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Abstract
Objectives: Deliberate self-harm (DSH) of a young person has been a matter of
growing concern to parents and policymakers. Prevention and early eradication
are the main interventional techniques among which prevention through
reducing peer pressure has a major role in reducing the DSH epidemic. Our aim is
to develop an optimal control strategy for minimizing the DSH epidemic and to
assess the efficacy of the controls.
Methods: We considered a deterministic compartmental model of the DSH
epidemic and two interventional techniques as the control measures. Pon-
tryagin’s Maximum Principle was used to mathematically derive the optimal
controls. We also simulated the model using the forward-backward sweep
method.
Results: Simulation results showed that the controls needed to be used simul-
taneously to reduce DSH successfully. An optimal control strategy should be
adopted, depending on implementation costs for the controls.
Conclusion: The long-term success of the optimum control depends on the
implementation cost. If the cost is very high, the control could be used for a short
term, even though it fails in the long run. The control strategy, most importantly,
should be implemented as early as possible to attack a comparatively fewer
number of addicted individuals.
1. Introduction

Deliberate self-harm (DSH) is an activity of an in-

dividual in which the sole intention is to cause self-

harm, although not to commit suicide; however, some-

times acute medical situations arise [1]. More scientific

definitions of DSH are available in the literature [2e4].
ted under the terms of the C
0) which permits unrestrict
roperly cited.

ase Control and Prevention
It is associated with the physiology and psychology of

the affected individual. In the past decade, it has become

a pronounced health concern among adolescents and

young adults all over the world [5]. You et al [6] and

Whitlock [7] addressed it as a contagious social issue.

Deliberate self-harm is associated with depression,

anxiety, poor school performance, family conflict [8],
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sexual abuse [9], and other factors. Mathematical

modeling of epidemics is a constructive tool to assess

the evolution of contagious problems and to discover

strategies to reduce or eradicate the epidemic of conta-

gious problems.

The techniques of mathematical modeling have

recently been utilized in problems related to human

behaviors and social interaction. For example, the theory

for social behavior of individuals subjected to the social

interaction was developed by Wirl and Feichtinger [10]

to address the problem of obesity. Mathematical models

have also been used to study the obesity epidemic

[11e16]. Such ideas are also used to study smoking

dynamics mathematically [17e22]. In addition, Li [23]

used Bayesian proportional hazard analysis to deal

with school drop-out. Porco et al [24] presented two

models for antibiotic abuse. The techniques of mathe-

matical modeling are likewise being exercised to un-

derstand contagious social and behavioral epidemics

from diverse viewpoints.

Do and Lee [25] proposed a mathematical model for

the self-harm epidemic and analyzed it mathematically.

By considering self-harm as a contagious disease, they

formulated a deterministic compartmental model. In the

present study, we introduced time-dependent controls

into the Do and Lee model [25], and extend an optimal

control problem to understand cost-effective strategies

for reducing DSH.
2. Materials and methods

2.1. Basic model
The Lee and Do model [25] without a demographic

effect reduces to the following formula:

dS

dt
Z� aS

AþP

N

dA

dt
ZaS

AþP

N
þuP� b

A

N
ðPþRÞ � qA� hA

dP

dt
Zb

A

N
ðPþRÞ þ qA� rP�uP

dR

dt
ZhAþ rP

ð1Þ

In this paper, we note that the whole population

N(t) Z S(t)þA(t)þP(t)þR(t) is constant. The variable

N(t) includes only adolescents and young adults between

the ages 12 years and 23 years and is divided into four

classes: susceptible, S(t); addicted, A(t); in treatment

P(t); and recovered, R(t). Individuals of S(t) who try

DSH move to A(t) with the per capita transition rate, a,

which is peer pressure on susceptible individuals in A(t)

and P(t). Individuals repeating DSH remain in A(t), but

individuals who stop DSH move to R(t) at the rate h.

This is the rate at which individuals in A(t) stop DSH
without any treatment program or individuals who tried

DSH only once and transferred to R(t). When in-

dividuals in A(t) seek treatment, they go to P(t) at the

rate of b(PþR)/Nþq. In this equation, b is peer pressure

due to individuals in P(t) and R(t) to the individuals in

A(t), and q is the intervention rate at which addicted

individuals seek treatment. If the treatment fails, in-

dividuals may go back to A(t) from P(t) at the rate u.

Individuals in P(t) recover at rate r and move to R(t).

The values of a and b may be different, but in this study

they are considered the same for homogeneous mixing.

Among all of these parameters, the system is most

sensitive to a and h [19]. The values of h may also

increase or decrease, depending on the positive or

negative influence of the Internet [26]. Furthermore, the

individual who performs DSH once, seeks more serious

injury for the next DSH episode [27]. Therefore, a

control strategy should be concerned with prevention

through controlling peer pressure a and early

intervention h.

2.2. Optimal control
To shrink the DSH epidemic, we adopted two control

strategies with the intent of increasing prevention [i.e.,

decreasing a and increasing early intervention (h)].

However, maintaining constant control over time is

impractical. Therefore, our aim is to show that it is

possible to implement time-dependent control

techniques while minimizing the addicted population

with minimum cost of implementation of the control

measures.

To develop an optimal control problem for the

aforementioned purpose, two control terms were intro-

duced into the basic model (1). The model reduces to the

following formula:

dS

dt
Z� að1� u1ðtÞÞS AþP

N

dA

dt
Zað1� u1ðtÞÞS AþP

N
þuP� b

A

N
ðPþRÞ

�qA� ðhþ mu2ðtÞÞA
dP

dt
Zb

A

N
ðPþRÞ þ qA� rP�uP

dR

dt
Zðhþ mu2ðtÞÞAþ rP

ð2Þ

In this equation N Z S(t)þA(t)þP(t)þR(t) is

constant.

The control variables, u1(t) and u2(t), represent the

quantity of intervention associated with the parameters

a and h, respectively at time t. The factor of 1�u1(t)

reduces the per capita transition rate a from S(t) to A(t).

The per capita transition rate h from P to R increases at a

rate that is proportional to u2(t) in which m > 0 is the

proportionality constant.

We define our control set as follows:
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U :Zfðu1ðtÞ;u2ðtÞÞ
: u1ðtÞ and u2ðtÞ is Lebesgue measurable on ½0;T �;0
� u1ðtÞ;u2ðtÞ � 1g

An optimal control problem with the objective cost

functional can be given by

Jðu1;u2ÞZ
ZT

0

�
AcAðtÞ þB1

2
u21ðtÞ þ

B2

2
u22ðtÞ

�
dt;

0� u1ðtÞ;u2ðtÞ � 1

ð3Þ

which is subject to the state equation (2). In the objec-

tive cost functional, the quantities Ac, B1 and B2 repre-

sent the weight constants. The costs associated with the

controls of the transition rates are described by the terms

B1u
2
1ðtÞ and B2u

2
2ðtÞ. The variable Ac represents the de-

gree of negative influence on the society by each

Optimal Intervention of DSH Epidemic
HðXðtÞ;uðtÞ;LðtÞÞZAcAðtÞ þB1

2
u21ðtÞ þ

B2

2
u22ðtÞ

þ l1ðtÞ
�
�að1� u1ðtÞÞSðtÞAðtÞ þPðtÞ

N

�

þ l2ðtÞ

0
BBB@

að1� u1ðtÞÞSðtÞAðtÞ þPðtÞ
N

þuPðtÞ

�b
AðtÞ
N

ðPðtÞ þRðtÞÞ � qAðtÞ � ðhþ mu2ðtÞÞAðtÞ

1
CCCA

þ l3ðtÞ
�
b
AðtÞ
N

ðPðtÞ þRðtÞÞ þ qAðtÞ � rPðtÞ �uPðtÞ
�
þ l4ðtÞððhþ mu2ðtÞÞAðtÞ þ rPðtÞÞ

ð6Þ
addicted individual. The goal is to minimize the popu-

lation A(t) of addicted individuals and the implementa-

tion cost of the controls. Therefore, we looked for

optimal control functions ðu�1; u)2 Þ so that:

J
�
u)1 ;u

)
2

�
ZminfJðu1;u2Þ : ðu1;u2Þ˛Ug; ð4Þ
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N
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which is subject to the system (2). To approach an

optimal solution, we first defined the Hamiltonian

function H for problems (2) and (3), and then used

Pontryagin’s Maximum Principle [28] to derive the

characterization for the optimal control. The principle

converts problems (2) and (3) into a problem of mini-

mizing pointwise a Hamiltonian, H, with respect to u1
and u2. The integrand of the objective functional along

with the four right hand sides of the state equations

constitutes the Hamiltonian for our problem. So the

Hamiltonian is given by,

HðXðtÞ;uðtÞ;LðtÞÞZAcAðtÞ þB1

2
u21ðtÞ þ

B2

2
u22ðtÞ

þLðtÞ
�
dXðtÞ
dt

�T

; ð5Þ

in which X(t) Z (S(t), A(t), P(t), R(t)), u(t) Z (u1(t),

u2(t)) and L(t) Z (l1(t), l2(t), l3(t), l4(t)).

Therefore, HðXðtÞ;uðtÞ;LðtÞÞ becomes:.
Let S*(t), A*(t), P*(t), R*(t) be optimal state solu-

tions with associated optimal control variables u)1 ðtÞ and
u)2 ðtÞ for the optimal control problems (2) and (3).

Adjoint variables l1(t), l2(t), l3(t), l4(t) would then exist

that satisfy
3ðtÞÞ
�
b
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�
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�
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�
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�
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with the transversality condition (or the boundary

condition)

ljðTÞZ0; jZ1;2;3;4: ð7Þ

Furthermore, the optimal controls u)1 ðtÞ and u)2 ðtÞ are
given by

u)1 ðtÞZmin

�
1;max

�
0;

1

B1

�
aS)ðA)þP)Þðl2�l1Þ

N

���

u)2 ðtÞZmin

�
1;max

�
0;
mA)ðl2�l4Þ

B2

��

ð8Þ

(Please refer to Appendix 1 for the formulation in

detail.)
3. Results

To find the optimal control strategy for controlling

the self-harm epidemic of adolescents and young adults

in institutional settings, an optimal control problem has

been established, based on the model proposed by Do

and Lee [25]. The optimal control problem consists of

eight ordinary differential equations describing states

and adjoint variables with two control variables. The

state variables are “susceptible”, S; “addicted”, A; “in

treatment”, P; and “recovered”, R; the control u1 is

associated with reducing peer pressure and the control

u2 is associated with early intervention. As a general

shortcoming, full efficiency of the controls is unfeasible.

To choose an upper bound for the controls, we consid-

ered the study of Dunlop et al [29] in which they found

that 79% of young people learned about suicide from the

newspaper or from friends and family, and 59% of them

learned from an online source. We assumed the upper

bound of each of the controls was 0.6. The rate constant

m is chosen to be 0.01 in accordance with the value of h.

Using the parameter values summarized in Table 1, the

problem is solved numerically by the forward-backward

sweep method [30], along with the fourth order Runge-

Kutta algorithm, which is subject to a wide range of

plausible values of weight factors Ac, B1 and B2 because

the weights should vary from group to group. For an

institutional setting, we considered that the total popu-

lation is N(0) Z 10000 with S(0) Z 8700, A(0) Z 900,

P(0) Z 100, R(0) Z 300. Time span for the simulation

is [0, T], in which T Z 60 months (i.e., 5 years).
Table 1. The parameter values for the model.

Parameters a u b

Value (per mo.) 0.17 0.018 0.024

*All values of the parameters are adopted from the results of parameter estim
Figure 1 depicts the dynamics of states with and

without the controls when the weight factors are Ac Z 1,

B1 Z 500, B2 Z 500. The rightmost graphs in Figure 1

show the time-dependent control strategy in which we

see that the controls u1 and u2 should be implemented at

maximum for a long period and then gradually

decreased to zero. The controls work fairly well for

reducing the number of addicted population.

Let t1 and t2 be the period of time for maximum

implementation of the optimal controls u1 and u2,

respectively. The time t1 and t2 may depend on the

weights Ac, B1, B2 and the initial conditions as well.

Figure 2 depicts the changes of t1 and t2 with

B1 Z 100e1000 and Ac Z 1e100 while keeping

B2 Z 200 fixed. Figure 2A shows that for Ac > 60, the

time t1 is the same for all B1; however, for smaller Ac;

the effect of B1 to the change of t1 is more pronounced.

A smaller B1 results in a higher t1 and vice versa.

Figure 2B shows that t2 increases with Ac but it is not

affected by B1. Figure 3 depicts the changes of t1 and t2
with B2 Z 100e1000 and Ac Z 1e100 while keeping

B1 Z 200 fixed. The change of weight B2 does not affect

the change of t1 for all Ac and also does not affect the

change of t2 for Ac > 40. Figure 4 depicts the changes of

t1 and t2 with B1 Z 100e1000 and B2 Z 100e1000

while keeping Ac Z 1 fixed. Figure 4A illustrates that

changes in B1 and B2 negatively affect changes in t1 and

t2, as we have already seen in Figures 2 and 3. In

addition, for B1 > 100 t1 increases with B2. However, B1

has no noticeable effect in the change of t2. Figure 5

depicts the changes of t1 and t2 with B1 Z 100e1000

and B2 Z 100e1000 while keeping Ac Z 10 fixed. In

this case, B1, and B2 have no effect on changes in t2 and

t1, respectively.

The optimal control aims at reducing the number of

addicted individuals while ensuring the least imple-

mentation cost of the two controls mentioned previ-

ously. Let Awith control
t
B1;B2 and Awithout control

t
B1;B2 be the

number of addicted people with and without optimal

control, respectively, for specific values of the parame-

ters at time t˛½0; T �, and define DAt
B1;B2 : Z

Awithout controlt
B1;B2

� Awith controlt
B1;B2

as the number of re-

ductions in the addicted population because of optimal

control. From the previous results, it is clear that higher

values of B1 and B2 reduce the implementation of the

controls and consequently DAt
B1;B2. For successful

implementation of the controls, the condition DAt
B1;B2 >

0 is needed for all t˛½0; T �. However, Figure 6A shows

that DAT
B1;B2 < 0 for some combinations of B1, B2 which
q h r m

0.0042 0.03 0.08 0.01

ation in [25].



Figure 1. The dynamics of states with and without controls when the weight factors are Ac Z 1, B1 Z 500, B2 Z 500.
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include higher values for both. Figure 6B shows the

same phenomena for different initial conditions

S(0)Z 7400, A(0)Z 1800, P(0)Z 200, R(0)Z 600. In

this case DAT
B1;B2 < 0 for comparatively lower and more

values of B1, B2.
4. Discussion

An optimal control problem has been established that

takes into consideration self-harm as a contagious dis-

ease. We considered two control strategies: (1) reducing

peer pressure and (2) accelerating early intervention
Figure 2. (A) The duration of maximum implementation for

B1 Z 100e1000, and B2 Z 200. (B) The duration of maximum

Ac Z 1e100, B1 Z 100e1000, and B2 Z 200.
with their associated costs (i.e., B1 and B2, respectively).

The control problem is solved using Pontryagin’s

Maximum Principle. In this circumstance, the negative

effect of an addicted individual is parameterized by Ac.

The simultaneous use of both controls reduces the self-

harm epidemic by increasing susceptible individuals and

reducing the addicted individuals remarkably. But the

costs associated with control strategies and the weight

Ac may not be the same in all groups of young people.

Depending on the groups, the costs and the weight may

be varied so that different control strategies are needed.

For a higher weight of addicted individuals, we used

nearly the same control strategy for the groups, even
the optimal control u_1. In this equation, Ac Z 1e100,
implementation for the optimal control u_2. In this equation,



Figure 3. (A). The duration of maximum implementation for the optimal control U1. In this equation, Ac Z 1e100,
B2 Z 100e1000, and B1 Z 200. (B). The duration of maximum implementation for the optimal control U2. In this equation,

Ac Z 1e100, B2 Z 100e1000, and B1 Z 200.
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with different control costs, which agrees with our

intuition that a greater weight requires greater effort

from the controls, irrespective of the control cost.

However, if the weight is low, a great effort by the

controls is no longer necessary. As a result, the strategy

varies from group to group, depending on the control

costs associated with the groups. Controls are imple-

mented in smaller numbers in groups with a high control

cost and vice versa.

In the case of low weight, the strategy for early

intervention is not affected by the cost associated with
Figure 4. (A). The duration of maximum implementation for the

and B2 Z 100e1000. (B). The duration of maximum implemen

B1 Z 100e1000, and B2 Z 100e1000.
reducing peer pressure. However, if the cost of reducing

peer pressure is high in some groups, it affects the

reduction of peer pressure. As a result, the number of

addicted individuals increase, which requires more

effort for early intervention, even though it is expensive.

Furthermore, the control strategies have no interdepen-

dency, resulting from the associated costs.

The simulations presented above also shows that the

control strategy is affected by the initial condition and

the control costs. In groups with a high control cost, the

control strategy is unsuitable for the long run. If the
optimal control U1. In this equation, Ac Z 1, B1 Z 100e1000,
tation for the optimal control U2. In this equation, Ac Z 1,



Figure 5. (A). The duration of the maximum implementation for the optimal control u1. In this equation, Ac Z 10,

B1 Z 100e1000, and B2 Z 100e1000. (B). The duration of the maximum implementation for the optimal control u2. In this

equation, Ac Z 10, B1 Z 100e1000, and B2 Z 100e1000.

Figure 6. (A) The contour plot of DAT
B1;B2 for the initial conditionsS(0) Z 8700, A(0) Z 900, P(0) Z 100, R(0) Z 300. (B) The

contour plot of DAT
B1;B2 for initial conditions S(0) Z 7400, A(0) Z 1800, P(0) Z 200, R(0) Z 600.
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initial number of addicted people in a population is high,

the control fails for lower costs of the controls. There-

fore, even if the control costs are high, early imple-

mentation gives better results rather than waiting and

allowing the number of addicted individuals to increase.

Therefore, we conclude that the simultaneous use of

the controls gives the desired outcome. In groups in

which associated costs are high, the controls may fail

after a long period. What is most important is that the

control strategy should be implemented as early as

possible to attack a comparatively fewer number of

addicted individuals. To make the model more realistic,

further efforts should be focused on including age-
dependent peer pressure [31], which remains for our

future work.
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Appendix 1.

Theorem 1. Let S*(t), A*(t), P*(t), R*(t) be the optimal
state solutions with associated optimal control variables
u)1 ðtÞ and u)2 ðtÞ for the optimal control problems (2) and
(3). There then exist the adjoint variables l1(t), l2(t),
l3(t), l4(t) that satisfy:
l01ðtÞZðl1ðtÞ � l2ðtÞÞa
�
1� u)1 ðtÞ

�A)ðtÞ þP)ðtÞ
N

l02ðtÞZ�Ac þ ðl1ðtÞ � l2ðtÞÞa
�
1� u)1 ðtÞ

�S)ðtÞ
N) þ ðl2ðtÞ � l3ðtÞÞ

�
b
P)ðtÞ þR)ðtÞ

N) þ q

�
þ ðl2ðtÞ � l4ðtÞÞ

�
hþ mu)2 ðtÞ

�

l03ðtÞZðl1ðtÞ � l2ðtÞÞa
�
1� u)1 ðtÞ

�S)ðtÞ
N) þ ðl2ðtÞ � l3ðtÞÞ

�
b
A)ðtÞ
N) �u

�
þ ðl3ðtÞ � l4ðtÞÞr

l04ðtÞZðl2ðtÞ � l3ðtÞÞbA
)ðtÞ
N)

ð9Þ
with transversality condition (or boundary condition):

ljðTÞZ0; jZ1;2;3;4:

Furthermore, the optimal controls u)1 ðtÞ and u)2 ðtÞ are
given by:

u)1 ðtÞZmin

�
1;max

�
0;

1

B1

�
aS)ðA)þP)Þðl2�l1Þ

N

���

u)2 ðtÞZmin

�
1;max

�
0;
mA)ðl2�l4Þ

B2

��

ð10Þ

Proof. To determine the adjoint equations and the
transversality conditions, use the Hamiltonian (7). By
Pontryagin’s Maximum Principle, setting S(t) Z S*(t),
A(t) Z A*(t), P(t) Z P*(t), R(t) Z R*(t) and differenti-
ating the Hamiltonian (6) with respect to S(t), A(t), P(t),
R(t), the following is obtained:
l01ðtÞZ� vH

vS
Zl1ðtÞa

�
1� u)1 ðtÞ

�A)ðtÞ þP)ðtÞ
NðtÞ � l2ðtÞa

�
1�

l02ðtÞZ� vH

vA
Z�Ac þ l1ðtÞa

�
1� u)1 ðtÞ

� S)ðtÞ
N)ðtÞ � l2ðtÞa

�
1�

þl2ðtÞ
�
hþ mu)2 ðtÞ

�� l3ðtÞ
�
b
P)ðtÞ þR)ðtÞ

N)ðtÞ þ q

�
�

l03ðtÞZ� vH

vP
Zl1ðtÞa

�
1� u)1 ðtÞ

� S)ðtÞ
N)ðtÞ � l2ðtÞa

�
1� u)1 ðtÞ

�
N

þl3ðtÞuþ l3ðtÞr� l4ðtÞr

l04ðtÞZ� vH

vH
Zl2ðtÞb A)ðtÞ

N)ðtÞ � l3ðtÞb A)ðtÞ
N)ðtÞ
which reduces to (9).To obtain the optimality conditions
(10), the Hamiltonian, H, is differentiated with respect
to u1(t), u2(t). It is set equal to zero.
0Z
vH

vu1
ZB1u

)
1 ðtÞ þ l1ðtÞaS)ðtÞA

)ðtÞ þP)ðtÞ
NðtÞ

�l2ðtÞaS)ðtÞA
)ðtÞ þP)ðtÞ

NðtÞ

0Z
vH

vu2
ZB2u

)
2 ðtÞ � l2ðtÞmA)ðtÞ þ l4ðtÞmA)ðtÞ

Solving for the optimal controls obtains:

u)1 ðtÞZ
aS)ðtÞðA)ðtÞ þP)ðtÞÞðl2ðtÞ � l1ðtÞÞ

B1N

u)2 ðtÞZ
mA)ðtÞðl2ðtÞ � l4ðtÞÞ

B2

To determine an explicit expression for the optimal
controls for 0 � u)1 ðtÞ; u)2 ðtÞ � 1, a standard optimality
technique is utilized. We considered the following three
cases.On the set: ft : 0 < u)1 ðtÞ < 1g, vH

vu1
Z0. Hence, the

optimal control is:
u)1 ðtÞ
�A)ðtÞ þP)ðtÞ

NðtÞ

u)1 ðtÞ
� S)ðtÞ
N)ðtÞ þ l2ðtÞ

�
b
P)ðtÞ þR)ðtÞ

N)ðtÞ þ q

�

l4ðtÞ
�
hþ mu)2 ðtÞ

�

S)ðtÞ
)ðtÞ þ l2ðtÞb A)ðtÞ

N)ðtÞ � l2ðtÞu� l3ðtÞb A)ðtÞ
N)ðtÞ
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u)1 ðtÞZ
aS)ðtÞðA)ðtÞ þP)ðtÞÞðl2ðtÞ � l1ðtÞÞ

B1N

In the set: ft : u)1 ðtÞZ0g, vH
vu1

� 0. This implies that:

l1ðtÞaS)ðtÞA
)ðtÞ þP)ðtÞ

N
� l2ðtÞaS)ðtÞA

)ðtÞ þP)ðtÞ
N

� 0

in which: aS)ðtÞðA)ðtÞþP)ðtÞÞðl2ðtÞ�l1ðtÞÞ
B1N

� 0Zu)1 ðtÞIn the set:

ft : u)1 ðtÞZ1g, vH
vu1

� 0. This implies that:

l1ðtÞaS)ðtÞA
)ðtÞ þP)ðtÞ

N
� l2ðtÞaS)ðtÞA

)ðtÞ þP)ðtÞ
N

��B1

in which: aS)ðtÞðA)ðtÞþP)ðtÞÞðl2ðtÞ�l1ðtÞÞ
B1N

� 1Zu)1 ðtÞCombining

these three equations, results in the characterization
of u)1 :

u)1 ðtÞZmin

�
1;max

�
0;

1

B1

�
aS)ðA)þP)Þðl2�l1Þ

N

���

Using similar arguments, a second optimal control
function is obtained:

u)2 ðtÞZmin

�
1;max

�
0;
mA)ðl2 � l4Þ

B2

��
:
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Modeling the social obesity epidemic with stochastic networks.

Physica A 2010 Sep;389(17):3692e701.
12. Jódar L, Santonja FJ, González-Parra G. Modeling dynamics of

infant obesity in the region of Valencia, Spain. Comput Math Appl

2008 Aug;56(3):679e89.
13. Kim MS, Chu C, Kim Y. A Note on obesity as epidemic in Korea.

Osong Public Health Res Perspect 2011 Sep;2(2):135e40.
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