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Abstract
The combination of ultrasound and photochemical methods has been used for the catalytic ring
opening of α-epoxyketones by 1-benzyl-2,4,6-triphenylpyridinium tetrafluoroborate (NBTPT) as
photocatalyst in methanol. Sonication of these compounds in the presence of NBTPT did not result
in the opening of epoxide ring, but the use of ultrasound increased the rate of photoreaction.

Background
The advantages of ultrasound-assisted chemical reactions
include higher yields, shorter reaction times and milder
reaction conditions when compared with classical meth-
ods. [1-5] The effect of ultrasound has mostly been shown
by increasing the yields of reactions and in some cases
changing the ratio of products formed. The most impor-
tant effects of ultrasound arise from acoustic cavitation:
formation, growth, and implosive collapse of bubbles in
the liquid by passing ultrasonic waves through this
medium. [3,6] The implosive collapse of the bubble gen-
erates localized hot spots through adiabatic compression
or shock wave formation within the gas phase of the col-
lapsing bubble. This leads to development of tempera-
tures up to 5000 K and high pressures of 1800 atm and
cooling rates in excess of 1010 K/s within the cavities dur-
ing their collapse. [3,6] In all of these reactions it was
found that ultrasound accelerates the reactions. [7-17]

It is well known that the substituted pyridinium cations
are good electron acceptors. [18] Garcia and coworkers
have used N-alkyl-2,4,6-triphenylpyridinium tetrafluor-
oborate as photosensitizer in the photochemical cycliza-
tion of 5-methyl-4-hexenoic acid to the corresponding γ-

lactone. [19] In our recent study, we have used 1-benzyl-
2,4,6-triphenylpyridinium tetrafluoroborate (NBTPT) as
photocatalyst in a highly diastereoselective ring opening
of α-epoxyketones in acetone solution with the formation
of 1.3-dioxolanes. [20]

Ring opening of epoxides and α-epoxyketones in the pres-
ence of various nucleophiles has received considerable
attention in recent years, partially owing to current inter-
est in single electron transfer (SET) process and also
because of potential application in organic synthesis.
Such reactions have been recognized as important proc-
esses not only in thermal but also in photochemical trans-
formations. Single electron transfer (SET) induced ring
opening reactions of epoxides and α-epoxyketones have
demonstrated C-C and C-O bond cleavages through
photo-induced electron transfer by various electron
donors such as triethylamine (TEA), [21] tribenzylamine
(TBA) [20] and 1,3-dimethyl-2-phenylbenzimidazoline
(DMPBI) [22-24] or thermally induced single electron
transfer by electron donating compounds such as samar-
ium diiodide, [25] tributyltin hydride [26] and
bis(cyclopentadienyl)titanium(III) chloride. [27] Ring
opening reactions of epoxides and α-epoxyketones have
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also occurred thermally or photochemically by the pres-
ence of various electron acceptors. These reactions have
been observed thermally by ceric ammonium nitrate
(CAN), [28,29] 2,3-dichloro-5,6-dicyano-p-benzoqui-
none (DDQ) [30] and iron(III) chloride [31] or photo-
induced electron transfer reactions by dicyanoanthracene
(DCA), [32,33] tetracyanoethylene (TCNE) [34,35] and
2,4,6-triphenylpyrilium tetrafluoroborate. [36-40] In the
case of C-C bond cleavage, the generated intermediates
from epoxide radical cations have been trapped by molec-
ular oxygen to form trioxolane derivatives [32-34] or by
dipolarophiles to form various tetrahydrofurans and
dihydrofurans. [41] In the absence of appropriate dipo-
larophiles, cis/trans isomerization of the epoxide ring has
been observed. [42] The cleavage of Cα-O or Cβ-O bonds
has been confirmed either by rearrangement to carbonyl
compounds [43-50] or by nucleophilic attack of appropri-
ate reagents. [36,39,51]

Recently, we have reported on the photocatalytic ring
opening of α-epoxyketones 1a-f and 2,4,6-triphenylpyril-
ium tetrafluoroborate (TPT) as photocatalyst in metha-
nol, [37] cyclohexanone, [38] acetone [39] and acetic acid
solutions. [40]

Our recent study with 1-benzyl-2,4,6-triphenylpyridin-
ium tetrafluoroborate (NBTPT) 2 as weaker electron-
acceptor compared with TPT (nitrogen vs. oxygen) for
highly diastereoselective ring opening of α-epoxyketones
in acetone [20] leads us to investigate simultaneous irra-
diation of ultrasound and UV-light for catalytic ring open-
ing of α-epoxyketones 1a-f in the presence of this
photocatalyst in methanol. The main goal of the present

work was to elucidate the effect of both irradiation sources
separately or together on the rate of photocatalytic ring
opening of α-epoxyketones and also the electron-acceptor
ability of NBTPT on the diastereoselectivity of reaction.

Results and Discussion
Photo-induced reactions of α-epoxyketones 1a-f with 2 in
methanol solution produced a mixture of MeOH-adducts
3a-f and 4a-f (Scheme 1). It should be noted that sonica-
tion of the mixture of 1a-f with 2 alone did not result in
the opening of epoxide ring. The results are summarized
in Table 1.

Comparison of the data presented in Table 1 indicates
that (i) catalytic ring opening of α-epoxyketones consid-
ered in this study was accelerated by simultaneous irradi-
ation of ultrasound and UV-light and (ii) the rate of the
ring opening of α-epoxyketones in the presence of 2 is
also dependent on the additional substituent on the phe-
nyl ring. Whereas the electron donating groups (p-methyl
and p-methoxy) on the phenyl ring directly attached to the
epoxide ring facilitate the rate of photocatalytic ring open-
ing of α-epoxyketones 1b, 1d and 1f, the same substitu-
ents on the phenyl ring of the benzoyl group (1c and 1e)
have a smaller effect. In the cases of 1b and 1d, the ratios
of the diastereomeric photoproducts are inversed. We
have proposed the involvement of three different interme-
diates 5–7 in the photocatalytic ring opening of α-epox-
yketones by TPT as strong electron acceptor due to
complete electron transfer from α-epoxyketones to excited
TPT (Scheme 2). A comparison of the ultra-violet data of
1a-f with NBTPT presented in Table 2 shows that under
the reaction conditions – irradiation at λ ≥ 280 nm and a

Scheme 1: Ultrasound-assisted photocatalytic ring opening of α-epoxyketones.
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molar ratio of 1a-f : NBTPT (10 : 1) – NBTPT is excited
selectively. Therefore, the same intermediates should be
involved in our study.

The interesting point in the present work is that in con-
trast to the results obtained by reaction of 1a-f and 2 in
acetone solution, which leads to the highly diastereoselec-
tive formation of 1,3-dioxolanes, diasteroselective forma-
tions of α-hydroxy-β-methoxyether derivatives 3 and 4
have been only observed in some cases of photocatalytic
ring opening of 1a-f and 2 in methanol solution. The
observed high distereoselectivity by reaction of 1a-f and 2
in acetone solution has been explained by the involve-
ment of a complex (1a-f... NBTPT*) instead of the inter-

mediates 5–7 for the nucleophilic attack of acetone
(Scheme 3). [19]

Due to the polar nature of methanol compared with ace-
tone, we should expect a complete electron transfer from
1a-f to photoexcited 2 under the formation of one of the
intermediates 5–7, depending on the location of the addi-
tional substituent on the parent molecule 1a. This argu-
ment is supported by the effect of the nature of
substituents on the rate of reaction and the diastereomeric
ratios of products. This leads us to assume that the induc-
tive effect of the p-methyl group and the resonance effect
of the p-methoxy group on the phenyl ring directly
attached to the epoxide ring increase the contribution of

Table 1: Photochemical and photosonochemical reactions of 1a-f catalyzed by 2 in methanol solution.I

Compound Irradiation time (h) Yield (%)II 3/4III 3 % 4 %

1a + hν 11 88 1 : 2.0 33.3 66.7
1a + hν +))) 7 90 1 : 2.1 32.3 67.7

1b + hν 2.5 99 1.2 : 1 54.5 45.5
1b + hν +))) 1.5 99 1.2 : 1 54.5 45.5

1c + hν 10 85 1 : 3.7 21.3 78.7
1c + hν +))) 9 87 1 : 3.4 22.7 77.3

1d + hν 2.15 98 1.1 : 1 52.4 47.6
1d + hν +))) 1.10 100 1.1 : 1 52.4 47.6

1e + hν 9 89 1 : 4.8 17.2 82.8
1e + hν +))) 5 90 1 : 4.8 17.2 82.8

1f + hν 2 99 1 : 1.1 47.6 52.4
1f + hν +))) 1.05 99 1 : 1.2 45.5 54.5

I [1a-f] = 0.04 M, [2] = 0.004 M, corresponding to a molar ratio of 10:1. IIBased on consumed 1a-f. IIIThe ratios have been determined by 
comparison of the integral ratios of the hydrogen on C-2.

Scheme 2: Possible intermediates involved in the ring opening of α-epoxyketones.
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the intermediates 6 and 7 because of the stabilization of
carbocation or carbocation-like centers. The more stable
conformer of the intermediate 7 can be formed through
interaction of oxygen lone pair of carbonyl group with
carbocation center (Scheme 4, intermediate 8). This leads
to the preferred nucleophilic attack of methanol to the
carbon atom at the less hindered site (VII) to form the cis-
isomers 3b and 3d (Scheme 4). On the other hand, the
intermediates e.g. 5 and 6 is proposed for 1a, 1c and 1e,
in which the phenyl ring attached to the epoxide ring is
not bearing such electron donating groups on the phenyl
ring directly attached to the epoxide ring.

The expanded part of 1H NMR spectra of photoproducts
3a-f and 4a-f (hydrogen located on C-2) shows exactly the
ratios of diastereomeric products and is provided [see
Additional File 1].

Concerning the effect of ultrasound on the rate of ring
opening of α-epoxyketones, we propose that increasing
the rate of reaction is caused by efficient mass transfer of
the reaction mixture by sonication. Also the electron
transfer between the active species in this homogeneous
system using sonication occurs faster than the system
without sonication. Whereas the use of ultrasound accel-
erates the rate of photocatalytic ring opening of α-epox-
yketones 1a-f, the ratios of diastereomeric photoproducts
have not been changed too much using ultrasound irradi-
ation.

In order to explain the results obtained, we have com-
pared the results of the semi-empirical PM3 calculations on
the complexes of 1a-f + 2 in the ground state with those of
α-epoxyketones 1a-f alone (Fig. 1). The data obtained are
presented in Table 3.

Table 2: UV absorption λmax and molar extinction coefficients (ε)of 1a-f and NBTPT in CH2Cl2

Compounds λmax (nm), ε (l mol-1 cm-1)

1a 262 (18053), 320 (250)
1b 267 (17186), 324 (405)
1c 264 (36037), 340 (sh)
1d 270 (16418), 328 (580)
1e 277 (32570)
1f 286 (21897)

NBTPT 240 (8789), 313 (29448)

Scheme 3: Possible formation of a complex involved in reaction in acetone.
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These data shows that the electric charges of atoms in the
epoxides ring in the complexes of 1a-f + 2 compared with
1a-f alone have been increased. The increasing of the
charges of oxygen and C-3 (Cβ) show that Cβ-O bond has
tendency for cleavage. This tendency for the complexes of
1b, 1d and 1f + 2 is increased by the presence of the donor
groups such as p-methyl and p-methoxy, because the
charge of C-3 (Cβ) in the complexes of 1b, 1d and 1f + 2
is more positive than other complexes. Therefore, the
nucleophilic attack of methanol to the C-3 (Cβ) in the
complexes of 1b, 1d and 1f + 2 is faster than the others.
This leads to faster ring opening of these compounds.

Conclusion
From the results of this work and our previous work con-
cerning photocatalytic ring opening of α-epoxyketones, it
follows that ultrasound alone does not effect the epoxide
ring opening. On the other hand, ultrasound can seriously
affect photocatalytic ring opening of α-epoxyketones pre-
dominantly because of the efficient mass transfer of the
reactants and the excited state of NBTPT. The higher yields
and shorter reaction times are advantages of this method.

Experimental
α-Epoxyketones 1a-f and 1-benzyl-2,4,6-triphenylpyrid-
inium tetrafluoroborate 2 were prepared according to the
reported procedures. [54-56] Methanol was purchased
from Merck and distilled before use. The ultrasonic device
used was an UP 400 S instrument from Dr. Hielscher
GmbH. A S3 immersion horn emitting 24 kHz ultrasound
at intensity levels tunable up to maximum sonic power
density of 460 W cm-2 was used. Sonication was carried
out at 100 % (maximum amplitude 210 μm). A 3 mm
long sonotrode (maximum immerse depth of 90 mm)
was immersed directly into the reaction mixture. UV irra-
diations were performed using a 400 W high pressure
mercury lamp from Narva with cooling of samples in
Duran glass. 1H NMR spectra of the mixture of photo-
products were measured in CDCl3 solutions containing
tetramethylsilane (TMS) as internal standard on a Bruker
drx-500 (500 MHz). Preparative layer chromatography

(PLC) was carried out on 20 × 20 cm2 plates coated with 1
mm layer of Merck silica gel PF254 prepared by applying
the silica as a slurry and drying in air. All products are
known and their spectral data have been reported earlier.
[37]

General procedure for the photocatalytic ring opening of 
1a-f by NBTPT
A solution of a 0.8 mmol of 1a-f in 20 cm3 methanol (c =
0.04 M) and 0.08 mmol of 2 (c = 0.004 M) was irradiated
(λ ≥ 280 nm) for the times given in Table 1. Then, the sol-
vent was evaporated and the mixture of photoproducts
was isolated by PLC.

General procedure for the photosonocatalytic ring 
opening of 1a-f by NBTPT
A solution of a 0.8 mmol of 1a-f in 20 cm3 methanol (c =
0.04 M) and 0.08 mmol of 2 (c = 0.004 M) was sonicated
and irradiated (λ ≥ 280 nm) simultaneously for the times
given in Table 1. Then, the solvent was evaporated and the
mixture of photoproducts was isolated by PLC.

Table 3: Mulliken electric charges [52,53] of the epoxide ring atoms of 1a-f alone and the complexes of α-epoxyketones 1a-f with 2 in 
the ground state obtained from quantum mechanical PM3 calculations

1a-f 1a-f + 2

C-2 (Cα) C-3 (Cβ) O C-2 (Cα) C-3 (Cβ) O

1a -0.082 0.082 -0.229 -0.065 0.098 -0.304
1b -0.083 0.084 -0.232 -0.067 0.102 -0.306
1c -0.080 0.080 -0.231 -0.061 0.093 -0.304
1d -0.084 0.089 -0.233 -0.063 0.101 -0.305
1e -0.083 0.082 -0.232 -0.066 0.098 -0.306
1f -0.083 0.088 -0.234 -0.067 0.103 -0.302

The semi-empirical PM3 calculations for interaction of 1a with NBTPTFigure 1
The semi-empirical PM3 calculations for interaction of 1a with 
NBTPT.
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