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Abstract: This review concerns the recently emerged class of composite colloidal photonic crystals
(PCs), in which gold nanoparticles (AuNPs) are included in the photonic structure. The use of
composites allows achieving a strong modification of the optical properties of photonic crystals by
involving the light scattering with electronic excitations of the gold component (surface plasmon
resonance, SPR) realizing a combination of absorption bands with the diffraction resonances
occurring in the body of the photonic crystals. Considering different preparations of composite
plasmonic-photonic crystals, based on 3D-PCs in presence of AuNPs, different resonance phenomena
determine the optical response of hybrid crystals leading to a broadly tunable functionality of these
crystals. Several chemical methods for fabrication of opals and inverse opals are presented together
with preparations of composites plasmonic-photonic crystals: the influence of SPR on the optical
properties of PCs is also discussed. Main applications of this new class of composite materials are
illustrated with the aim to offer the reader an overview of the recent advances in this field.

Keywords: gold nanoparticles; composite materials; photonic crystals; opals; inverse opals; plasmonic;
plasmonic photonic crystals

1. Introduction

Photonic crystals (PCs) are a class of optical media represented by natural or artificial structures
with periodic modulation of the refractive index. The period of refractive index repetition must be
comparable to the wavelength of the light for intended application.

This characteristic of PCs guides to a range of frequency being allowed in transmission, while
blocking others. This forbidden range of frequency forms the stop band. The material is a complete
photonic band gap (CPBG) material, if the stop band is present in all directions, or else, it is a pseudo
band gap material. The band gap properties are decided by parameters such as the refractive
index contrast between the individual dielectric constituents, lattice parameters, and the crystal
structure. The stop band positions depend largely on three factors: the refractive index contrast
between the periodic components and the surrounding phase, the lattice constant and the filling [1].
Any one of these parameters in the photonic structures that is stimuli-responsive can be used for
the creation of responsive PCs: PCs optical properties are related to the changeable photonic band
gap characteristics through the application of chemical stimuli, temperature, mechanical forces,
electrical/magnetic fields, or light. Much effort is devoted to study the PBG [2–4], for example,
many works of Joannopoulos group are dedicated on problems related to a new kind of PCs, having
structures with full three-dimensional band gaps [5,6]. Depending on geometry of the structure, PCs
can be divided into three broad categories, namely one-dimensional (1D), two-dimensional (2D) and
three-dimensional (3D) structures. Schematic examples are shown in Figure 1.
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Figure 1. Schematic representation of 1D, 2D, and 3D PCs. The classification of dimensionality is 
determined by the spatial arrangement of the two materials having different refractive index.  

Historically, the preparation of PCs has been moved forward by following different phases. 
Firstly, bare opals, prepared starting from several polymeric and co-polymeric materials, are studied 
[7,8]; afterwards, opals infiltrated with different guest materials were also realized to modulate the 
optical properties of the composite PCs, both 2D and 3D [9–15]. These crystals can be characterized 
as weak PCs with directional band gaps, but they are always the test platform for the investigation 
of fundamental physical effects applicable to other types of PCs. 

Then, new properties have been achieved by introducing the inverse opals with strong light-to-
structure interaction including a chance of approaching the omni directionality of the band gap and 
the possibility to fill the holes with different materials [16–18]. 

Furthermore, different kinds of materials can be introduced into the opals and inverse opals, 
allowing modulation of composite optical properties. In particular, materials with complex dielectric 
constant, such as silver and gold, are interesting option as they support both localized and 
propagating surface plasmon modes. Metallo-dielectric PCs have been shown to possess CPBG in the 
visible wavelength range [19]. For example, monolayer of self-assembled spherical colloids coated by 
a thin silver or gold film can be used as support for localized surface plasmon resonance (LSPR) 
whose peak position can be tuned by varying the sphere diameter, the metal film thickness, or both 
[15,20–22]. Apart from metallic thin films, metal nanoparticles are also used to increase the light–
matter interaction in the PCs. In particular, gold nanoparticles are used for enhanced light harvesting 
due to the intrinsic plasmonic resonances [23–25]. A frequent example of composites based on 
colloidal PCs and noble metal NPs is the immobilization synthesized AuNPs into PCs. Among others, 
easy dipping method to immobilize AuNPs on the surface of a prefabricated three-dimensional (3D) 
ordered SiO2 opal film is reported and allowed to observe both LSPR of the NPs and the stop band 
of the PC structures [26]. Comparing with opal structures, inverse opals with both resonance peaks 
and diffraction peaks are especially desirable because they combine the advantages of high surface 
area with the accessible diffusion pathways associated with periodic macroporous structures [27,28]. 
Nevertheless, such a kind of structure has rarely been reported due to the difficult to control the 
uniform distribution of noble metal NPs and the low robustness of metal-dielectric inverse opals [29]. 

Much effort has been made to overcome these problems, for example, AuNPs infiltrated 
polystyrene (PS) inverse opal are fabricated via a multistep approach, and both LSPR properties of 
AuNPs and photonic features of the PCs were demonstrated [30–35].  

Regarding the preparation of AuNPs, different methods have been investigated to allow 
controlling size and monodispersity, using hydrophilic or bifunctional thiols, or avoiding the use of 
capping agent by means of sputtering deposition (e.g., [36–40]). 

The composite PCs described in this review can also be considered as a new class of PCs, in 
which the light transport depends on synergy of different resonance phenomena. The strong 
alteration of optical properties of composite colloidal PCs was achieved by purposive engineering of 
their structure topology and composition [41].  

Moreover, due to the increasing demand for miniaturized sensing platforms with fast response, 
composite PCs have become appealing optical materials for the control and manipulation of light 
[42,43]. In particular, photonic band gaps in the visible range can generate the visible diffraction 
colors and PCs with incomplete band gaps: these materials can be used as reflective coatings for 

Figure 1. Schematic representation of 1D, 2D, and 3D PCs. The classification of dimensionality is
determined by the spatial arrangement of the two materials having different refractive index.

Historically, the preparation of PCs has been moved forward by following different phases. Firstly,
bare opals, prepared starting from several polymeric and co-polymeric materials, are studied [7,8];
afterwards, opals infiltrated with different guest materials were also realized to modulate the optical
properties of the composite PCs, both 2D and 3D [9–15]. These crystals can be characterized as
weak PCs with directional band gaps, but they are always the test platform for the investigation of
fundamental physical effects applicable to other types of PCs.

Then, new properties have been achieved by introducing the inverse opals with strong
light-to-structure interaction including a chance of approaching the omni directionality of the band
gap and the possibility to fill the holes with different materials [16–18].

Furthermore, different kinds of materials can be introduced into the opals and inverse opals,
allowing modulation of composite optical properties. In particular, materials with complex dielectric
constant, such as silver and gold, are interesting option as they support both localized and propagating
surface plasmon modes. Metallo-dielectric PCs have been shown to possess CPBG in the visible
wavelength range [19]. For example, monolayer of self-assembled spherical colloids coated by a thin
silver or gold film can be used as support for localized surface plasmon resonance (LSPR) whose peak
position can be tuned by varying the sphere diameter, the metal film thickness, or both [15,20–22].
Apart from metallic thin films, metal nanoparticles are also used to increase the light–matter interaction
in the PCs. In particular, gold nanoparticles are used for enhanced light harvesting due to the intrinsic
plasmonic resonances [23–25]. A frequent example of composites based on colloidal PCs and noble
metal NPs is the immobilization synthesized AuNPs into PCs. Among others, easy dipping method to
immobilize AuNPs on the surface of a prefabricated three-dimensional (3D) ordered SiO2 opal film is
reported and allowed to observe both LSPR of the NPs and the stop band of the PC structures [26].
Comparing with opal structures, inverse opals with both resonance peaks and diffraction peaks are
especially desirable because they combine the advantages of high surface area with the accessible
diffusion pathways associated with periodic macroporous structures [27,28]. Nevertheless, such a kind
of structure has rarely been reported due to the difficult to control the uniform distribution of noble
metal NPs and the low robustness of metal-dielectric inverse opals [29].

Much effort has been made to overcome these problems, for example, AuNPs infiltrated
polystyrene (PS) inverse opal are fabricated via a multistep approach, and both LSPR properties
of AuNPs and photonic features of the PCs were demonstrated [30–35].

Regarding the preparation of AuNPs, different methods have been investigated to allow
controlling size and monodispersity, using hydrophilic or bifunctional thiols, or avoiding the use of
capping agent by means of sputtering deposition (e.g., [36–40]).

The composite PCs described in this review can also be considered as a new class of PCs, in which
the light transport depends on synergy of different resonance phenomena. The strong alteration of
optical properties of composite colloidal PCs was achieved by purposive engineering of their structure
topology and composition [41].

Moreover, due to the increasing demand for miniaturized sensing platforms with fast response,
composite PCs have become appealing optical materials for the control and manipulation of
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light [42,43]. In particular, photonic band gaps in the visible range can generate the visible diffraction
colors and PCs with incomplete band gaps: these materials can be used as reflective coatings for optics,
waveguides for directing the propagation of light, and many other optical components. Furthermore,
PCs are widely applicable in different areas such as biological and chemical sensing, tunable color
displays, and many optically active components [44–57].

The objectives of this review, schematically reported in Table 1, are: (i) summarize the materials
and methods for the fabrication of photonic structured materials; (ii) discuss strategies for creating
photonic materials with AuNPs; and (iii) give an overview of the various applications filed in which
these innovate materials are evolved.

Table 1. Examples of composite PCs, useful in several application fields.

PCs AuNPs
Diameter (nm)

PCs Lattice
Diameter (nm)

PCs Lattice
Materials

Composite PCs
Fabrication Methods

Application
Fields Reference

Opals

~5 260–300 PS Infiltration optics [58]
~40 ~300 PS Infiltration optics [59]

– ~300 PS Infiltration optics [60]
– 520 PS Deposition optics [13]

~10 ~695 PS@SiO2 Inclusion optics [61]
~10 400 PANI Inclusion sensing [62]

~7–10 300; 400 SiO2 CVD optics [36]
200–1000 SiO2 Infiltration sensing [63]

– – SiO2 Infiltration biomedicine [64]

Inverse
opals

12 ± 1.5 200; 400 SiO2 Infiltration SERS [65]
187 ± 2; 353 ± 7 500–600 SiO2 Infiltration optics [66]

6; 30 ~200–400 SiO2 Co-deposition sensing [34]
~10 ~200 SiO2 Co-assembly optics [17]
~20 398 TiO2 Co-deposition optics [35]
~10 ~200 TiO2 Co-deposition photocatalysis [67]
~3–5 155–285 TiO2 Co-deposition photocatalysis [68]

PANI: Polyaniline; CVD: Chemical vapor deposition; SERS: Surface-enhanced Raman spectroscopy.

2. AuNPs with Opals

Opals are natural photonic crystals, as biological insects or birds with these structural colors
(for example, peon’s feather, and Morpho Rethenor’s wing) reveal. An opal is a hexagonal or cubic
close-packed hydrated form of silica. It is easy to reproduce opals with nanobeads of polystyrene,
silica or even polymethylmethacrylate using self-assembly. Self-assembly can be used because of the
energetically favored face-centered cubic (fcc) close-packing of spheres.

A great advantage of colloidal crystals is their inexpensive and convenient bottom-up preparation
giving a good optical performance with iridescent reflection colors caused by Bragg diffraction of
visible light [69,70] and by controlling the surface of the particles [71–75]. Silica and polymeric
nanoparticles are widely used for this purpose, and in particular polymers and copolymers can be
prefer due to both their versatile synthesis both for their modulable chemico-physical properties [76–82].
Effectively, during these years, much progress has been made in the synthesis and fabrication of
polymeric PCs. First, the emulsion and miniemulsion synthesis allowed obtaining monodispersed
polymeric particles starting from several monomers, in some cases also using the inverse emulsion
synthesis technique [83,84]. The key factor in these results are the size and shape control of the
polymeric particles, that permitted to use them for following self assembly procedures [85–87]. In fact,
the fabrication of polymeric PCs can also be made using different technique, such as top-down
lithography [88,89], or solvent-driven self-assembly [90,91].

A versatile method for the preparation of PCs is the vertical deposition [92–94]. This method
is both very simple and convenient, and can be used to fabricate simple structures, such as PCs
face-centered cubic (fcc) lattices, however, the resultant structures lack mechanical robustness [9,95].
In some cases, this problems can be overcome by photo cross-linking of the soft matrix after the film
preparation [96], but also different approaches have been developed, in particular the combinations of
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melting and shear-ordering methods have been successfully applied to produce highly ordered opal
films from monodispersed core–interlayer–shell polymer beads: the resultant structures are low-defect
flexible polymer fcc opal films, with fundamental optical resonances tunable across the visible and
near-infrared regions [97,98]. The color generation occurs through spectrally resonant scattering inside
a three-dimensional (3D) fcc-lattice PCs [99,100].

A particular system is the binary colloidal crystals (BCCs) that can be fabricated by co-assembling
large (L) and small (S) particles, with size ratio between 0.154 and 0.376, made of the same or different
materials [101–105]. Moreover, it was demonstrated that two different structures can be self-assembled
in one crystal structure from a binary colloidal dispersion [106,107]. These BCCs offer higher flexibility
in engineering the photonic bandgap structures compared with one-size colloidal PCs, and these
materials have found wide applications in sensing, protein patterning, and bioseparation [108,109].

In this context, composite materials containing metal nanoparticles (MNPs) are now considered
as a basis for designing new photonic media for sensing, optoelectronics and nonlinear optics [62,110–113].

PCs covered with a thin film of metal has been shown to support localized surface plasmon
resonance (LSPR) whose peak position could be tuned, by varying the colloidal diameter, or the
metal film thickness, or both [20]. Directional emission is reported from a monolayer containing
a gain medium grown on a thin gold film [13,15,114,115]. The synthesis of metal nanoparticles can be
achieved by using different methods, from electrodeposition [116], to chemical wet reduction [117],
with single or double phase [118–120], and suitably selecting the amount and type of ligands, in
particular, thiols [121] or amines [122]. This allows you to control the size and functionality of AuNPs
and improves the effective interaction with the photonic material [123]. A red shift in the stop band is
observed after the infiltration of metal nanoparticles into the voids of self-assembled PCs [58]. Recently,
the enhancement in emission from dye-doped PCs infiltrated with gold nanoparticles (GIPC) was
reported by Rout et al. as result of resonant interaction between LSPR of AuNPs and the photonic
stop band [59,60]. In Figure 2 the optical microscope images of (a) PCs and (b) GIPC, grown from
polystyrene nanoparticles with average diameter of 277 nm and spectra of all features present in the
sample are reported: the optical microscope (OM) images have a distinctive color difference in their
appearance for PhC and GIPhC due to a red shift in the wavelength of the reflected light from the
crystal surface for GIPhC. FESEM image, in Figure 2c, shows a hexagonal periodic ordering of the
colloids in a plane parallel to the plane of the glass substrate on which they are grown and from the
inset the cross-sectional image of the crystal, the hexagonal ordering is the (111) lattice plane of the fcc
crystal. The FESEM image shown in Figure 2d gives an average value of 40 nm and a spread of 3 nm
for the AuNPs diameter. In Figure 2e, all the relevant spectra on a normalized scale were reported,
wherein the overlap of Rhodamine B emission spectrum and the PhC stop band ensures a modified
light–matter interaction and further, the emission spectrum of the dye has a finite overlap with the
LSPR band, as seen. The resonant interaction depends on the spectral overlap between photonic stop
band and the LSPR band; on the other hand, an efficient modification of the spontaneous emission
would find potential applications in several fields such as fluorescence-based sensors, light emitting
diodes, and the solar photovoltaic systems [63].

It is important to verify the direct contribution of the LSPR in enhancing the emission from the dye
and to elucidate its effect on the fluorescence lifetime of the dye in a metallo-dielectric PCs environment.
By including the plasmonic contributions in the appropriate wavelength range, the energy transfer
between the emission and LSPR can be modified, enabling a controlled light management inside
the GIPC: the enhanced emission intensity in the dye-doped metallo-dielectric PCs is associated
with a reduction in the excited state life time of the dye and the disappearance of the non-radiative
component in fluorescence decay. This clearly emphasizes the resonant nature of the light–matter
interaction due to the gold nanoparticles doped into the crystalline structures.
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Figure 2. Optical microscope images of: (a) PCs; and (b) GIPC, grown from polystyrene colloids with 
average diameter of 277 nm. The scale bar is 100 μm; (c) The FESEM image of PCs with the same 
colloidal diameter showing hexagonal periodic arrangement on the top surface. The scale bar is 300 
nm. The inset shows the ordering in the different layers of the crystal, and the smaller particles inside 
the cracks are the gold nanoparticles infiltrated into the structure; (d) The FESEM image of AuNPs 
dispersed over a silicon substrate yields an average value of 40 nm for their diameter; (e) The 
normalized spectra of all features present in the sample, where the solid vertical line at 347 nm denotes 
the excitation wavelength and the vertical line at 571 nm marks the wavelength of maximum spectral 
overlap between the emission spectrum and the LSPR band of gold nanoparticles. Spectral bands 
(from left to right): first band is LSPR due to AuNPs, RhB in dot line is due to Rhodamine B absorption, 
then RhB line is due to RhB emission, R_PhC@8 in dot line is due to RhB in polystyrene PCs, and 
finally R_GIPhC@8 in thick solid gray line is due to RhB in polystyrene PCs infiltrated with AuNPs 
(adapted from [60]). 

Among photonic materials, core–shell particles have attracted considerable attention in physics, 
chemistry, and medicine, due to their application potential in optoelectronics, catalysis, and drug 

(e) 

Figure 2. Optical microscope images of: (a) PCs; and (b) GIPC, grown from polystyrene colloids with
average diameter of 277 nm. The scale bar is 100 µm; (c) The FESEM image of PCs with the same
colloidal diameter showing hexagonal periodic arrangement on the top surface. The scale bar is 300 nm.
The inset shows the ordering in the different layers of the crystal, and the smaller particles inside the
cracks are the gold nanoparticles infiltrated into the structure; (d) The FESEM image of AuNPs dispersed
over a silicon substrate yields an average value of 40 nm for their diameter; (e) The normalized spectra
of all features present in the sample, where the solid vertical line at 347 nm denotes the excitation
wavelength and the vertical line at 571 nm marks the wavelength of maximum spectral overlap between
the emission spectrum and the LSPR band of gold nanoparticles. Spectral bands (from left to right):
first band is LSPR due to AuNPs, RhB in dot line is due to Rhodamine B absorption, then RhB line is
due to RhB emission, R_PhC@8 in dot line is due to RhB in polystyrene PCs, and finally R_GIPhC@8 in
thick solid gray line is due to RhB in polystyrene PCs infiltrated with AuNPs (adapted from [60]).

Among photonic materials, core–shell particles have attracted considerable attention in physics,
chemistry, and medicine, due to their application potential in optoelectronics, catalysis, and drug
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delivery [64,124–127]. PS@SiO2 is a popular basic core shell system [128]: PS core have uniform
spherical shape, a high monodispersity, a possible inner core shell structure as well and it can be
easily removed by calcination, to obtain hollow particles or yolk–shell systems. In general, the
Stober-like method is used to fabricate the SiO2 shell delivering a controllable homogeneous thickness,
tunable porosity, and its negative surface charge prevent the aggregation of the colloidal particles [129].
However, commonly used PS particles are also negatively charged, and it is hard to get smooth
and homogeneous coating of SiO2 [130]. Many different ways have been developed to modify the
surface of PS particles, e.g., SiOH-functionalized surfaces [131], PVP stabilized surfaces [128], and
polyelectrolyte deposited surfaces [130–132]. However, temperature and most chemical tunings lead
to lattice constant changes, which can be acceptable for sensor applications, but not for application in
many other photonic devices, because they induce defects up to lead to the destruction of the ordered
structure. Different ways have been applied to graft AuNPs on or in SiO2 matrix particles [133–136].
One way is to infiltrate Au precursor into mesoporous SiO2 spheres, being the host for the formation
of AuNPs inside the pores. Another way is the use thiol groups [134,136]. For example, a series of
organically functionalized core–shell spheres were synthesized which fixed the AuNPs on the core
surface by the binding between thiol and Au [134] but there are some problems: the low loading
with AuNPs, especially for low-surface area materials [136]; and the migration of AuNPs leads
to aggregation and to a loss of catalytic activity at elevated temperatures (about 200 ◦C) [134,137].
A method to synthesize monodisperse PS@v-SiO2 core–shell particles is based on the use of PS particles
as template and vinlytrimethoxysilane (VTMS) as the precursor, as reported by Deng et al. [138]. In this
work a one-step method to coat PS particles with organo-SiO2 is proposed, using a pre-hydrolysis of
VTMS precursor in water and then directly coating vinyl-SiO2 on the PS surface at room temperature.
The reduction of this two-step procedure to one-step makes it easier to generalize this approach to
flexible organic ligands. For example, PS@v-SiO2 core–shell systems can be modified with bromine
leading to efficiently tunable colloidal crystals with stable lattices. Furthermore, mercaptopropyl-SiO2

shells were impregnated with HAuCl4 forming a high loading of well distributed AuNPs inside the
SiO2 shell, with loading ratio of about 20 wt. % and stable at 550 ◦C [61]. The strategy of direct
organo-silica coating has the general advantage of an inherently homogeneous distribution of the
functional groups, in comparison with post-synthesis grafting and it could be a key method for the
construction of complex functional nanostructures.

The application for several AuNPs doped PCs are focused on the optical properties because,
in these composite materials, the PC layer localizes, traps, and provides multiple paths for the
plasmonic wavelength of the AuNPs, which magnifies light intensity at visible wavelength and thus
enhances the SPR of the AuNPs. Furthermore, the catalytic properties of AuNPs can be employed
for enhanced selectivity in sensing and photocatalytic applications and the biocompatibility of gold
allows exploring a wide range of medical studies.

3. AuNPs with Inverse Opals

Starting from PCs, it is therefore easy to fill the voids between the beads with a metal oxide and to
remove the sacrificial beads to obtain an inverse opal. Inverse opals are similar to a honeycomb: walls
are regularly spaced between adjacent pockets of air or water and because air has a low refractive
index of 1, and water of 1.4, it is necessary to use a metal oxide with a refractive index higher than 2 to
obtain a complete PBG.

There are several processes to obtain inverse opals and typically there are two-step deposition
followed by inversion: the first deposition step produces an artificial direct opal template by
self-assembly of monodispersed particles of certain polymers or silica; the second step ceramic phase
infiltrate the self-assembled structure; in the inversion of the direct structure the polymer calcination
or silica template selective etching are performed.

Inverse opals made of SiO2, TiO2, and Al2O3 are the most popular realization of 3D PCs [139]
because of the high refractive index of these materials and a wide variety of applicable colloidal
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crystal templating processes, such as sol-gel infiltration [140,141], atomic layer deposition [142,143],
nanoparticle infiltration [18], and co-deposition [144]. Inverse opals from other important ceramic
materials, especially from those having more complex composition (e.g., solid solutions of mixed
oxides) [145] or from nonoxides (carbides and nitrides) [146], are less studied and often much more
difficult to produce. Among the main process to obtain inverse opals, such as sol-gel infiltration,
infiltration nanoparticle, co-deposition, and atomic layer deposition, the conventional infiltration
techniques suffer the inevitable problem of volume change of the infiltrant before and after the inverse
PCs creation. The negative effect is magnified particularly when high temperatures are necessary,
under which crystallization, phase transformation(s), and densification of ceramics can occur: these
processes induce formation and broadening of cracks as well as coarsening of the pore structure.
Dispersions of nanoparticles instead of conventional sol-gel precursors can be used minimizing these
harmful effects of chemical transformation of the infiltrant. Deposition of the sacrificial template
and liquid-phase infiltration can be combined in a single process, co-assembly, where polymeric
microspheres and ceramic precursors or nanoparticles are simultaneously deposited from mixed
dispersions [147], thus reducing the number of required processing steps and processing time. Atomic
layer deposition (ALD) is an exceptional tool for the growth of thin films with excellent conformity
and thickness control down to atomic levels. For these features, this technique is used to create inverse
opals, allowing the formation of film with porosity control. This method and similar are effectively used
with inverse opals based on SiO2 or TiO2 [148–152]. The maximum filling factor with this technique is
80%–86%, very close to the optimum 90% of pore volume and infiltration control <1 nm, allowing a fine
tuning of PCs.

The incorporation of metal nanoparticles into inverse opals has recently attracted particular
attention in the literature [34,103,153]. The high surface area and photonic properties of inverse opals
coupled with the typical properties of metal nanoparticles greatly expand the possible applications
of these materials as catalysts [35,154,155], sensors [30,34,156], photonic structures [66,157] and in
surface-enhanced Raman spectroscopy (SERS) [65,158].

Among others, AuNPs are widely studied. The presence of the selectively absorbing AuNPs
further enhances the hue and saturation of the inverse opals’ color by enhancing resonant scattering
while suppressing incoherent diffuse scattering. In particular, for thin inverse opal films on reflecting
surfaces, where thin film interference often results in non-negligible reflected intensity in the blue or green
spectral range, this allows creating strong red hues, which are difficult to achieve without the AuNPs
absorption. Moreover, using selective functionalization of doped opals, local changes in the composition
and optical properties of these films can be induced. Two main approaches can be used to obtain inverse
opals embedded with AuNPs, such as co-assembly or infiltration, as reported in several works [66].

Vasquez et al. developed a three-phase co-assembly method to produce inverse opal films with
incorporated gold (Au) nanoparticles [17]. This three-phase co-assembly platform provides a versatile,
one-pot approach to create highly ordered functional inverse opal films with embedded, uniformly
distributed, accessible gold nanoparticles, as reported in Figure 3.

The high surface area, interconnected porosity, superior compositional and structural uniformity,
and accessibility of both pores and embedded nanoparticles of these films make them a viable
bottom-up materials candidate for various applications including optics and sensing. Such level
of control over materials properties is not achievable by typical inverse opal synthesis methods.
This bottom-up technique is also substantially less demanding than top-down fabrication techniques,
in terms of both the equipment required and the time needed. The coupled optical properties of the
highly uniform Au-doped inverse opal films, resulting from superposition of the angle-dependent
Bragg peak of inverse opals and the angle-independent absorption peak of gold nanoparticles, are
easily tunable, either by changing the concentration of added nanoparticles to the solution before
assembly or by selectively growing the embedded nanoparticles after colloidal template removal (see
Figure 4).
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Figure 3. Schematics of: two-phase (a); and three-phase (b) co-assembly methods. The organic 
colloidal template was removed via calcination to create an inverse opal structure. In three-phase co-
assembly, gold nanoparticles assemble along with the colloids and TEOS that resulted in an inverse 
opal structure with embedded nanoparticles in the walls; (c) SEM and TEM images show the large-
scale, ordered, crack-free thin films formed by two- and three-phase co-assembly. SEM and TEM 
images of Au-loaded inverse opals (bottom) show that three-phase co-assembly leads to films with 
uniformly distributed nanoparticles in the walls [17]. 

 
Figure 4. (a) Au-loaded inverse opals combine the angle-dependent Bragg peak of inverse opals (~700 
nm at normal incidence) with the angle-independent absorption peak of gold nanoparticles (~520 nm); 
(b) The gold absorbance peak can be tuned prior to opal assembly by adding higher amounts of gold 
nanoparticles to the colloidal solution. The optical images and plots correspond to three different 
concentrations of gold nanoparticles added to the colloidal suspension: 0 Np/mL (1); 1.2 × 1015 NPs/mL 
(2); and 7.2 × 1015 NPs/mL (3); (c) TEM images correspond to inverse opals assembled with 6.0 × 1014 
NPs/mL (bottom) and 1.2 × 1015 NPs/mL (top) [17]. 

Recently, Cai et al. report the fabrication of inverse SiO2 opals “doped” with gold (i-Au-SiO2-o) 
nanoparticles (NPs) via a co-self-assembly method combined with subsequent removal of 

Figure 3. Schematics of: two-phase (a); and three-phase (b) co-assembly methods. The organic colloidal
template was removed via calcination to create an inverse opal structure. In three-phase co-assembly,
gold nanoparticles assemble along with the colloids and TEOS that resulted in an inverse opal structure
with embedded nanoparticles in the walls; (c) SEM and TEM images show the large-scale, ordered,
crack-free thin films formed by two- and three-phase co-assembly. SEM and TEM images of Au-loaded
inverse opals (bottom) show that three-phase co-assembly leads to films with uniformly distributed
nanoparticles in the walls [17].
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Figure 4. (a) Au-loaded inverse opals combine the angle-dependent Bragg peak of inverse opals
(~700 nm at normal incidence) with the angle-independent absorption peak of gold nanoparticles
(~520 nm); (b) The gold absorbance peak can be tuned prior to opal assembly by adding higher
amounts of gold nanoparticles to the colloidal solution. The optical images and plots correspond to
three different concentrations of gold nanoparticles added to the colloidal suspension: 0 Np/mL (1);
1.2 × 1015 NPs/mL (2); and 7.2 × 1015 NPs/mL (3); (c) TEM images correspond to inverse opals
assembled with 6.0 × 1014 NPs/mL (bottom) and 1.2 × 1015 NPs/mL (top) [17].

Recently, Cai et al. report the fabrication of inverse SiO2 opals “doped” with gold (i-Au-SiO2-o)
nanoparticles (NPs) via a co-self-assembly method combined with subsequent removal of polystyrene
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colloidal spheres by calcinations [34]. They have developed a facile method to fabricate high-quality
i-Au-SiO2-o films free of cracks over a large area (>100 × 100 µm2). The in situ “doping” of AuNPs
with tunable sizes and the formation of a three-dimensional ordered macroporous structure occur in
the same step, as reported in Figure 5.
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Figure 5. Fabrication of i-Au-SiO2-o Films [34].

The AuNPs are uniformly distributed on the wall of i-SiO2-o films. By controlling the sintering
temperature, the size of the AuNPs can be effectively tuned from 6 to 30 nm. The i-Au-SiO2-o films
show both LSPR of individual AuNPs and PBG of i-SiO2-o films, which serve as two indicators for
sensing of change in RI of the surrounding medium, such as water (n = 1.333), ethanol (n = 1.360),
2-propanol (n = 1.377), and n-butyl alcohol (n = 1.399) (see Figure 6).
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Figure 6. Absorption spectra of i-Au-SiO2-o films with 277 nm pores infiltrated with media of varying
RIs as follows: (a) water (n = 1.333); (b) ethanol (n = 1.360); (c) 2-propanol (n = 1.377); and (d) N-butyl
alcohol (n = 1.399). The inset is the plot of the LSPR peak wavelength as a function of the refractive
index of the surrounding medium [34].

Different approach is reported by Zhang et al. using a magnetron sputtering deposition as
last step to obtain hexagonal periodic spherical nanoparticles array [159]. In this case, regular
network-structured arrays are first templated by colloidal monolayers and then they are changed



Materials 2017, 10, 97 10 of 18

to novel periodic spherical nanoparticle arrays by further sputtering deposition due to multiple
direction deposition and shadow effect between adjacent nanoparticles: nanogaps between two
adjacent spherical nanoparticles can be well tuned by controlling deposition time. Moreover, the
periodic nanoparticle arrays with gold coatings show sensitive surface-enhanced Raman scattering
spectroscopy (SERS) performance.

Besides Au-loaded SiO2 and polystyrene inverse opal structures, other useful structures have
been explored in the last years. Among others, Au-loaded in TiO2 or ZnO inverse opals structures
result interesting for the use in photocatalytic applications [35,67,68,160]. In particular TiO2 has
advantageous photocatalytic properties: it has a band gap wide enough to be able to reduce or oxidize
numerous species, and it is heterogeneous as it exchanges electrons and holes with chemisorb species
at its surface in a different aggregation state, and it is photocatalyst because it absorbs photons to
gain the necessary energy to help chemical bond breaking. These titania composite PCs can enhance
the performance of the photocatalysts at wavelength ranges where their absorption is poor: the key
of the strategy is the “slow photon effect”, occurring at the edges of a forbidden band for photons.
Zhang et al. [67] prepared a visible light responsive plasmonic photocatalytic composite material,
designed by rationally selecting Au nanocrystals and assembling them with the TiO2-based photonic
crystal substrate: the selection of AuNPs size is so that the SPR matches the photonic band gap of
the photonic crystal and thus that the SPR of the AuNPs collects assistance from the photonic crystal
substrate. Regarding application, these latter composite materials may open exciting ways in fields
related to light absorption, such as solar cells, and optical and electro-optical devices.

4. Conclusions

Composite colloidal PCs represent an innovative platform that may lead to the realization of
different optical functions. Better opportunities for the application of these crystals are based on tuning
of particular resonances and on the largely extended control on their functionalities. In fact, exploiting
the synergy between the PGB of PCs and SPR of AuNPs, it is possible to obtain innovative performance,
which make the composite structures promising for catalysis, optoelectronics, sensing and photovoltaic
applications. The practical realization of hybrid arrays with specific optical resonances, however,
remains challenging since it requires a high level of control for simultaneously positioning both metallic
and dielectric NPs. For this reason, this review is focused on the recent studies on functionalized
AuNPs in composite colloidal PCs, considered extraordinary systems for their photonic-plasmonic
properties, useful in several relevant application fields.
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