 35%) 

n.a. 

Jerome [73] < 0.5 n.a. - - 

Xu [74] 2 ✔ Significant 5.9cm VAS reduction( = 80%) Significant higher reduction in VAS than 

discectomy-only or discetomy with AF-suture 

Subach [75] 1 n.a. - - 

Haufe [76] 1 ✘ No pain improvement was observed n.a. 

✔ : improvement reported, ✘ : no improvement reported, ? : unreported or unclear results, ∗ Cells were transplanted intradiscally, but complemented with platelet 

lysate injection at other sites, † Change is observed after microdiscectomy, ‡ Only includes 20/26 patients that did not progress to surgery, § values based on 

PTI corrected data. Abbreviations : AF – Annulus fibrosis, BPI – Back pain index, CSC – Clinically significant change, FU – (maximal) Follow up, JOA – Japanese 

Orthopedic Association, LBP – Low back pain, MCID – Minimally clinical important differences, MIC – Minimally important change, N.A. – Not applicable, NPS –

Numeric pain scale, NPRS - Numeric pain rating scale, NRS – Numerical rating scale, PPI – Present pain index, pts – patients, QBPD - Quebec Back-Pain Disability 

Scale, REF – Reference, and VAS – Visual analog scale. 
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f 32mm [37] to 60mm [69] , although most commonly improvement

ates are reported between 40-50% ( Table 2 ). The reports that included

tatistical analysis always resulted in a significant pain improvement

ompared to baseline values. These overall reductions are hopeful and

linically impactful. Additionally, reports determining a responder rate,

y employing a threshold of ≥ 50% VAS improvement, generally report

hat approximately 40-60% of cases are considered effective responders

 49 , 50 , 61 , 70 ] ( Table 2 ). 

fficacy compared to control groups 

Notwithstanding, care should be taken, as current data does suggest

 distinct placebo effect, as noted from the 5 placebo-controlled studies

ncluded in this review; i.e., Noriega et al. [ 41 , 42 ], the Mesoblast study

y Amirdelfan et al. [ 45 , 46 ], the VIVEX Biologics study by Beall et al.

60] , Hunter et al. [ 61 , 62 ], and the most recent DiscGenics TM report by

oley et al. [63] . Firstly, 4 out of 5 controlled studies were able to report

lear improvements for their placebo and vehicle control cohorts. For ex-

mple, the report by Beall et al. [61] showed that 53% of saline-treated

atients (n = 30) were able to report a ≥ 50% VAS reduction, compared to

3% and 70% of their cell-treated (n = 120) and crossover cohort (n = 23).

lthough all 5 controlled trials were able to report a trend of enhanced

ain reduction compared to their control groups, only Amirdelfan et al.

45] reported a significant improvement in pain scores and responder

ates. Although this was only observed for their high-dose treated co-

ort and not in comparison with their vehicle-cohort. Notably, how-

ver, this significant difference did results in 26 mm additional change

n VAS reduction, thereby resulting in a corrected final (3 years follow-

p) VAS score of 52mm for the placebo group compared to 28mm for

he treated cohort: thus, almost halving the perceived pain for the cell-

reated patient. Similarly, Foley et al. [63] reported a trend of enhanced

ain reduction of ∼10% and ∼20% for their placebo- and vehicle co-

orts respectively. Moreover, the two crossover studies by Beall et al.

 60 , 61 ] highlight the potential of general intradiscal injection in pain

lleviation as the conservative treatment cohort presented with initial

orsening in symptoms that fully inverted to improvement rates simi-

ar to cell- and placebo level upon the crossover to cell transplantation.

verall, these studies highlight that cell transplantation can engender

 significant and clinically impactful effect on pain alleviation. How-

ver, whether these effects can outcompete or are in part a result of the

lacebo effect requires urgent further examination. 

isability improvements 

upplementation of microdiscectomy surgery 

Other than pain outcomes most reports also record improvements

n patients’ disability index, most commonly measured through the

atient-reported Oswestry disability index (ODI) [77] ( Table 3 ). Over-

ll, the disability observations match the trends seen in pain outcomes.

 range of 18 [37] to 39 [52] ODI improvements to baseline were

ecorded, which comes down to a relative reduction of 45% [44] to 76%

52] of baseline ODI scores. Again, focusing on the cell treatment com-

lementing microdiscectomy, a clear trend of improvement in outcomes

an be observed. Here, the reports highlight a clear trend or signifi-

ant improvement in disability outcomes, including significant improve-

ents compared to discectomy-only cohorts in the Xuan et al. [64] and

u et al. [74] reports. Despite statistical significance, the differences in

DI outcomes for the cell-treated and microdiscectomy-only cohorts ap-

ear minimal; e.g., Xu et al. [74] only observed a difference of < 10%

DI, and only about 2 points difference from the Japanese Orthopaedic

ssociation (JOA) scores in Xuan et al. [64] Anew questioning the real-

ife impacts of such improvement. 
5 
ell therapy directed against discogenic pain 

Direct cell therapy strategies present a clear improvement in ODI

cores, generally resulting in a relative 50-70% ODI improvement com-

ared to baseline, which comes down to approximately 30-point ODI

eduction. 

fficacy compared to control groups 

However, similarly to the pain outcomes, the controlled clinical trial

ighlights a strong placebo effect. Namely, control groups are similarly

ble to result in some improvements in ODI or other disability outcomes,

hough they are slightly more evident than the pain scores. For instance,

oley et al. [63] reported a significant 31% ODI reduction for their high-

ose treated group, while the placebo control presented an approximate

eduction of 18% ODI. Notably, a higher variability in perceived ODI im-

rovements was observed in the control group. Sadly, the authors did

ot yet report on statistical differences between the cell-treated and con-

rol cohort outcomes. The controlled study by Amirdelfan et al. [45] sim-

larly presented clearly enhanced outcomes for their cell-treated cohort,

esulting in significantly enhanced ODI changes for both low (18 ODI)

nd high-dose (26 ODI) treated cohorts compared to the placebo group

esulting in only 8 ODI reduction, and a significant improvement of the

igh dose cohort compared to the vehicle group (14 ODI reduction).

lso, Beall et al. reported a significantly enhanced responder rate, as in-

icated by a higher rate of ≥ 15% ODI improvement, for the cell-treated

ohort, although the absolute average difference in ODI at 1-year follow-

p is only about 5 points compared to the control group. Finally, Nor-

ega et al. [42] similarly showed clear differences between their control

nd cell-treated cohorts, resulting in a significant improvement of about

0-point ODI 3.5 years following cell therapy, while the control group

howed a trend of about 10-point ODI worsening. Regrettably, no sta-

istical analysis was employed between the two cohorts. Nonetheless,

hese cumulative observations suggest that cell transplantation can en-

ance disability outcomes, although an impact of a placebo effect could

till be observed, clearer statical and clinically significant differences

ere observed. Prospective trials should carefully employ examination

f their cell product to an appropriate placebo control cohort, to fully

lucidate the impact of the injected cells on disability outcomes 

adiological improvements 

ell therapy directed against discogenic pain 

Thus far cell therapy has been suggested to be able to alleviate pain

nd disability outcomes, which form the primary reasons for LBP pa-

ients to seek out treatment. Nonetheless, one of the main beneficial

ffects hypothesized to underly cell transplantation and consequential

ain and disability alleviation is the ability to restore (or limit deteri-

ration of) the IVD anatomy. As such, most, studies include magnetic

esonance imaging (MRI) or other imaging outcomes to assess the in-

rease in proteoglycan deposition or general IVD degeneration status

 Table 4 ). Unlike the pain and disability outcomes, assessment of radio-

raphic outcomes shows less prominent benefits. From our review, it is

lear that at minimum cell transplantation does not seem to negatively

mpact the IVD, and even suggests the ability to limit the deterioration

f the otherwise degenerating IVD. Namely, except for a single increase

n Modic change classification reported by Schwan et al. [59] and two

imes one patient with Pfirrmann grade increase reported by El-Kadiry

t al. [72] and Coric et al. [65] , all studies reported at least general

aintenance of IVD hydration and Pfirrmann classifications during their

ollow-up (Excluding studies involving microdiscectomy). 

Moreover, most studies were able to report some, generally spo-

adic, improvements in MRI observations. These observations include

eneral trends of reduction in disc bulge sizes as reported by Cen-

eno et al. [ 38 , 39 ]. Bates et al. [50] , and Xu et al. [74] , suppression
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Table 3 

Overview of improvements in disability outcomes resulting from cell transplantation. 

Author Ref 

FU 

(y) Improved? 

Improvement to baseline at max FU 

(Percentage change from baseline) 

Improvement compared to control groups 

(Percentage change from baseline) Type 

Yoshikawa [36] 2 ✔ 15 point JOA improvement ( = 580%) n.a. Mesenchymal 

stromal cells Orozco [37] 1 ✔ Significant 18 ODI reduction ( = 70%) n.a. 

Centeno [ 38 , 39 ] 6 ✔ 31 point FRI reduction ( = 51%) n.a. 

Noriega [40–42] 3.5 ✔ Significant reduction in ODI Trend of enhanced ODI outcomes, while 

placebo group showed trend of worsening 

ODI. 

[41] 1 ✔ Significant 12 ODI improvement ( = 35%) Trend of slightly enhanced ODI reduction than 

Placebo that showed enhanced 10 ODI 

( = -42%) 

Papadimitriou 

[ 43 , 44 ] 2 ✔ 18 reduction in ODI ( = 45%) n.a. 

Amirdelfan § [ 45 , 46 ] 3 ✔ Significant 18 ODI reduction for low dose 

( = 35%) 

Significant 26 ODI reduction for high dose 

( = 51%) 

MIC ( ≥ 30%): low dose was 53% and high 

dose was 53% 

CSC ( ≥ 50%): low dose was 47% and high dose 

was 50% 

Both doses had significant higher ODI change 

than placebo ( = 17%), and high-dose had 

significant higher ODI change than carrier 

group ( = 30%) 

Both doses significant higher MIC ( ≥ 30%) and 

CSC ( ≥ 50%) than placebo (20% & 15%), but 

not carrier (35% & 25%) 

Jung [47] < 0.5 n.a. - - 

Piccirilli [48] 1 ? - n.a. 

Kumar [49] 1 ✔ Significant 26 ODI reduction ( = 61%) 

6 pts showed ≥ 50% ODI improvement 

n.a. 

Bates [50] 1 ✔ On average 39% ODI improvement 

67% of pts reported ≥ 30% ODI improvement 

n.a. 

Zhang [51] 2 n.a. - - 

Pang [52] 2 ✔ 39 ODI reduction ( = 76%) n.a. 

Meisel [53–55] 2 ✔ 2 point increase in OPDQ ( = 25%) † 

4.1% improvement in disability index 

( = 25%) † 

Trend of enhanced OPDQ and disability index 

outcomes compared to discetomy-only 

Chondrogenic 

cells 

Mochida [56] 3 ✔ 13 JOA score improvement ( = 48%) n.a. 

Tschugg [ 57 , 58 ] < 0.5 ? - - 

Schwan [59] n.a. ? - - 

Beall [60] 1 ✔ 38 ODI improvmenet ( = 71%) 

Crossover also resulted in clear ODI 

improvement 

No clear enhancement compared to placebo 

control 

Clear trend of enhanced ODI improvement to 

conservative treatment before crossover 

Hunter [ 61 , 62 ] 1 ✔ 27 ODI reduction ( = 53%) 

77% of pts reported ≥ 15 ODI and 85% ≥ 10 

ODI improvement (Crossover: 79% and 79%) 

No clear difference in ODI change (Placebo: 

24 ODI) 

Portion of ≥ 15 and ≥ 10 ODI improvement 

was significant than the placebo cohort (57% 

and 63% respectively) 

Foley [63] 1.5 ✔ Significant 31 ODI improvement for high dose 

group compared to MCID 

Trend ODI improvement for both dose group 

Trend of enhanced ODI outcomes for high 

dose group compared to control groups 

Xuan [64] 6 ✔ Significant 14.8 JOA score improvement 

( = 130%) 

Significant higher improvement in JOA scores 

compared to disectomy-only cohort 

Coric [65] 1 ✔ Significant 33 ODI improvement ( = 62%) 

93% of pts reported ≥ 30% ODI improvement 

n.a. 

Comella [66] 0.5 Trend of improved ODI and BDI n.a. Mixture of 

cells Pettine [ 68 , 69 ] 3 ‡ ✔ Significant 57 ODI improvement ( = 69%) n.a. 

[67] 1 ✔ Significant 32 ODI improvement ( = 56%) n.a. 

Wolff [70] 1 ✔ 31% of pts reported ≥ 50% ODI improvement n.a. 

Ramos [71] 1 n.a. - - 

El-Kadiry [72] 1 ? - n.a. 

Jerome [73] < 0.5 n.a. - - 

Xu [74] 2 ✔ Significant 41.5 ODI reduction ( = 66%) Significant higher reduction in ODI than 

discectomy-only or discetomy with AF-suture 

Subach [75] 1 n.a. - - 

Haufe [76] 1 ? Unspecified n.a. 

✔ : improvement reported, ✘ : no improvement reported, ? : unreported or unclear results, ∗ Cells were transplanted intradiscally, but complemented with platelet 

lysate injection at other sites, † Change is observed after microdiscectomy, ‡ Only includes 20/26 patients that did not progress to surgery, § values based on PTI 

corrected data. Abbreviations: AF: Annulus fibrosis, FRI – Functional rating index, FU – (maximal) follow-up, JOA – Japanese Orthopedic Association, MCID –

Minimally clinical important differences, N.A. – Not applicable, ODI – Oswestry disability index, OPDQ - Oswestry low back pain disability questionnaire, and REF 

– Reference. 

o  

[  

m  

i  

w  

c  

w  

t  

o  

f  
f high-intensity zones (in 89% of patients as reported by Coric et al.

65] ), vacuum phenomenon alleviation [36] , and AF fissure improve-

ents [50] . Moreover, many studies were able to report improvement

n Pfirrmann classifications, although the number of patients presenting

ith this regenerative outcome involved only a fraction of the entire
6 
ohort ( Table 4 ). The largest proportion was reported by Pettine et al.,

ho were able to report a Pfirrmann grade improvement in 40% of their

reated cohort. Notably, however, is the large placebo-controlled study

f Amirdelfan et al. [45] which were unable to show any significant dif-

erence in Pfirrmann improvement rates between cell-treated and con-
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Table 4 

Overview of improvements in imaging modality outcomes resulting from cell transplantation. 

Author Ref 

FU 

(y) Improved? 

Improvement to baseline at max FU 

(Percentage change from baseline) 

Improvement compared to control groups 

(Percentage change from baseline) Type 

Yoshikawa [36] 2 ✔ Improvement in T2 intensity 

Improvement in vacuum phenomenon 

n.a. Mesenchymal 

stromal cells 

Orozco [37] 1 • No deterioration in disc height 

No change in disc hydration 

n.a. 

Centeno [ 38 , 39 ] 6 ✔ 17/20 pts (85%) displayed decrease in disc 

bulge size 

n.a. 

Noriega [40–42] 3.5 ✔ Significant improvement of 0.65 Pfirrmann 

grades 

Significant worsening of 1.01 Pfirmann grades 

in control 

Trend of enhanced Pfirrmann results 

Papadimitriou 

[ 43 , 44 ] 2 • No deterioration of IVD n.a. 

Amirdelfan [ 45 , 46 ] 3 • 1 modified Pfirrman grade improvement for 

low dose 

1 modified Pfirrman grade improvement for 

high dose 

No differences in rates of modified Pfirrmann 

grades between cohorts 

Jung [47] < 0.5 n.a. - - 

Piccirilli [48] 1 ? - n.a. 

Kumar [49] 1 ✔ No decrease in disc height observered 

1 pts showed Pfirrmann grade improvement 

No deterioration in Pfirrmann grades was 

observed 

ADC values increased by 47.2 ( = 4%) 

n.a. 

Bates [50] 1 ✔ No worsening reported in MRI findings 

3 patients showed AF fissures improvement 

2 patients showed reduction in disc 

bulge/protrusion 

n.a. 

Zhang [51] 2 n.a. - - 

Pang [52] 2 ✔ 1 pts reported increase in T2-intensity n.a. 

Meisel [53–55] 2 ✔ 2.8 mm increasse in disc height ( = 13%) † 

Trend of increase in proportion of "normal" 

disc water content of treated and neighboring 

discs † 

Trend of doubling in disc height increase 

compared to disectomy-only group 

Trend of higher "normal" water content 

proportion in treated and neighboring discs 

compared to discectomy-only group 

Chondrogenic 

cells 

Mochida [56] 3 ✔ 1 pts reported improvement in Pfirrmann 

grade 

No deterioration in discs reported 

n.a. 

Tschugg [ 57 , 58 ] < 0.5 ? - - 

Schwan [59] n.a. ✘ 1 pts presented Modic I change - 

Beall [60] 1 ✔ Anatomic improvement on MRI was observed - 

Hunter [ 61 , 62 ] 1 ? - - 

Foley [63] 1.5 ✔ Improvement in disc volume for high dose 

cohort 

(Significant improvement at 52w observation) 

Controls showed worsening of disc volume 

Trend of enhanced outcomes both doses 

Xuan [64] 6 ✔ Significant 5.3% DHI reduction ( = 14%) ∗ 

Significant 6.3% hydration reduction ( = 20%) ∗ 

Significant lower DHI reduction compared to 

discectomy-only cohort 

Significant lower hydration reduction 

compared to disectomy only cohort 

Coric [65] 1 ✔ 10/13 pts (77%) showed MRI improvements 

1/13 pts (8%) showed MRI based 

deterioration 

8/9 pts showed improvement of HIZ 

n.a. 

Comella [66] 0.5 ? - n.a. Mixture of 

cells Pettine [ 68 , 69 ] 3 ∗ ∗ ∗ ? - n.a. 

[67] 1 ✔ 8/20 ( = 40%) of patients presented Pfirrmann 

grade improvement 

n.a. 

Wolff [70] 1 ? - n.a. 

Ramos [71] 1 n.a. - - 

El-Kadiry [72] 1 ✔ Significant 0.8 mm increase in DHI ( = 11%) 

4 discs improved in Pfirrmann grading 

1 disc worsened in Pfirrmann grading 

n.a. 

Jerome [73] < 0.5 n.a. - - 

Xu [74] 2 ✔ Significant 17.2% DHI reduction ∗ 

No deterioration in Pfirrmann grading ∗ 

Significant lower DHI reduction than other 

groups 

Other groups showed significant worsening in 

Pfirrmann gradings 

Cell-treated cohorts showed significant higher 

reduction in disc protrusion size 

Subach [75] 1 n.a. - - 

Haufe [76] 1 ? - n.a. 

✔ : improvement reported, • ; no clear improvement reported ✘ : worsening reported, ? : unreported or unclear results, ∗ Any reduction is likely resulting from the 

discectomy procedure that is complemented with cell transplantation. † Change following discectomy. Abbreviations: ADC – Apparent diffusion coefficient, AF –

Annulus fibrosis, DHI - Disc height index, FU – (maximal) follow-up, HIZ – High-intensity zone, N.A. – Not applicable, and MRI: Magnetic resonance imaging. 
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rol cohorts. On the contrary, Noriega et al. [40–42] was able to report a

ignificant improvement in Pfirrmann classification for their cell-treated

ohort, while their control cohort presented a significant worsening in

firrmann grades. Sadly, no statistical comparison was made between

he two groups. It should however be noted, that an increase in a single

firrmann classification grade, might resemble a relatively demanding

egree of regeneration [78] . As such, MRI-derived disc hydration values,

.g., T2 or apparent diffusion coefficient (ADC) intensity values, might

e more sensitive and can present a more gradual impression of disc

mprovement. Unfortunately, the number of studies examining and/or

eporting such parameters is limited. Of the studies that reported MRI-

ased intensity outcomes, minimal improvements were reported. Pang

t al. [52] reported that 1 of 2 patients showed T2-intensity increases

ollowing cell injection, Yoshikawa et al. [36] reported general T2 inten-

ity improvements, and Kumar et al. [49] was able to report an average

f 4% increase in ADC values compared to baseline. 

upplementation of microdiscectomy surgery 

When examining the impact of cell transplantation accompanying

icrodiscectomy, a potentially clearer impact can be recognized. For

xample, all controlled studies were able to show a significantly lower

eduction in disc height following microdiscectomy compared to the

iscectomy-only group. Xuan et al. [64] resulted in a difference of an

stimated 3%-disc height index (DHI), while Xu et al. [74] present an

stimated increase of about 12%. Similarly, Meisel et al. [53–55] were

ble to report a trend of maintaining about double the DHI compared

o the control group. Also, Xu et al. reported significant worsening in

firrmann grades for the control groups, while the cell-treated group

as largely able to maintain their Pfirrmann classification. Xuan et al.

lso were able to present a significantly lower rate of disc hydration

oss compared to the discectomy-only group, which resulted in more

han 0.15 normalized ADC retention. However, whether any of these

mprovements result in enhanced clinical outcomes for the patient or

educes the risk of future spinal events remains to be fully elucidated. 

Altogether, these observations show that cell transplantation is likely

ble to some extent to halt the progression of disc degeneration and does

ave the potential to regenerate the discs, although these observations

till remain rare and limited. Future efforts should aim to employ more

ensitive and long-term observations to fully grasp the regenerative po-

ential of these cell transplantation products. 

uality of life assessments 

QoL assessments are patient-based outcome measures that can give

n impression of the effect of LBP and treatment on the happiness and

atisfaction of the patient. These outcomes are valuable tools to assess

he impact of cell therapy on a broader and corporal domain of the pa-

ient and its potential socioeconomic influence. Yet, the number of stud-

es (clearly) reporting on such outcomes remains limited. An overview

f outcomes is included in supplementary table 1. The most commonly

mployed questionnaires are either Short Form (SF)-12 or SF-36, which

n turn are generally separated in their physical and mental subcompo-

ents [79] . For the studies that did report on QoL outcomes, a general

rend of improvement in outcomes was reported. However, the rate of

mprovement varied greatly among the different studies. A repeating ob-

ervation, however, was that the cell-treated groups were generally able

o present a clear and significant improvement in SF-12/36 physical sub-

cale outcomes, while the mental component presented less evident im-

rovements. For the controlled studies, Amirdelfan et al. [45] were able

o report significantly enhanced SF-36 outcomes for the high-dose group

ompared to both placebo- and vehicle-control cohorts. Similarly, Foley

t al. [63] reported a trend of enhanced EuroQol 5-dimensions (EQ-5D)

uestionnaire scores for their high-dose cohort. Comparing cell treat-

ent complimenting discectomy revealed significantly enhanced SF-36
8 
utcomes compared to the discectomy-only cohort by Xuan et al. [64] ,

hile Xu et al. [74] was unable to present clear differences. 

afety assessment 

eneral adverse events 

In addition to effectiveness, the safety of cell therapy and cell ther-

py products is of critical importance. Moreover, the studies currently

ncluded are case-report, case series, pilot studies, and phase I/II studies

nd as such, their predominant role is to assess the safety profile and ap-

licability of the cell-based treatments. Of the at least 605 cell-treated

atients recognized; 216 were treated by MSC, 272 with chondrogenic

ells, and 107 were treated with a mixture of unspecific cell popula-

ions ( Table 1 ). From these reports, a total of at least 174 separate AE

ere reported ( Table 5 ). Markedly, not all recorded AE are likely to be

reatment-related; e.g., the ischemic heart attack and myocardial infarc-

ion reported by Hunter et al. [62] were not considered an effect of the

reatment. Of the 174 AE, 9 AE were identified as SAE by the authors;

hich included pulmonary embolism, bacteremia, osteomyelitis, disci-

is, lumbar disc herniation, cauda equina syndrome, etc. No cases of

eath were reported. The most common AE appears to be the presenta-

ion of pain, which includes back pain, leg pain, or otherwise. Another

ommon AE occurrence appears to be disc (re)herniation or disc protru-

ion. These two types of AE are not unexpected, as these are inherent to

he disc degeneration pathophysiology. It thus remains unclear if these

E result from the treatment or rather the inability of the treatment to

esolve the degenerative process. 

nfectious adverse events 

Another set of AE are infectious in nature, including discitis, spondy-

odiscitis, osteomyelitis, etc. Infections risks are intrinsic to surgery and

oreover the introduction of foreign (cultured) material in the disc is

ikely to pose additional risks for potential contamination. As such these

E are not unexpected. As highlighted in the excellent review of Jerome

t al. [73] multiple strategies could be considered for reducing the risk

f introducing pathogenic materials during the cell transplantation pro-

edure. Considerations of antibiotics, surgical technique, and allogenic

ell products might be able to limit the occurrence of transfections re-

ulting from intradiscal injection. Moreover, the seemingly most severe

ases identified in our review, i.e., presenting severe discal infections,

nvolve two case reports from Ramos et al. [71] and Subach et al. [75] ,

ho treated their patients after they received “stem cell ” therapies from

n outside provider. With those caveats, the overall rate of AE appears

ow and relatively mild, and the safety impression by all authors was

onsidered good. Specifically, no articles thus far have been reported

hat suggest severe immunogenic reactions in response to the trans-

lanted cells, severe unexpected deterioration within the treated discs,

umor formation, or undesired tissue formation elsewhere. Furthermore,

he work by Garcia-Sancho et al. [40] suggests the overall safety of al-

ogenic cell transplantation, as human leukocyte antigen mismatching

id not result in immunogenic reactivity nor diminishment of efficacy.

onetheless, the rate of AE and SAE requires careful monitoring and will

equire highly-powered, prospective, and controlled trials to be able to

ully grasp the overall safety profile of cell transplantation therapy and

he different cell products. 

iscussion 

eneral impression of cell therapeutics 

From our current review, we believe it is fair to suggest that (i) cell

herapy appears to be a relatively safe treatment strategy and (ii) that

he cell transplant injection can alleviate pain and disability outcomes.
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Table 5 

Overview of the (serious) adverse events reported following cell transplantation. 

Author Ref n SAE AE Description Type 

Yoshikawa [36] 2 ? ? - Mesenchymal 

stromal cells Orozco [37] 10 ✘ ? - 

Centeno [ 38 , 39 ] 33 ✘ 
√

Unspecified complaints (n = 6) 

Pain (n = 3) 

Large herniated disc (n = 1) 

Noriega [40–42] Unclear ✘ 
√

Pain (n = 11) ∗ 

Papadimitriou [ 43 , 44 ] 10 ✘ ✘ - 

Amirdelfan [ 45 , 46 ] 60 
√ √

Pain (n = 34) 

Arthralgia (n = 6) 

Muscle spams (n = 6) 

Elevated CRP (n = 2) 

Pharyngitis streptococcal (n = 2) 

Jung [47] 3 
√ √

Pulmonary embolism (n = 3) 

Piccirilli [48] 2 ✘ ✘ - 

Kumar [49] 10 ✘ ✘ - 

Bates [50] 9 ✘ 
√

Pain flare (n = 1) 

Zhang [51] 75 n.a. n.a. - 

Pang [52] 2 ✘ ✘ - 

Meisel [53–55] 12 ? ? - Chondrogenic 

cells Mochida [56] 9 ✘ ✘ - 

Tschugg [ 57 , 58 ] 12 
√ √

Unspecified complaints (n = 2) 

IVD protrusion (n = 1) 

Nasal pharyngitis (n = 3) 

Schwan [59] 10 
√ √

Recurrent disc herniation (n = 10) 

Beall [60] 16 ✘ 
√

Muscle injury (n = 1) 

RBC sediment rate increase (n = 1) 

Pain (n = 9) 

Burning sensation (n = 1) 

Hunter [ 61 , 62 ] 140 
√ √

Unspecified complaints (n = 36) 

Myocardial infarction (n = 1) 

Transient ischemic attack (n = 1) 

Bacteremia (n = 1) 

Osteomyelitis (n = 2) 

Spinal osteoarthritis (n = 1) 

Pneumonia (n = 1) 

Pain (n = 4) 

Foley [63] 40 ✘ ? - 

Xuan [64] 18 
√ √

Pain (n = 3) 

Disc reherniation (n = 1) 

Coric [65] 15 ✘ ✘ - 

Comella [66] 15 ✘ 
√

Soreness (n = ?) Mixture of 

cells Pettine [67–69] 26 ✘ 
√

Pain (n = ?) 

Wolff [70] 33 ✘ ✘ - 

Ramos [71] 1 
√ √

Lumbar discitis (n = 1) 

Osteomyelitis (n = 1) 

El-Kadiry [72] 13 ✘ ✘ - 

Jerome [73] 3 
√ √

Pain (n = 3) 

Constipation (n = 2) 

Fever (n = 2) 

Elevated CRP (n = 2) 

Discitis (n = 1) 

Spondylodiscitis (n = 2) 

Epidural abscess (n = 1) 

Xu [74] 15 ✘ ✘ - 

Subach [75] 1 
√ √

Disc extrusion (n = 1) 

Osteomyelitis (n = 1) 

Discitis (n = 1) 

Epidural abscess (n = 1) 

Cauda equina (n = 1) 

Haufe [76] 10 ? ? - 

√
: AE reported, ✘ : no AE reported, ? : unreported or unclear results. Abbreviations: AE – Adverse event, CRP – C-reactive protein, IVD –

Intervertebral disc, N.A. – Not applicable, and SAE – Serious adverse event, RBC – Red blood cell count, and REF – Reference. 
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onetheless, the ability of cells to trump placebo or sham treatment re-

ains contentious. Moreover, whether transplanted cells could regen-

rate sufficient quantities of the IVD matrix to result in observable and

linically beneficial outcomes similarly requires more careful inspec-

ion. In addition, the cost-effectiveness of cell therapy requires prudent

xamination in the future and should similarly be compared to alter-

ative standard treatment strategies to ensure healthcare spending is

llocated at optimum. 
9 
From this review, it is evident that the clinical study of cell therapy

s still in early stage of development. From the presently reported trials

nly the work of Amirdelfan et al. [45] , Foley et al. [63] , Hunter et al.

60–62] , and Xu et al. [74] involved clinical trials that included reports

f more than 50 patients. Additional large-scale randomized (placebo)

ontrolled clinical trials are needed in order to get a better impression of

he potential of cell therapy or to determine optimal treatment strategies

nd products. Specifically, the results of multiple clinical trials currently



J. Schol and D. Sakai North American Spine Society Journal (NASSJ) 13 (2023) 100195 

o  

g  

d  

v  

c  

a

C

 

c  

t  

s  

t  

t  

a  

j  

f  

o  

a  

s  

r  

t  

w  

w  

o  

t  

a  

[  

c  

[

 

p  

S  

p  

M  

p  

c  

a  

c  

m  

r  

o  

m

C

 

p  

a  

t  

f  

t  

p  

M  

c  

t  

[  

h  

c  

o  

r  

p  

e  

p  

t  

f  

t

 

i  

o  

t  

l  

f  

h  

o  

[  

t  

e  

H  

t  

g  

A  

c  

S  

d  

t

S

 

p  

c  

u  

a  

n  

b  

y  

n  

a  

t  

r  

t

C

 

p  

p  

o  

t  

b  

l  

i  

s  

u  

n  

o  

t

S

 

m  

d  

r  

a  

t  

c  

remains unresolved. 
ngoing or recruiting are highly anticipated [ 28 , 80 ], and will hopefully

ive more insights into the potential of cellular therapeutics for disc

egeneration and its related symptoms. We hope that this literature re-

iew and findings will help with the design of future clinical trials for

ell therapy, by providing resources for patient size calculations as well

s parameter and study design considerations. 

ell product optimization 

Contemporary cell transplantation products, involve highly compli-

ated production processes within strict regulatory frameworks [ 81 , 82 ]

o ensure cell product potency, safety, marketability, and reliability. De-

pite these aspects, the investigatory cell products themselves are rela-

ively simple in nature, involving generally ill-defined cell populations,

ypically unoptimized for their function in the harsh disc environment,

nd are derived from different sources and donors. For example, the ma-

ority of reports reviewed here did not include a presentation of the sur-

ace markers expression profile of the transplanted cells. Only a small set

f reports included marker expression analysis, and generally involved

n assessment to confirm an MSC phenotype [83] , but did not further

elect for a distinct cell population expected to be optimally posed to

egenerate or survive within the IVD. This could be a critical feature

o further enhance the potency of the cellular product; for example the

ork of Pettine et al. which identified the prognostic role of CD34 + cells

ithin their cell product for beneficial pain outcomes [67–69] . Selection

f key cell markers has been suggested to be a promising tool for iden-

ifying optimal cell candidates in multiple in vitro and animal studies,

nd could allow the selection of progenitor cell populations, e.g. Tie2

84–86] for NP progenitor cell selection, or more highly regenerative

ell populations, by for example optimizing for CD146 expressing MSC

 87 , 88 ]. 

Alternatively, cells could be primed to take on a more well-suited

henotype able to strive and survive within the harsh IVD environment.

uch an approach was employed by Centeno et al. [ 38 , 39 ] using hy-

oxic culture conditions for their MSC and by Mochida et al. [56] using

SC coculture conditions to rejuvenate their isolated NP cells. Future

rospects are likely to see further optimizations and augmentations of

ells, to create products optimally designed for the IVD environment

nd therapeutic impacts. Such, tools might include the differentiation of

ells from induced pluripotent stem cell sources [89–91] or genetic aug-

entation of cells e.g., MSCs overexpressing with chondrogenic master

egulator SRY-Box Transcription Factor 9 (SOX9) [92] . However, such

ptimizations would come with additional costs and regulatory require-

ents and thus would require careful deliberation [ 81 , 82 , 93 , 94 ]. 

linical outcome parameters and patient stratification 

Another critical aspect to consider is the outcome parameters im-

lemented. Pain, disability, and QoL outcomes remain highly subjective

nd from the current clinical trial data appear highly impressionable by

he placebo effect. More quantitative and objective values would there-

ore ideally be employed. MRI and other radiographic examinations are

herefore promising tools and have shown the potential of cell trans-

lants to improve disc quality ( Table 4 ). Nonetheless, current clinical

RI equipment and sequences are limited in their ability to highlight a

lear connection between back pain and disc degeneration, as asymp-

omatic patients can also present abnormal MRI findings and vice versa

95–97] . As such more sophisticated and sensitive MRI sequences are

ighly anticipated. Also, upcoming techniques, such as functional MRI,

ould potentially give more insight into pain and thus provide more

bjective outcomes than survey-based results. Moreover, from the cur-

ent clinical studies it has been suggested that a selection of treated

atients emerge as responders (e.g., Noriega et al. [40–42] and Amird-

lfan et al. [45] ). Hence, potential selection and stratification of these

atients would likely be critical for the successful effective implementa-

ion of cell therapeutics. Nevertheless, it remains unclear which specific
10 
eatures are predictive for effective treatment. Here, advances in MRI

echnology are also expected to play a pivotal role [95] . 

Techniques to better visualize the full integrity of the AF, permeabil-

ty of the endplate, source of back pain, and biomechanical composition

f the IVD could prove beneficial as inclusion or exclusion criteria. Par-

icularly, due to the largely avascular nature of the IVD and thereby

imited nutrient and gas availability in the disc [8] . These aspect can be

urther worsened by endplate calcification [ 98 , 99 ] and in silico models

ave emphasized the potential impact of progression of degeneration

n the access to sufficient resources for transplanted cells to prosper

 99 , 100 ]. A suggested limitation might be the need for early transplan-

ation of cells to be effective, and a set of trials have suggested higher

fficacy rates among younger patients (e.g., see Pettine et al. [67] and

unter et al. [62] ). Again, emphasizing the likely need to stratify op-

imal patient candidates. The previous also underlines the likely mis-

uided focus of cell therapy solely on the NP. Additional strategies for

F and endplate repair, or combined approaches, will likely be benefi-

ial for specific LBP conditions and warrants further investigation [101] .

imilarly, alternative strategies to intradiscal injection that could intro-

uce the beneficial (effects of) cells into the disc can potentially reduce

he dependency on the deteriorated IVD integrity [ 23 , 102 ]. 

uboptimal reporting standards 

Finally, we would like to emphasize the overall poor quality of re-

orting on in-human cellular therapeutic trials for discogenic pain. As

an be seen from our tabular overview, key aspects of the cell prod-

ct, intervention techniques, and study designs remain unspecified or

re unclear in a number of studies. Moreover, various reports choose to

ot include a clear overview of their outcome measures, whether that

e in a table or in graphical format. Similarly, simple statistical anal-

sis defining changes to baseline values or between different groups is

ot consistently included or remains obscure. As such, we would urge

uthors reporting on cell therapeutics as well as peer-reviewers and edi-

ors to be more stringent on the expected quality and data availability of

eports in order in order to advance the potential and quality of cellular

herapeutics as a much-awaited treatment option for LBP patients. 

onclusions 

Our review highlights the overall safety and potential of cell trans-

lantation to alleviate LBP and associated disability, thereby offering a

ossibely low-risk and minimally invasive treatment for a large cohort

f LBP patients that currently have no treatment options available to

hem. Moreover, in some cases improvements on imaging modalities can

e observed, highlighting the potential for long-term effects. Nonethe-

ess, the potential of cell therapy compared to placebo or vehicle groups

s less evident. Although trends of improvement can be observed, the

tatistical as well as clinical significance remains highly uncertain. An

rgent need for large-scale, randomized, (placebo) controlled studies is

eeded to get an insight to the full potential of cell therapeutics. More-

ver, their cost-effectiveness studies should be carefully examined as

hese types of studies are still severely lacking. 

hort summary 

Low back pain is the primary cause of disability worldwide and treat-

ent options remain inadequate for a large portion of patients. New

evelopments in regenerative medicine are highly anticipated. In this

eview, we highlight and discuss the quantitative outcomes of pain, dis-

bility, quality of life, and imaging modalities following cell transplan-

ation for low back pain, highlighting the overall beneficial impacts of

ell therapy, although its effectiveness in comparison to placebo controls
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