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The medical field expects from big data essentially two main results: the ability

to build predictive models and the possibility of applying them to obtain accurate

patient risk profiles and/or health trajectories. Note that the paradigm of precision has

determined that similar challenges need to be faced in both population and individualized

studies, namely the need of assembling, integrating, modeling, and interpreting data

from a variety of information sources and scales potentially influencing disease from

onset to progression. In many cases, data require computational treatment through

solutions for otherwise intractable problems. However, as precision medicine remains

subject to a substantial amount of data imprecision and lack of translational impact,

a revision of methodological inference approaches is needed. Both the relevance and

the usefulness of such revision crucially deal with the assimilation of data features

dynamically interconnected.

Keywords: big data, electronic health records, translational science, clinical decision support systems,

anticipative adaptive inference

INTRODUCTION

Recently, Hulsen et al. (1) describedthe role of Big Data in shaping opportunities and challenges in
current biomedical research. The key synergy between big data analytics and hypothesis-driven
methods points out their role of mutually influencing drivers of change in clinical practice.
Similarly, Capobianco (2) illustrated Big Data integrative vs. evidence-based medicine approaches
in oncology, identifying synergy between two foundational PM principles, individualization
(especially of treatment), and systems inference (relying on data connectivity). Quite evidently,
the two addressed synergies run in parallel.

The literature on such topics includes focus on general issues, for example public health (3) or
health economics (4), and more specific aspects such as data harmonization, semantic enrichment,
and data science challenges (5) or redefinition of the meaning of “normality” in view of novel
patient stratifications (6, 7), just to mention a few among the many studies contributing with
general reviews and perspectives.

The scope of the present article is to contextualize further these concepts by leveraging various
data dimensions in relation to unmet needs in the clinical practice.

BIG DATA GOLD STANDARD? NOT YET…

Precision and Translational Medicine require integration and analysis of large datasets with
genetic, lifestyle, environmental, biochemical, imaging, clinical information, all possibly matched
together. The result of such fusion should reveal high-resolution patient pictures, such as specific
individual conditions determining the pathophysiological state at a certain time or over an interval.
Importantly, the more detailed and accurate the information flow through time is and the more

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2020.00082
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2020.00082&domain=pdf&date_stamp=2020-03-19
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ecapobianco@med.miami.edu
https://doi.org/10.3389/fmed.2020.00082
https://www.frontiersin.org/articles/10.3389/fmed.2020.00082/full
http://loop.frontiersin.org/people/62746/overview


Capobianco Imprecise Data in Translational Medicine

the monitored patient risk profiles and health trajectories can
provide useful disease scenarios and related prognostic paths.

Consider for instance complex diseases, where it is well-
known the complexity of defining patient’s prognosis. The
difficulty of establishing risk factors, the importance of
predicting how patient conditions progress, the role played by
comorbidities, these are just examples of problems that would
require the support of data performance indicators as critical part
of a data-centric approach. The indicators would need to assess:
(a) Diagnostic accuracy, and thus improve in-depth disease
characterization; (b) Earlier intervention, to enable a preventive
use of data; (c) Targeted treatment, to exploit knowledge
from multi-sourced cross-talking data types; (d) Increased drug
efficacy, with a role for repurposing and repositioning all the
knowledge in the current warehouse resources.

Although the wealth of available data should in principle
facilitate the process of quantifying a series of impacts at both
individual and population levels, there are bottlenecks of a various
nature that complicate the evaluation of data potential and
effects. Apart from the uncertainty due to noisy observations,
there is often a substantial ambiguity in evaluations based on
empirical data and imprecise records. Structural limitations arise
not only from the data, but also from the medical practice. It is
necessary to point out two evident factors: (1) the still limited use
of clinically actionable data in practice, considering that clinical
trials are mandatory for an evaluation of safety and efficacy of
novel therapies, (2) the fact that results from randomized clinical
trials are hard to extrapolate to daily clinical practice due to
patient heterogeneity.

REVISED APPROACH: ACT EARLY

Beyond these described bottlenecks, the importance of
prevention in individualized medicine has increased determining
centrality for inference of a wide spectrum of big data types
and inducing the need of revising the methodological approach
to leverage anticipative adaptive inference. This approach
reflects the major improvements achieved in detecting early
disease signs, marks or symptoms with wearable, mobile, sensor
technologies exploiting the dynamic nature of many factors
informing on patient health status. In turn, advantages were
gained in domains such as: (a) Timely choice of treatments to
lower mortality and increase cost-effective cures (b) Effective
risk assessment in relation to disease variants (c) Identification
of robust prognostic indicators (i.e., relevant at the time of
diagnosis) (d) Construction of best informed patient trajectories
(via continuous monitoring).

Among the major problems that remain, two can be
summarized as follows: (1) Integration of heterogeneous
information from different sources, which implies need of
harmonization before proper assessment of their synergistic
predictive potential (2) Extraction of clinical value frommethods
leveraging structured and unstructured data features. Ultimately,
the validity of big data depends on their degree of accuracy. This
for example impacts the formulation of diagnoses for a variety
of cases. Clearly enough, patients present inherent variability

that complicates the possibility of explaining or validating
which factors differentially contribute to disease characterization.
Such factors may be considered and measured to a variable
precision level, and their inclusion in well-designed models
would represent the real added value that Big Data may offer
in disease knowledge by increasing the interpretability of diverse
but potentially correlated information layers.

Complex diseases are highly heterogeneous dynamic
processes whose causes, course of evolution, treatment and
response to treatment determine a multitude of possible patient
health trajectories. Therefore, the precision which is required
crucially matches the need of early interventions, ideally at the
stage of identification of specific molecular patterns. Often,
treatment at early stages leads to substantial reduced risk of
disease progression, and development of molecular and clinical
biomarkers at early disease stages is associated with optimal
chances of success from intervention. In summary, it is critical to
anticipate disease onset identification by shortening the disease
trajectory length measured by the temporal window between
molecular trigger and clinical intervention.

Critically enough the challenges of daily clinical practice
impose a few guidelines when it comes to data management
[see also (8) for an innovation management perspective], then
summarized in Figure 1.

➢ Focus on patient characteristics emerging from new
data dimensions.

➢ Perform targeted cohort studies based on established disease
phenotypes and markers.

➢ Develop support to medical decisions via data analytics tools.
➢ Determine modifiable risk factors to improve prevention in

pre-disease cohorts.
➢ Characterize trajectories of disease progression or patient’s

health status by identifying checkpoints.
➢ Draw patient prognostic paths from risk profiles,

stratifications and trajectory clusters.
➢ Develop predictive tools centered on response to treatment.

TRANSLATIONAL POTENTIAL

A recent study (9) has indicated a number of macrolevels
involved in the process of building a clinical decision support
system (CDSS), and they are: (1) Data (intended as lab work
with a variety of specified thresholds, derived measurements,
diagnostic codes etc.) (2) Algorithms, including methods chosen
to handle missing data and construct variables from raw
data (i.e., features), and (3) Decision support (model output
interpretation, autonomy, usefulness). Once contextualized,
these three macrolevels must be considered in temporal terms
for a best possible assessment, especially regarding how to handle
the variation components identified by the inherent (biological)
variability and the so-called algorithmic drift (not induced by
human intervention).

About decision making processes, a general definition of
clinical decision support systems is currently lacking. Even if
the reference goes to Kawamoto et al. (10), the reason of the
difficulty in defining CDSS relies in their nature of sociotechnical
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FIGURE 1 | Data management guidelines for translational medicine approach.

systems (11). Among the various CDSS characteristics, two are
especially seen as necessary: (a) Leverage of disease knowledge
from which to formulate risk predictions (b) Integration between
relevant stakeholders at hospital site. The relevance of building
and integrating knowledge usable by CDSS implies prioritization
in which one aspect is focal, how to assess the clinical usability
of prediction models applicable through CDSS. This topic was
considered in Kappen and Peelen (12) and Kappen et al. (13) by
invoking a 3-step approach based on (1) Identifying the scope
of using the predictive model (purpose, utility, target patients)
(2) Establishing performance measures that refer to such scope
(methodological aspects) (3) Assessing feasibility for clinical
practice in view of available evidence more or less supportive of
results (validation akin to applicability).

CDSS suggest to algorithmically treat problems characterized
by high levels of imprecision, and this may indicate a
potential role for soft computing and fuzzy logic methods,

which may solve complexities too difficult to model at the

mathematical level by leveraging the uncertainty [(14, 15)
among other authors] and approximation [see the seminal

work of (16)]. These methods can also be combined with

probabilistic reasoning thus forming a relevant base for the
field of approximate reasoning as a strategy to manage

the imprecision of knowledge in inference tasks [see for
instance (17)].

Quite clearly, electronic health records (EHR) represent a mine
of information for CDSS, but without adequate consideration
of context, EHR are a type of data that can lead to biased
results. Considering their nature of a built-in dynamic process,
EHR have value beyond observational databases and indirectly
measure the patient’s state from a variety of recordings. It is
still largely underestimated the challenge of data integration in

terms of augmented complexity. This is in part due to the volume
of added features that a model must manage and in part is
due to model design and structure, both to be adapted to an
increased complexity.

For methodological and inferential purposes, networks science
can be profitably used in combination with EHR (large-scale) and
also in support of N-of-1 approaches (single-patient inference) to
provide therapeutic guidelines based on the identification of drug
combinations and the selection of relevant disease biomarkers
(18). In parallel, three impact areas of data work have been
proposed by Fiske et al. (19): one involves digital practices,
another is centered on interpretation and contextualization
to discriminate between information types, and one refers to
inclusion and interaction for a more effective engagement of
stakeholders [see also (20)].

Models of potential interest are those inspired by collaborative
filtering and based on systems leveraging on reviews and built
to recommend particular types of care provided to patients.
Such models would thus enable centrality of patient-specific
care and patient satisfaction by considering choices based
on preferences and in consideration of context aspects and
transparency principles [see for instance (21)].

DATA ANALYTICS: PRINCIPLED
DEVELOPMENT

A commonway of thinking about big data analytics tools involves
the design and construction of a scoring system able to assign
value to a series of CDSS components leveraging data features
and outcomes from methods application. These tools must obey
a series of automated rules and algorithmic steps to perform
predictions, which usually translates into estimating probabilities
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of disease relapse, defining risk profiles, drawing prognostic
paths and health trajectories while leveraging the multilevel
data characteristics to achieve satisfactory reproducibility and
generalizability standards.

The automated data-driven processes underlying CDSS can
likely enhance throughput applicability and facilitate the synergy
with other healthcare process components, those necessary for
instance to patient stratifications and based on multifactorial
data or disease reclassification. It is well-known that alternative
treatments exert differential effects on patients, something known
as heterogeneity of treatment effects (HTE). In such regards, the
challenges that the data embed refer substantially to (a) Structural
aspects, i.e., observed vs. unobserved data features, and (b)
Analytical aspects, i.e., what HTE features are predictive andwhat
are not, also considering what is possible to estimate and what
instead is destined to remain unknown.

Data feature engineering is considered central to useful
interpretation in data science applications. In clinical research,
expert knowledge can be especially relevant to the construction of
feature sets applicable to predictive models. In contrast with such
domain-centered approach, model-based feature engineering
leverages on classic topics involving data dimensionality and
heterogeneity in view of the type of learning approach
(supervised or not) that would be required. A common strategy
is establishing the relative importance of data features through
suitably constructed scores for the purpose of assessing their
predictive contribution to models. Even if limitations remain
about the interaction between features (difficult to model and
interpret) and the identification of influential or tipping points
[see (22)], among the most feasible solutions that can address
generalization there is the one of learning multiple models by
creating ensembles (examples are bagging, stacking, boosting
etc.) [see, among others (23)].

A recent theoretical framework has also been presented with
the emphasis posed on three major principles: predictability,
computability, and stability. They summarize, respectively, the
compatibility of the model with the natural data generating
processes, the algorithm efficiency, and the sensitivity referred to
data and model perturbation for purposes of reproducibility and
interpretability (24).

CHALLENGES AHEAD

Given the expected high-resolution patient stratifications (25),
what are good criteria to determine an optimal granularity, how
this could be adapted to treatment specificity, EHR-rephenotyped
diseases, patient geo-characteristics or multifaceted risk profiles?

Take cancer subtypes, for instance. In defining cancer
subtypes, their molecular characterization is a criterion for
treatment personalization treatment and selection into clinical
trials. However, a Machine Learning tool ad-hoc for precision
studied allowing translational applications is currently lacking.
An effort in the direction of precision cancer therapy needs to
address the knowledge improvement with regards to primary
site of origin and accurate subtyping (in 2–5% of metastatic
cancer patients cannot be located the primary site, thus left with
a classified cancer of unknown primary and poor prognosis to

only empiric treatment and insurgence of comorbidities). Flynn
et al. (26) built pan-cancer classifiers to predict multiple cancer
primary site of origin from metastatic tumor samples.

Manrai et al. (6) developed the point in even more
foundational terms. What is a precise normal reference
population in large-scale datasets explored at increased
granularity? With more patient features or attributes retrieved
from data, superior chances exist that normality definition can
change by adapting to novel feature combinations.

Another challenge is estimating treatment effects, something
which differs from predicting outcomes. The common
population average effect analysis needs to be compared
with heterogeneous effect analysis, this latter reflecting stratified
medicine aimed at correcting for variability (4). Once again, with
more observed characteristics more patients can be differentiated
in relation with response to treatment, although in decreasing
sample sizes. Taken to an extreme, personalized effect analysis
can be targeted to single-patient approaches based on multiple
criteria to evaluate treatment options and thus weighting many
variables in support of decisions, including preference data
[Salmasi and Capobianco (27) on the use in EHR-driven models
of instrumental variables for estimation of person-centered
treatment effects (PeT), following (28)].

Finally, the issue of interoperability and the difficulty of
modeling it. Interoperability refers usually to systems exchanging
information, and it is necessary to know when systems can
be interoperable and what they can exchange (29). However,
another interconnected aspect is model interoperability, i.e.,
how to align model structures such that the same reference
(say a model family) can be used to assess their validity and
similar data can be used for learning to generalization tasks.
A possible strategy is to identify elements that the models
have in common and to combine them into a so-called core
or backbone model. Unlike ensemble models that operate an
aggregation of predictions from a variety of models to increase
prediction accuracy and/or reduce overfitting effects, this core
strategy enables a synthesis of separate characteristics that models
share to be leveraged for inference scopes. This methodological
strategy ensures the possibility of preserving communication
between such key model characteristics and allows an expansion
of the possible outreach across multiple domains. In the presence
of limited throughput and scalability issues, the core model
performance could be enhanced by sharding, an approach typical
of databases (and recently blockchains) designed to partition
large datasets into smaller ones (shards) in order to increase the
overall system’s efficiency.
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