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A B S T R A C T   

Channel noise results from rapid transitions of protein channels from closed to open state and is 
generally considered as the most dominant source of electrical noise causing membrane-potential 
fluctuations even in the absence of synaptic inputs. The simulation of a realistic channel noise 
remains a source of possible error. Although the Markovian method is considered as the golden 
standard for appropriate description of channel noise, its computation time increasing expo-
nentially with the number of channels, it is poorly suitable to simulate realistic features. We 
describe here a novel algorithm at discrete time unit for simulating ion channel noise based on 
Markov chains (MC). Although this new algorithm refers to a Monte-Carlo process, it only needs 
few random numbers whatever the number of channels involved. Our fast MC (FMC) model does 
not exhibit the drawbacks due to approximations based on stochastic differential equations and 
the values of spike jitter are comparable to those obtained with the true Markovian method. In 
fact, we show here, that these drawbacks can be highlighted in the approximation based on 
stochastic differential equation methods even for a high number of channels (standard deviation 
of the 5th spike is about two-fold larger than that of MCF or true Markovian method for 5000 
sodium channels). The FMC model appears therefore as the most accurate method to simulate 
channel noise with a fast execution time that does not depend on the channel number.   

1. Introduction 

Channel noise results from stochastic opening and closing of ion channels and is classically responsible for limiting the reliability of 
neuronal responses to repeated presentations of identical stimuli [1,2,3]. The fluctuations between open and closed states occurring 
randomly are driven by thermal noise [4]. Under simple assumptions, one can construct models that replicate the behavior of real 
channels. A crucial assumption of this class of models is that state transitions in ion channels are memoryless and behave like Markov 
process. The Markovian method at discrete time unit is considered as the gold-standard method for the simulation of ion-channel 
dynamics in the frame of Hodgkin-Huxley models [5,6,7,8]. The best description of stochastic gating of ion channels is attained 
with the use of continuous time and discrete states Markov Chain (MC) processes [9]. 

The Gillespie model developed for chemical reactions [10] presents the advantage to be extremely precise but the computing time 
required when the channel number increases becomes very large and other methods have been developed. These methods that 
correspond to the diffusion-based methods (or Langevin methods) are based on stochastic differential equations (SDE) and are 
designed for limiting the time-cost by simulating all the features of channel noise. In 1994, Fox and Lu [11] proposed two possible 
approaches: namely, the channel-based and the subunit-based methods. The first method is based on the precise identification of the 
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state (1 to 8 for sodium) of each of the channels whereas the second method corresponds only to the state (open or closed) of the 
subunit. 

Nevertheless, the most rigorous of these methods (i.e., the channel-based method) requires a larger dimension space of the channel 
states than subunit-based methods and the computation of diffusion matrixes becomes extremely time consuming. The other method 
proposed by Fox & Lu [11] (i.e. the subunit-based approach) was found to be not sufficiently precise to reproduce adequately the 
channel noise [12,13]. As demonstrated later [14], the approaches that considered the open or closed states of channel subunits were 
theoretically correct for calculating the mean but could not account for the noise variance found in Markovian chain (MC) models. New 
models that considered the fraction of channels in a given state (channel-based models) came up [14,15,16,17,18,19]. However, 
because they were based on the steady-state approximation (this is not the case for the OS model) for the calculation of the stochastic 
coefficients, these methods were found to be significantly imprecise in two tasks [14,15,16]. The Langevin methods cannot theoret-
ically reproduce the features of channel noise due to Markovian process when the channel number is small. 

In fact, it has been noticed that when a very small number of channels (i.e. <2000) is involved, the Gillespie algorithm accumulates 
all the advantages and is accurate and fast [20]. As stated by Orio & Soudry (2012), the best strategy seems to use the Gillespie method 
only for a limited number of channels that are estimated by formula N.α.dt < 1 where dt is the simulation time step, N the number of 
channels and α, the typical transition rate of the channel [20]. For larger N, the authors propose another method [16]. Here, we show 
here that even with a high channel number the Orio & Soudry (OS) method is flawed. In a strict Markovian process, conditional 
statistical approximations can be used to accelerate the simulation [7]. Based on this, we set up a new simulation method at discrete 
time unit that we named fast MC (or FMC). FMC does not involve Cannon approximations, but the speed efficiency is firstly due to the 
low number of random variables needed since this number is the same whatever the number of channels and is only depending of the 
channel types, secondly to the use of fast algorithm according to a procedure described by Stadtlober (1989) to produce random 
binomial numbers needed for this algorithm [21]. We found that our model is significantly faster than Gillespie model and significantly 
more precise than all the methods based on stochastic differential equation (SDE), including the OS model. 

2. Background 

Markovian processes are stochastic processes characterized by the fact that prediction of the future is not changed by knowledge of 

Fig. 1. Markovian Process for the simulation of ion-channel dynamics in the frame of Hodgkin-Huxley models. A. At time n Δt, the state of 
the N channels is given by the state vector: En

̅→
= (En

1,En
2…En

N). Markov processes are characterized by the fact that the probability of the state 
En+1
̅̅ → depends only on the state En

̅→ and that for each channel the probability p(En+1 = j) of occupying state j at time (n+1). B. We assume 8 possible 
states for the sodium channel (Na) and 5 possible states for the potassium channel (K). For each type of channel, there is only one open state 
(represented in green color). Transitions are arbitrarily numbered (red numerals). C. Gillespie-algorithm: the next transition is tr = 1

Nλ ln
[1

r
]
, where r 

is a uniformly distributed random variable between 0 and 1. The transition μ that occurs a time tr is randomly selected from a uniform distribution 
of numbers between 0 and λ. The probability of this transition is eμ

λ is proportional to the area of the corresponding wheel slot. 
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the past. Let us define n as the temporal index which corresponds to time step n. Δt, and En
̅→ the channel state at this time step defined 

by the sequence E1,E2,…Ei…EN in which Ei is the state of the ith channel and N the total number of channels. In the case of an ion 
channel, this means that the probability p of the future state En+1

̅̅ → depends only on the present state En
̅→. The passage of a channel from 

one state to another is called transition. Algorithms of the channel state tracking (CST) type take account of the state of every channel at 
time n Δt and their state at time (n+1) Δt is randomly determined according to a probability distribution reflecting the rates of all 
possible transitions In Channel State Tracking (CST) algorithm [12] (Fig. 1A), the state of each channel at each step unit is memorized 
and selected at random according to the probability law of transition. This way uses huge memory and provides very slow simulations. 
To overcome this disadvantage, in contrast to the CST-algorithm, the channel number tracking (CNT) algorithm determines only the 
number of channels in each state rather than the state of each channel, and thus saving both memory and computation time. The 
Gillespie algorithm which belongs to this last category memorizes only the channel number in a given state and only this number is 
actualized each time a novel transition occurs. The time of the next transition is selected at random according to the mean number of 
transitions, λ that occurred by step unit corresponding to the sum of all possible transition rates from a state to the next and for all N 
channels. For the sodium and the potassium channels there are 20 and 8 possible transitions respectively so a total of 28 possible 
transitions ei, i = 1 to 28. (Fig. 1B and C). 

By using the inversion sampling method, the time of the next transition can be obtained. Let r be a uniformly distributed random 
variable between 0 and 1. The transition μ occurring at time tr is randomly selected from a uniform distribution of numbers between 
0 and λ. Starting from the number λ and using the inversion method, the moment of the next transition tr is given by equation (1): 

tr=
1

Nλ
ln
[

1
r

]

. (1) 

Then it is necessary to decide which transition occurs among the 28 possible. Probabilities per time unit are ei/ λ (i = 1 to 28) and: 

∑28

i=1
ei/λ= 1 (2) 

There are 20 transitions for sodium channel indicated in equation (3): 

e1 =m0h0αh, e2 = m0h03αm, e3 = m0h1βh, e4 = m0h13αm, e5 = m1h0αh, e6 = m1h0βm, e7 = m1h02αm, e8 = m1h1βm, e9 = m1h12αm, e10

= m1h1βh, e11 = m2h0αh e12 = m2h02βm, e13 = m2h0αm, e14 = m2h1βh, e15 = m2h12βm, e16 = m2h1αm, e17 = m3h0αh, e18

= m3h03βm, e19 = m1h1βh, e20 = m3h13βm

(3)  

And 8 transitions for potassium channel indicated in equation (4): 

e21 = n04αn, e22 = n13αn, e23 = n1βn, e24 = n22αn, e25 = n22βn, e26 = n3αn, e27 = n33βn, e28 = n44βn (4) 

As every transition i comes true in proportion to the quantity ei which is the product of a transition rate by the occupation density of 
the initial state, one has to randomly choose, according to the uniform law, a number ν between 0 and λ. The transition μ which then 
occurs is such as indicated in equation (5): 

∑μ

i=1
ei < ν ≤

∑μ+1

i=1
ei (5) 

When the number of channels is big the time interval between two successive transitions becomes very small and subsequently the 
calculation time prohibitive. The tau-leaping method is an approximate of the Gillespie algorithm, performing all transitions for an 
interval of time tau before updating the probability functions. Reducing the frequency of updates allows more efficient simulations, 
enabling consideration of larger systems. 

Instead of considering every single transition, we can decide to count those which occur during the time interval Δt and to update 
the resultant conductance with a temporal step of Δt. In this manner, the number of updates is much less that the number of transitions 

Fig. 2. Tau-leaping method. Tau-leaping is an approximate method for the Gillespie algorithm. At time t the proportion s of channels in each state 
(8 for the sodium channel) are the components of the state vector. These components vary according to the transition rates rij. 
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except at very low number of channels. Consider the general case where the transition rate between state i and state j is rij and let pi be 
the proportion of channels in state i (Fig. 2). The derivative of pi over time is given in equation (6). 

dpi

dt
=
∑

j
rijpj −

∑

j
rjipi (6) 

We define the matrix M as indicated in equations (7) and (8): 

Mij = rij for i ∕= j (7)  

Mii = −
∑

j
rji (8) 

If the exponent t designates the transposition, the state vector is expressed in equation (9): 

P=(p1, p2, pi,… p8)
t
. (9) 

Its derivative can be written as the master equation (10): 
⎛

⎜
⎜
⎜
⎜
⎝

dp1

dt
⋮

dp8

dt

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎝
M1,1 ⋯ M1,8

⋮ ⋱ ⋮
M8,1 ⋯ M8,8

⎞

⎠

⎛

⎝
p1
⋮
p8

⎞

⎠ (10) 

We can integrate the master equation as indicated in equation (11): 

P(t+Δt)= exp(MdΔ)P(t) (11)  

Which connects the states vector to its derivative allowing to calculate the transition matrix T given in equation (12): 

Fig. 3. Markov Chain (MC) algorithm. MC-algorithm – tau-leaping method: the coefficients Tij of the transition matrix T represent the probability 
that a channel in state j will be in state i at the end of the interval △t. From each initial state i the state j is chosen randomly (from i = 1 to 8 for the 
sodium channel and i = 1 to 5 for the potassium channel). After each draw the number of channels in the initial state i is diminished by 1 while the 
number of channels in the randomly selected final state x is increased by 1 (where x can naturally be equal to i). At every simulation step, this MC 
algorithm thus requires the generation of one random number for each channel considered, i.e. NK + NNa random numbers of uniform distribution 
between 0 and 1 for a system of NNa sodium and NK potassium channels. 
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T = exp(MΔt)=

⎛

⎝
T1,1 ⋯ T1,8
⋮ ⋱ ⋮

T8,1 ⋯ T8,8

⎞

⎠ (12) 

The transition Matrix multiplied by the state vector at time t gives the deterministic state vector at t+ Δ t. For the stochastic part, 
one can use probabilities Tij from the matrix and Monte-Carlo method to draw the arrival state at time t+ Δ t. If the interval Δt is 
sufficiently small to allow not more than a single transition, then the coefficients Tij with indices i,j for which Mij = 0 will equally be 
zero. 

If at time t, ni channels are in the state i, (for example i = 1 to 5 possible states for the potassium channel) at the time t + Δ t each of 
these ni channels can be in state j with the probability Tji, no matter what is j, including the same state i. One of the ways of proceeding 
as described in Fig. 3 is to do the following: from each initial state i the state j is chosen randomly according to the set of probabilities 
Tji, (from i = 1 to 8 for the sodium channel and i = 1 to 5 for the potassium channel). After each draw the number of channels in the 
initial state i is diminished by 1 while the number of channels in the randomly selected final state x is increased by 1 (where x can 
naturally be equal to i). At every simulation step, this MC algorithm thus requires the generation of one random number for each 
channel considered, i.e. NK + NNa random numbers of uniform distribution between 0 and 1 for a system of NNa sodium and NK po-
tassium channels. Unlike those of matrix M, the coefficients Tij of the transition matrix can be all not equal to zero anymore when Δt 
increases, they represent the probability for a channel to pass from the state j to the state i during the interval Δt. This algorithm 
modified from Gillespie allows a considerable reduction of the updating frequency of the state vector before integrating the HH 
equations. This algorithm requires random selection for all the channels in a given initial state j, the final state i among 8 states (Na ion) 
or 5 states (K ion) possible according to the probability Tij. This operation therefore requires the generation of N = NK+ NNa random 
numbers of uniform distribution at each Δt, which makes it very slow when N is large. From this method, Cannon et al. have used some 
criteria to avoid taking into account the unlikely transition. 

3. Materials and methods 

3.1. Models 

A model of squid giant axon (SGA) was employed with parameters used in the simulations of Orio-Soudry [16] (see Table 1 & 
Table 2). 

Kinetic parameter (in ms− 1) of m gates are provided in equations (13) and (14): 

am = 0.1 ∗ (v+ 40)/(1 − exp( − (v+ 40) / 10)); (13)  

bm = 4 ∗ exp( − (v+ 65) / 18); (14) 

Kinetic parameters (in ms− 1) of h gates are provided in equations (15) and (16): 

a (h)= 0.07 ∗ exp( − (v+ 65) / 20); (15)  

bh = 1/(1+ exp( − (v+ 35) / 10)); (16) 

Kinetic parameters (in ms− 1) of n gates are provided in equations (17) and (18): 

an = 0.01 ∗ (v+ 55)/(1 − exp( − (v+ 55) / 10)); (17)  

bn = 0.125 ∗ exp( − (v+ 65) / 80); (18) 

If temperature is different from 6.3 ◦C, a correction is made on the coefficients with a factor Q10 = 3. For a temperature θ, the factor 

Table 1 
Model parameters used in NEURON.  

MODEL parameters used in NEURON squid giant axon (SGA) EX 

Membrane capacitance 
Cm: (μF/cm2) 

1 0.3 

Leak conductance 
G_leak: (mS/cm2) 

0.3 0.11663167716 

Leak potential 
E_leak: (mV) 

− 54.4 − 60 

Na Channels conductance 
G_Na: (mS/cm2) 

120 100 

K channels 
G_K: (mS/cm2) 

36 50 

Sodium reversal potential 
E_Na: (mV) 

50 60 

Potassium reversal potential E_K: (mV) − 77 − 85 
Temperature θ (◦C) 6.3 25  
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will be 3(θ− 6.3)/10. 
The SGA model was implemented with LabVIEW 2010, both for Gillespie, HMC and Orio-Soudry (OS) and compared with the result 

by Pezo et al. in a NEURON environment: Comparison of DA-based Stochastic Algorithms [20]. Gillespie, DA with truncation and 
restoration (hhTR), Stochastic Shielding (hhssDA) and DA with reflection (HHRef), sample codes and.mod files can be found in 
ModelDB http://senselab.med.yale.edu/ModelDB/Accession 167772. 

In order to test whether the simulation of channel-noise according to OS functioned in other types of neurons, we used a second 
model (EX) with parameters in Table 1 & Table 2. 

Kinetic parameters of m gates are provided in equation (19) and 20: 

am = 0.1 ∗ (v+ 40) / ((1 − exp( − (v+ 40) / 10))); (19)  

bm = 4 ∗ exp( − (v+ 65) / 18); (20)   

Kinetic parameters of h gates are provided in equations (21) and (22): 

ah = 0.07 ∗ exp( − (v+ 65) / 20); (21)  

bh = 1/(1+ exp( − (v+ 35) / 10)); (22)   

Kinetic parameters of n gates are provided in equation (23) and 24: 

an = 0.01 ∗ (v+ 34) / (1 − exp( − (v+ 34) / 10)); (23)  

bn = 0.125 ∗ exp( − (v+ 44) / 80); (24) 

Note that, in the EX-model, the only changes from the HH model is in the an rate for the potassium ion which makes it more 
excitable (a train of action potential is produced without current input), the capacity that is threefold smaller, reversal potentials for 
Na, K and Leak, and the temperature (25 ◦C instead 6.3 ◦C). 

3.2. Generator of binomial noise with the algorithm BIN 

Algorithm BIN (n ≥ 1, p ≤ 0.5)  

1. (Set-up) Constant B = 7 (for 9 decimal digits’ precision). 

Pre-set q = 1 − p, r = 1 −
p
q,μ = np, t = (n + 1)r, f0 = qn,b = min(n,

⃒
⃒μ + B ̅̅̅̅̅̅μq2

√ ⃒
⃒)..  

2. Generate U from U(0,1). Set K = 0, f = f0.  
3. If U ≤ f return to K.  
4. Set K = K+ 1. If K > b goto 1.. 

Otherwise set U = U − f , f = f
( t

K − r
)

and goto 2. 
Execution time is proportional to np. 
This choice of the BIN procedure was mainly dictated by the efficiency and the simplicity of this procedure. It should be noted that 

BIN is comparable to what is used in Python to write a multinomial function. 

Table 2 
Model parameters used in LabView.  

MODEL parameters used in LabVIEW (surface = 0.0001 cm2) squid giant axon (SGA) EX 

Membrane capacitance 
Cm: (pF) 

100 30 

Leak resistance 
R_leak: (MΩ) 

0.033333 857.4 

Leak potential 
E_leak: (mV) 

− 54.4 − 60 

Na Channels conductance 
G_Na: (nS) 

120 10000 

K channels 
G_K: (nS) 

36 5000 

Sodium reversal potential 
E_Na: (mV) 

50 60 

Potassium reversal potential E_K: (mV) − 77 − 85 
Temperature θ (◦C) 6.3 25  
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For np greater than 10, this product being calculated at each time step, the binomial law was approximated by the normal law N*(n, 
sqrt(npq)) with variance np(1-p). 

4. Results 

4.1. Fast Markov Chain (FMC) algorithm 

Rather than randomly choosing for each of all channels being in the same initial state i, it is possible to reduce the number of 
random values by considering in one shot, the number of all channels arriving in a certain state (Fig. 4). As usual, we call B(N, p) the 
binomial law where n is here the number of trials and p the probability of success. For each state initially containing Ni channels, 1) a 
number randomly selected from a binomial distribution B(Ni, p1 = T1i) determines the number of channels arriving at state 1, the first 
of the possible destinations. 2) Following the first draw, Ni is diminished by the number n1 of channels who have left state i to enter 
state 1, whose occupancy increases by the same amount n1 = Δ1i. A new draw B[(Ni − n1), p2] is performed with a probability of 
transition towards state 2 equal to p2 =

T2i
1− T1i

, which is a conditional probability taking account of the remaining states. We continue the 
operation until the last of these destinations (5 in the case of the potassium current, as illustrated here) is reached. For the destination 
number k, we have equation (25): 

B

[(

Ni −
∑u=k− 1

u=1
nk

)

, pk

]

(25) 

and equation 26 

pk =
Tki

1 −
∑u=k− 1

u=1
Tui

(26) 

that gives the probability of transition from state k to state j, based on the outcomes of previous draws. 
The last destination, to which a probability of 1 is assigned, collects all the remaining channels. Calls to the random number 

generator are reduced to the number of states minus one (e.g. 4 in the case of potassium channels) vs. the number of channels in the 
classical MC algorithm. However, the distribution to be generated is not uniform but binomial, which requires more computation time. 
The benefit of the present method will, therefore, strongly depend on the availability of an efficient and rapid subroutine to generate 
random numbers from a binomial distribution B(n,p), for which we chose the BIN algorithm [21]. 

4.2. Multinomial law 

The procedure described above is equivalent to random drawing according to a multinomial law. Indeed, if ni is the number of 
channels in state i at the time t, the new repartition at the next time step of these ni channels is n’1, n’2 … …n’8 with for sodium 

Fig. 4. Fast Markov Chain (FMC) method. FMC algorithm applied to the Ni channels in state i at time t. This algorithm is applied for the other 
possible states of the considered ion channel (here potassium channel). 
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channels equation (27) gives: 

∑8

j=1
n
′

j = ni(t) (27) 

We draw at random, according to probability Tji, for each of these channels in state i, its destination state j among the 8 possible 

states. The product T1i
n′1 x T2i

n′2 … T8i
n′8 gives the probability that the first n’1 trial among the ni total trials give the state 1, then the n’2 

following trials give the state 2 and so on in this precise order. There are ni! possible permutations that give the same final vector (n’1, 
n’2 ….n’5) and among these ni! permutations, n’1!n’2!n’3!n’4!n’5! are indiscernible. Finally, we see that the probability law to 
simulate is a multinomial law (see methods) given in equation (28): 

Mul
(

n
′

1,n
′

2…n
′

8; T1i, T2i…T8i

)
=

ni!

n′

1! ..n
′

8!
Tn′1

1i .T
n′2
2i … .Tn′8

8i (28) 

Since the number of possible states is generally low compared to the number of channels, the number of draws is considerably 
reduced. But in contrast with previous methods, draws have to follow binomial law. Therefore, this process would take advantage of 
using a fast binomial noise generator. For this reason, to produce these binomial random numbers according to the law B(N,p), we used 
the inversion method of Ernst Stadlober. This algorithm called BIN (for Binomial) is used each time the product np was less than 10 and 
is very simple, its execution time is proportional to the product np. 

At each time step, the product np is calculated with equations (29) and (30). 

n=Ni −
∑k=i− 1

k=1
nk (29)  

p=
Tk,i

1 −
∑u=k− 1

u=1
Tu,i

(30) 

When n is greater than 10, the binomial law was approximated by the normal law N*(n, sqrt(npq)) with variance np(1-p) and the 

Fig. 5. Equivalence of the OS and FMC models in the squid axon. Comparison of results for the example of the squid giant axon simulated by 
Orio & Soudry (2012) using their model (in red) and the FMC algorithm (in black). Simulation results for 6000 Na- and 1800 K-channels (A, B) or 
1500 Na- and 450 K-channels (C). All parameters are identical to Orio & Soudry (2012). A. Representative voltage traces (1 s). B/C, left: Evolution of 
AP number as a function of simulation time in ms. B/C, right: Histograms of Inter-AP intervals. 
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Gaussian number is rounded to the nearest in the order to keep the discretization of the noise. But it is known that there is an additional 
noise due to the roundness, the absolute value of this noise is given by the following integral (equation (31)): 

∫ 1/2

− 1/2
ε2 f (ε)dε ≈

1
12

(31)  

When np is greater than 10, we can consider that the density probability function f(ε) ≈ 1 and is uniform on the interval. So, we have to 
subtract the value 1

12 from the theoretical calculate variance. This correction was invisible in all cases of this study, except a slight but 
significant effect in the last example considered. 

Compared to the Gillespie algorithm, in the case of potassium channels, the number of random values (RV) is reduced from NK the 
number of potassium channels, to 20 RV and for Na, the number of sodium channels, to 56 RV for sodium channels. Indeed, in the case 
of a number of states Ns, only the quantity Ns*(Ns-1) random numbers is to be produced. When there is no more than a single state to be 
filled, all the remaining channels are assigned to this value and the probability of the last binomial drawing is equal to 1 (Fig. 4). 

In the LabView environment, implementation of the OS method allowed to obtain the same results as in the NEURON environment. 
No significant statistical difference between the FMC and the Orio-Soudry algorithm (OS) can be observed regarding the evolution of 
the number of action potentials (APs) in time as the inter-spike intervals (Fig. 5). Indeed, for the model of squid axon, the spike number 
was identical for OS and FMC algorithms for 6000 Na and 1800 K channels (Fig. 5A and B) and for 1500 Na and 450 K channels 
(Fig. 5C). 

Fig. 6. Discrepancy in spike-timing between OS and Gillespie/FMC models. Even with a large number of channels, one cannot be sure that 
SDE-based methods produce noise with the same effect as that of noise produced by the standard method. An example is shown here (this particular 
example, where the neuronal parameters yield diverging results between EDS and MC methods, will be designated example EX). Δt = 10 μs for all 
simulations. A. Channel numbers are: NNa = 10000, NK = 5000 (see other parameters). Upper-right, original Gillespie simulation, upper-left, FMC 
simulation, Lower-left, Orio-Soudry, Lower-right, TR Truncated-Restored (Huang et al., 2013). B. Superimposed histograms of jitter of 5th AP (n =
1000 runs) for Orio-Soudry (red) Gillespie (dotted line), FMC (black thick line) and Truncated-Restored method (TR) (black line). While as expected, 
means of all distributions are equivalent (87.68 for Gillespie, 87.75 for HMC, 87.69 for Orio-Soudry, 87.75 for Truncation-Restoration). Jitter 
distributions are identical (not significantly different) for Gillespie, FMC and TR respectively SD = 1.25 and SD = 1.29, SD = 1.20 (F-Test: P = 0.94) 
but (significantly) larger for Orio-Soudry SD = 1.77 (F-Test: P = 7 × 10− 12). It should be noted that, with respect to the standard model, the model of 
Orio-Soudry engenders a larger variance in AP-jitter, irrespective of the time step used (Δt = 10 μs or Δt = 1 μs, not showed). C. Comparison between 
the FMC (right) Gillespie (left) algorithms and that of Orio-Soudry (middle) for gradually diminishing channel numbers (5000, 2500 Na-channels; K- 
channel numbers were (Na-channel)/2 numbers throughout; note increase in noise). The model of Orio-Soudry, but not the FMC model, diverges 
from that of Gillespie. 
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4.3. Divergence of SDE from Markovian algorithm 

Even with a large number of channels, one cannot be sure that SDE-based and standard (Markovian) methods would produce noise 
with the very same effect on spike jitter. In order to evaluate the robustness of the SDE-based method, we used another model of neuron 
(Model Ex) that spontaneously fire action potentials and that contained 10000 Na channels (see Methods). We should note that in the 
deterministic case (no channel noise) the EX-model is very stable showing always for the parameters used, 5 action potentials sepa-
rated by the same time interval and this for a temporal resolution which extends over a range of 10 to 100 μs. We analyzed the variance 
of the fifth action potential over 1000 runs (Fig. 6A). Four methods of channel noise simulation were used: Gillespie (Markovian), OS, 
FMC and TR (Truncation-Restoration) [18]. The Gillespie, FMC and TR methods provided similar results but not OS that clearly 
diverged (Fig. 6B). While as expected, means of all distributions are equivalent (87.68 for Gillespie, 87.75 for FMC, 87.69 for OS, and 
87.75 for TR), jitter distributions are identical (not significantly different) for Gillespie FMC and TR (respectively SD = 1.25 and SD =
1.29, SD = 1.20; F-Test: P = 0.94) but significantly larger for OS (SD = 1.77; F-Test: P = 7 × 10− 12). If we increase the temporal 
resolution, these results remain the same. 

In a second step, the number of Na channel was reduced to 5000, 2500 Na channel to probe the robustness of FMC model. As 
illustrated in Fig. 6C, Gillespie and FMC provided similar behavior but OS clearly diverged (mean timing of the 5th action potential, 

Fig. 7. Voltage clamp in FMC and OS models. The samples of noise in voltage clamp represent in all cases the number of sodium channels open as 
a function of time. The noise histograms of the different cases are on the right column, those corresponding to the Gillespie method being indis-
tinguishable from those of the FMC algorithm, have not been represented in the figure. Bin used are in number of channels. The time of computation 
for the time resolution Δt = 0.01 ms for the 100 ms of signal is less than 0.5 and 1 s for respectively OS and FMC. But this time for the Gillespie 
method is about 10 s when N = 1000 and reach almost 900 s when N = 1,000,000. The statistics (mean and sd) were calculated with 1 s of signal. A. 
With N = 104 sodium channels, the voltage clamped at Vc = − 60 mV, and for a simulation performed at a time step Δt = 10 μs, we see that the mean 
(m) and the standard deviation (sd) of the noise generated by the OS algorithm (red color in the center) are identical to those produced by the FMC 
or Gillespie method (black color on the left). Note that the noise has a negative part in the OS case. This is normal since OS does not use boundaries 
constraints. On the right, the histogram of the number of open sodium channels clearly shows the continuous nature of the Gaussian noise OS 
compared to the binomial models (Gillespie or FMC). B. The number of sodium channels is N = 106 and the holding potential is − 80 mV. When the 
temporal sampling step is 10 μs, the standard deviation of the OS noise marked by an asterisk sd = 0.60 is less than those produced in the case of 
FMC or Gillespie sd = 0.69. Note that OS noise, unlike binomial noise, has a symmetrical appearance confirmed by its histogram on the right (solid 
red line) which, however, departs from Gaussian law. For a sampling frequency of 10 μs, the OS noise finds a correct standard deviation value and 
the noise has an asymmetry comparable to that of binomial noise, asymmetry of the OS noise can be seen on its histogram (red dotted line color). C. 
At VClamp = − 80 mV but for N = 104, there is a divergence between the OS algorithm and binomial algorithms (Gillespie, FMC) materialized by the 
great difference between the standard deviations (sd = 0.07 for FMC or Gillespie and sd = 0.26 for OS). The symmetric histogram corresponding to 
the OS method is no longer Gaussian at all and its standard deviation difference from Gillespie varies with the sampling frequency: sd = 0.26, sd =
0.31 and sd = 0.23 respectively for Δt = 10 μs, Δt = 1 μs and Δt = 0.1 μs. 
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OS: 89.20 ms, FMC: 90.64 ms & Gillespie: 90.51 ms; SD of the 5th action potential timing, OS: 3.49, FMC: 1.93 & Gillespie: 2.022, n =
500 trials). 

For certain values of parameter, we can notice a significant difference in the results obtained with the Markovian type algorithms as 
Gillespie and FMC and those of the SDE methods. In the simulation of Fig. S1 the number of sodium and potassium channels is 
respectively 10000 and 5000. By superimposing 19 trials, we can notice that almost all the methods present a spreading of their AP 
centered around those of the determinist one which possesses 5 APs (Figs. S1A and B), except both Stochastic shielding (hhss) and 
Reflection (hhref) methods (Fig. S2) for who single sweeps are represented and which are ipso-facto disqualified by showing as already 
noticed by OS, an excitability that is clearly larger than the reference model. OS exaggerates the jitter variance of the AP. This larger 
variance can be easily seen on the histogram and is completely confirmed by the analysis of variance realized by the Fisher test of 
equality of two variances (F-test). 

4.4. Channel noise in voltage-clamp 

Next, we tried to understand the reasons for the divergence between OS and FMC. With the same parameters of neuron (evoked 
spikes of EX simulation) we then compared the variation in sodium channel noise obtained in voltage-clamp at a holding − 60 mV with 
OS and FMC methods. The sodium noise was found to display similar means and standard deviations using OS or FMC methods for both 
squid axon model (not shown)) and for our second neuron model (Fig. 7A). With a low number of channels, the value discretization of 
the channels can be seen in current traces. This discretization present in the Markovian method is absent in the OS method that uses a 
continuous noise instead discrete one (Fig. 7A). As notified by Huang et al. (2015), the discretization procedure is feasible only when 
the boundary condition is satisfied that is not the case for the OS algorithm [19]. In addition, when the values of the noise are rounded 
to the nearest integer, although the jitter of the 5th peak for the EX-model is improved as we can see in the traces in red color 
(Figure suppl. 1A), the algorithm OS give a wrong number of spontaneous PA (Figure suppl. 1B). Indeed, there is an additional noise 
due to the roundness operation. So, one cannot use the round function with OS algorithm because it wrongly increases excitability. 

At low voltage (Fig. 7B and C) the OS method produces a wrong standard deviation of channel noise compared to that produced by 
the FMC one which is always conform to Gillespie model. With OS algorithm the number of channels in some states sometime reaches 
negative value, and the calculation of standard deviations causes wrong values of these latest. At a sample period of Δt = 10 μs, 
depending on the number of channels, the standard deviation can be higher than the true one (Fig. 7C, N = 10,000) or lower (value 
marked by an asterisk Fig. 7B, N = 1000,000). In this case, the use of a high temporal precision (Δt = 0.1 μs) corrects the underes-
timation present at the lower sampling frequencies (Fig. 7B). 

To obtain the correct result, the OS algorithm must use a sampling frequency 100 times faster. This has the major consequence to 
make it slower in practice than the FMC algorithm. When the number of channels is only 10,000 as in the simulation illustrated in 
Fig. 6A, even at Δt = 0.1 μs, the variance remains with the OS algorithm much above the value given by the binomial algorithm (0.26 
versus 0.07) (Fig. 7C). 

Note that although using a Gaussian generator, the noise produced by the OS algorithm may not be Gaussian. At low potentials, the 

Fig. 8. Model dynamics during voltage transition. A. Current clamp simulation of a duration 1 s in current clamp for the example of the Squid 
Giant Axon with 6000 Na-Channels and 1800 K-channels. The noise oscillates around an average level of − 65 mV and the maximal depolarization in 
the absence of PA does not exceed a potential of − 56.4 mV (i.e. the maximal empirical value observed). B. Depolarizing pulse from − 65 to − 56.4 
mV in Voltage Clamp used for the four algorithms: Gillespie, OS, OS-Bino and FMC. Points represent the instants when the distribution of channels in 
the various states is calculated using the four programs; the temporal step is here 100 μs. C. Histograms of open-state number of channels for the four 
considered algorithms. The used bin is 0.01. We notice that in the case of the OS algorithm, the use of a not discrete variable as well the permission 
of the negative values. Note that Gillespie and FMC Histograms are indistinguishable. 
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noise can have negative values, and to remedy this problem, the algorithm uses an absolute value to calculate the standard deviation of 
the noise. When the absolute value acts on negative values, the noise is no longer Gaussian. 

Fig. 8 examines the Orio-Soudry model for the squid giant axon with 5998 sodium channels and 1800 potassium channels. We first 
look with a temporal step of 10 μs, and then 100 μs, at the distribution of channels in 8 possible states of the sodium, in voltage clamp at 
the equilibrium at − 65 mV or during one depolarizing pulse (Fig. 8B). The values of the depolarizing pulse were chosen so that the 
resting membrane potential corresponds to the average level of the noise in current clamp (Fig. 8A) and the highest potential to the 
maximal noise level which does not activate an action potential. 

These voltage steps were realized by starting from an initial distribution of the number of channels sodium: N1, N2 ⋯ N8 corre-
sponding at the equilibrium to a voltage of − 65 mV and by rounding each of these values to the closest integer so as to guarantee a 
same initialization for all the four following algorithms: Gillespie, HMC, OS and OS-bino (see below), because that of OS treats 
continuous values with Gaussian approximation contrary to three other algorithms which use only integers of the binomial law. So, the 
initial distribution was exactly: 

N1 = 2058, N2 = 345, N3 = 19, N4 = 0, N5 = 3038, N6 = 509, N7 = 28, N8 = 1 for a total number of sodium channels equal to 5998 
instead 6000. 

In the case of the equilibrium at − 65 mV, the average number of channels in the open state of the sodium channel (state 8) was 
estimated from a simulation of 20,000 trials corresponding to a total duration of 20,000 X Δt = 2 s for Δt = 10 μs or 20 s in the case Δt =
100 μs. For each step Δt, thus we have an initial distribution which is the result of the previous one and is not consequently strictly 
equal to the theoretical initial one. On the other hand, in the case of depolarizing pulse, 20,000 trials are realized by starting every time 
from the initial theoretical distribution and by looking at the new distribution at the end of the time step Δt. 

To objectively estimate the possible differences between the algorithms we calculate the standard error on the average and the 
standard deviation estimated respectively by: S̅ ̅

n
√ et s2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2/n − 1

√
where S is the square root of the variance estimated on the size sample 

of 20,000. 
When Δt = 10 μs we see no difference among four tested algorithms (data not shown). On the other hand, when Δt = 100 μs four 

algorithms continue to agree concerning the number of open state channels at an equilibrium potential of − 65 mV (Tables 3 and 4), 
there is this time differences for OS and OS-Bino with regard to the reference Gillespie algorithm in the case of depolarizing pulse. The 
algorithm FMC is equivalent in all cases to that of Gillespie (Fig. 8C). By focusing on the open state of sodium channels we notice from 
the reference algorithm, that during depolarizing pulses, when that the time step is 10 μs, then, less than 1% of these open states results 
from transitions not directly connected. On the other hand, for Δt = 100 μs, this proportion increase to 37% with the following 
repartition: 78% for state 1, 21% for state 2, 0.2% for state 3, 0.2% for state 4 and less than 1% for state 6. 

4.5. Variant of the OS algorithm: OS-Bino 

As suggested by Orio and Soudry (2012), there is a connection between the DA approach and another simulation method belonging 
to the family of “binomial population” [16]. Each channel transition Δij from state j to state j is binomially distributed. So, instead to 
approximate Δij by a Gaussian random variable (RV) as OS do in order to increase simulation speed, one could directly generate this RV 
by using the fast binomial generator of Stradlober [21]. We have therefore implemented this algorithm and called it OS-Bino. 

For larger values of the sampling step Δt, the binomial method OS-Bino led to a bias in both the variance and the mean value of the 

Table 3 
Comparison of the data obtained with different models at the equilibrium (− 65 mV). DETERMINIST case: SD = 0 and <N ≥ 0.533. Channels noise: n 
= 20,000 trials, s is the square root of the estimated variance.  

Algorithm Gillespie OS OS-Bino FMC 

<N> 0.533 0.528 0.543 0.533 
s/

̅̅̅
n

√

±0.005 ±0.005 ±0.005 ±0.005 
SD 0.728 0.730 0.734 0.759 
s2/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2/(n − 1)

√

±0.004 ±0.004 ±0.004 ±0.004  

Table 4 
Comparison of the data obtained with different models 0.1 ms after jump to − 56.4 mV. DETERMINIST case: SD = 0 and <N ≥ 1.721. Channels noise: 
n = 20,000 trials, s is the square root of the estimated variance. **, F-test p < 0.00001.  

Algorithm Gillespie OS OS-Bino FMC 

<N> 1.727 1.724 1.214 ** 1.7222 
s/

̅̅̅
n

√

±0.007 ±0.007 ±0.007 ±0.007 
SD 1.217 0.994 ** 0.909 ** 1.215 
s2/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2/(n − 1)

√

±0.015 ±0.01 ±0.01 ±0.015  
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noise (Fig. 8, Table 3 & Table 4). Indeed, when Δt is not small enough, transitions not directly linked in the underlying kinetic model 
occur during this interval, in particular towards the open state. In the case of OS algorithm only the variance is affected by this bias 
since the mean is identical to that obtained from the deterministic calculation. 

This is illustrated in Table 4 where we can see that OS-bino leads to the underestimate of both the average number of channels in the 
open state (1.21 instead of 1.72) and the standard deviation of the noise (SD = 0.90 instead of 1.21; F-test p < 0.0001). In contrast, the 
OS algorithm gives a true value of the mean because the symmetric Gaussian noise is added to the theoretical average value (value DET 
<N > Fig. 9) which comes directly from the integration of the determinist part of the stochastic differential equation. On the other 
hand, even for OS, the calculation of the variance of the Gaussian noise being calculated without taking into account not connected 
states, is underestimated too (SD = 0.99 instead of 1.21) and has to grow up with Δt. Indeed, when we start again the simulation of 
Fig. 6 with Δt = 100 μs, with N = 10,000 or N = 1,000,000 being the number of sodium channels, we found (data not shown) that the 
“jitter” of the fifth peak for the OS algorithm is much smaller than binomial algorithms in agreement with the fact that the variance of 
the noise in “voltage clamp” at − 80 mV smaller too. 

4.6. High number of channels: N = 107 

We show in this voltage-clamp simulation of Fig. 9 that a statistical difference can be highlighted even when the number of 
channels involved is large and that the temporal resolution used plays an important role. Again, with the parameters of the evoked 
spikes (EX model), Fig. 9A shows a voltage clamp simulation with a holding potential VC = − 80 mV and a very high number of sodium 
channels (N = 107). This simulation was done both for the FMC and OS algorithm with 3 different time resolutions: Δt = 10 μs, Δt = 1 
μs, Δt = 0.1 μs? The simulation was not done with the Gillespie algorithm for obvious reasons of computation time with this channel 

Fig. 9. Incidence of time resolution on modelled channel noise. The parameters of the model are the same as those in Fig. 8 for the evoked 
action potentials but the number of sodium channels is N = 107. A. Signal sample of duration 100 ms representing the number of sodium channels 
open as a function of time in voltage clamp (VC = − 80 mV) simulated with a time step of 100 μs with the FMC algorithm (in high black color) and 
OS (below red color). B. Histograms of the noise showed in A (OS color red, FMC color black) made with a bin of 0.5 mV and a time resolution of 10 
μs (left), 1 μs (middle) and 0.1 μs (right). The standard deviation values produced by the OS algorithm (red color) are marked with a single (small 
difference with FMC – 1.5%) or a double asterisk (large difference with FMC – 15%). For Δt = 10 μs, the OS algorithm greatly underestimates the 
noise variance (SD = 1.89 versus 2.21), slightly overestimates it for Δt = 1 μs (2.23 versus 2.21) and becomes correct for Δt = 0.1 μs (see C). C. Ten 
successive tests of the OS and FMC algorithms on a simulation corresponding to a duration of 100 ms for each of the three time resolutions: 10, 1 and 
0.1 μs. These tests confirm the result illustrated in B. for Δt = 10 μs the variance produced by the OS method is each time very underestimated, for Δt 
= 1 μs, this variance is 8 times out of 10 slightly greater than that produced by the binomial algorithm FMC. For Δt = 0.1 μs the values are each time 
comparable for the two algorithms. Note the very high stability of the FMC algorithm whatever the temporal resolution. For reasons of prohibitive 
computation time we did not use the Gillespie algorithm of which no difference from the FMC algorithm could be noted for N = 10000 so-
dium channels. 
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number, however for a number of channels of 10,000 no difference between FMC and Gillespie could be noted whatever the time 
resolution. We have represented the number of sodium channels open during the time and the statistics calculated relate to the mean 
and standard deviation of this number for 100 ms of signal. 

An example corresponding to each temporal resolution and for the two algorithms is shown in Fig. 9B. All the algorithms arrive at 
the same result concerning the means of open sodium channels but the noise variance (standard deviation SD marked by a double 
asterisk) appears very underestimated at Δt = 10 μs in the OS case (SD = 1.89 vs 2.21), very slightly overestimated when Δt = 1 μs (SD 
= 2.23) and right for the highest resolution of Δt = 0.1 μs. The significance of these results is confirmed by ten successive tests at each 
resolution for the two algorithms OS and FMC showed on Fig. 9C. The FMC algorithm give exactly the same result for the three 
temporal resolutions. We must use a sampling frequency at least a hundred times faster to have identical noise with the OS algorithm. 

Even when the noise is far above zero (i.e., when the Gaussian noise of the OS algorithm is supposed to be well outside the zone 
where it can encounter problems), the standard deviation is underestimated when the sampling frequency is 10 μs and becomes correct 
at 1 μs (Fig. 10). This confirms our previous analysis illustrated in Fig. 8, Tables 3 & 4 where the calculation of the variance of the 
Gaussian noise is underestimated when it is calculated without taking into account unconnected states. This problem occurs even when 
the noise (expressed in number of open channels) is never negative. 

4.7. Role of potassium channels 

The dynamics of potassium channels is slower but as shown in Fig. 11, at a hyperpolarized potential of − 80 mV we find again the 
problems encountered with sodium channels. As expected, by examining again the example of Orio-Soudry of Fig. 5 for the squid giant 
axon with 6000 channels sodium and 1800 channels potassium in current clamp, we find that the OS-bino algorithm produces the same 
excitability (estimated in number of AP by unit of time) as the FMC (or Gillespie) method when Δt = 10 μs (Figure suppl. 3A). However, 
OS-bino does not match anymore with FMC method when Δt increases to 100 μs (Figure suppl. 3B). Nevertheless, the original OS 
method which uses a Gaussian approximation for the noise, continues to produce a suitable result (Fig. suppl. 3C). 

The algorithm FMC differs essentially from the OS-Bino algorithm by the fact that all the transitions occurring during the interval of 
time Δt and not only those ensuing from the transition scheme which consequently exclude those corresponding to not directly 
connected states. This difference is fundamental and confers to our method a good stability of the results for a very vast range of values 
of temporal steps. Also, one may note that the OS algorithm realizes an approximation at the order 1 and neglects the variance of the 
noise with terms in dt2. This could be harmful only in simulations demanding a precision at the order 2. 

Fig. 10. Voltage clamp at hyperpolarized voltage to ¡80 mV. A. Parameters are those of the Ex simulation with 108 sodium channels. When the 
time step is Δt = 1 μs, the variance of the noise (number of sodium channels in the open state) produced by the OS algorithm (red trace) is 
underestimated SD = 6.00 (marked by an asterisk) compared to the FMC algorithm SD = 6.96 (black trace). B1. Histogram of the number of the 
number of sodium channels open for FMC algorithm (black) and the OS algorithm at Δt = 10 μs (in red) or at Δt = 1 μs (in green). The bin used is 1. 
B2: Enlargement of B1. For the lowest temporal resolution, the OS algorithm underestimate the variance. For Δt = 1 μs the two algorithms give 
similar variances (SD = 6.94 versus SD = 7.00 for OS). The means, variances and histograms were calculated on a signal lasting 1 s. 
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4.8. Excitability in a « realistic » neuron model 

As we will see, in order to exhibit a correct excitability, OS algorithm requires greater temporal resolution than FMC especially at 
hyperpolarized voltages. To model a realistic neuron, the respective Na and K conductance are now 300 and 100 nS. The specific 
conductance, identical for the two types of channels (20 pS/Ch), brings the number of Na and K channels to 15,000 and 5000 
respectively. The membrane capacity is 4 pF. We measure excitability with the rate of evoked AP (action potential) after applying 1000 
successive step current stimulations (Fig. 12A) with a short pulse of 1 ms. We made this protocol for three different membrane po-
tentials of − 80 mV, − 75 and − 70 mV. The amplitude of the current pulse was calibrated a little below the threshold which triggers a 
PA in the deterministic case. We used a time step of Δt = 10 μs or Δt = 1 μs. We see that when the temporal resolution is Δt = 10 μs and 
at a membrane potential of − 80 or − 70 mv the OS algorithm (Fig. 12B and C) clearly underestimates the excitability compared to the 
Gillespie algorithms or FMC for which no difference is detected. At Δt = 5 μs (not shown) we get the same result than for Δt = 10 μs and 
we need to decrease Δt from 10 to 1 μs to get the true excitability with the OS algorithm. 

At Vm = − 70 mV the excitability appears as a function of the time resolution whatever the algorithm in used, this is due to the 
sample frequency too law compared to the band-pass of the channel noise and acting as a low pass filter. In all cases, the excitability 
appears higher when the time resolution decrease to 1 μs. 

For Δt = 10 μs the Gillespie algorithm and FMC show no significant difference in excitability, on the other hand, the OS algorithm 
underestimates the excitability as compared to Gillespie or as compared to FMC. At Δt = 1 μs the OS algorithm still produces slightly 
but significantly less excitability than the noise produced by the FMC algorithm. (See statistical test). We can see that the excitability is 
more important for the FMC algorithm than for the OS algorithm. 

4.9. Excitability with semi-stochastic models 

Here simulations (Fig. 13) are done with only stochastic Na channels and K channels are deterministic. We show that, in this case, 
whatever the membrane potential − 80 or − 75 mV, the excitability for the OS model and FMC is the same as for Gillespie. But the 
important point is that for OS, the excitability is the same that when the two types of channels was stochastic and Δt = 10 μs (see 
Fig. 12). In contrast, for FMC with only Na stochastic channels the excitability is less than with the two types of stochastic channels 
work. Obviously, when only the stochastic K channels are active and Na deterministic, no Action potentials are elicited in all cases. We 
have to note that results are time resolution dependent and the excitability is higher when the time resolution is smaller. This result 
holds too for Gillespie simulation. For Δt = 1 μs the probability of spike is around 0.21 and fall around 0.12 when Δt = 10 μs? 

4.10. Computation time 

In order to compare the speed of the different algorithms only the core of the noise production was tested. The computation time for 
solving HH equations is not taken into account here. The simulations were made for a constant potential of − 65 mV and with the 
parameters of the evoked PA simulations. The total time is equivalent to 100 s of simulation and the time step is 10 μs. The simulations 
begin for 5 potassium channels and this number increases two-fold in every iteration. In the determinist case, the calculation time 
corresponds mainly to the multiplication of the matrices of transition with the vectors of state of the number of channels for the 
potassium and the sodium. 

With the use of a given Δt = 10 μs the execution speed of our procedure using the BIN subroutine is about twice as slow as the OS 

Fig. 11. Voltage clamp data with K channels. A. Voltage clamp at − 80 mV for 50,000 potassium channels. The traces represent the number of 
open channels for the FMC algorithm (black) and the OS algorithm (red) at Δt = 10 μs. The standard deviation of the noise for OS algorithm (SD =
0.29) is almost twice the FMC one (SD = 0.15). B. Histogram of the number of open potassium channels for the two algorithms. The bin is 10 μs. We 
see that the problem encountered with sodium channels remains to a lesser extent in the case of potassium channels. 
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method (Fig. 14). But our method has a speed comparable to the Diffusion Approximation (DA) methods and of the order of the 
Truncated-restored (TR) methods [18]. However, it is important to note that our FMC algorithm can be used with a much larger Δt and 
consequently can be in practice faster than the OS one. 

5. Discussion 

5.1. Accuracy of the FMC method over existing methods 

We have shown that the OS algorithm designed by its authors to respond to the remaining problems in the “SDE” methods did not 
always give the right variance for channel noise (Fig. 6). This error was also present when the number of channels is very large (i.e., 
when this method was supposed to be right; Fig. 6). More precisely, we have shown that compared to the FMC or the Gillespie methods, 
the OS algorithm has two independent problems which bias the variance of the simulated noise: i) Neglecting the directly unconnected 
transitions when the sampling frequency is not high enough compared to the dynamics of the channel and ii) The possibility of negative 

Fig. 12. Differences in excitability between models in a realistic neuron model. The Ex model has been modified into a realistic model of brain 
neuron with Na and K conductance set to 300 and 100 nS. The specific conductance, identical for the two types of channels (20 pS/Ch), brings the 
number of Na and K channels to 15,000 and 5000, respectively. The membrane capacity is 4 pF. A. Successive stimulations are carried out with a 
short pulse (1 ms) of current and the number of trials where an AP is triggered is counted (red: failure, black: triggered). Whenever the membrane 
potential exceeds − 20 mV an action potential is counted. The simulation is made for 3 different membrane potentials (− 80 mV, − 75 and − 70 mV). 
The amplitude of the current pulse is calibrated a little below the threshold which triggers an AP in the deterministic case. For the three cases, it is 
147, 112 and 76 pA, respectively. The probabilities of triggering a PA for the three situations are calculated and each point in panels B, C, D 
represents 1000 trials. A time step of Δt = 10 μs or Δt = 1 μs is used. B. Vm = − 80 mV and I = 147 pA; when the temporal resolution is Δt = 10 μs, the 
OS algorithm (red line + triangle) clearly underestimates the excitability compared to the Gillespie algorithms (blue line + cross) or FMC (black line 
+ round) for which no difference is detected. However, when Δt is decreased to 1 μs the OS algorithm (red line + square) has a excitability. C. Same 
as B for Vm = − 75 mV and I = 112 pA. The same conclusions as in B apply. D. Same as B, C with Vm = − 70 mV and I = 76 pA. For Δt = 10 μs the 
Gillespie algorithm (blue line + cross, calculated on the first 10 points because of low speed of the Gillespie algorithm) and FMC (black line +
triangle) show no significant difference in excitability. The OS algorithm (red triangle line) underestimates the excitability as compared to Gillespie 
as compared to FMC (20 points). For Δt = 1 μs, the excitability conditions of the simulation change and the latter increases. For reasons of pro-
hibitive computation time, only one point (blue point with error bar equal to ± standard deviation) is represented for the Gillespie algorithm at this 
temporal resolution. The OS algorithm still produces slightly but significantly less excitability at this resolution than the noise produced by the FMC 
algorithm. (See statistical test). We can see that the excitability is more important for the FMC algorithm than for the OS algorithm. The difference 
between the two algorithms increases with the hyperpolarization of the membrane and reach a factor of 2 when the membrane potential equal to 
− 80 mV. 
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values of the number of channels in the open state (Fig. 8C), especially for the hyperpolarized values of the potential. This last point is 
the most problematic. We have also presented current-clamp simulations using the EX-model which show that the deviation from 
binomial noise has important consequences on neuronal excitability and spike timing (Fig. 6). The EX-model differs from HH model 
only by a few parameters such as the an rate for the potassium channel which makes it more excitable, a smaller capacity, small changes 

Fig. 13. Excitability with semi-stochastic models. The simulation is the same as Fig. 12 but with only stochastic Na channels (K are deter-
ministic). A. At a membrane potential of − 80 mV, the excitability for the OS model (mixt dotted black line and square) and FMC (dotted black line 
and round point) is the same as for Gillespie. In the latest case of Gillespie only one point representing 1200 trials is represented with the error bar 
equal±standard deviation. For OS this excitability is the same that when the two types of channels are stochastic and Δt = 10 μs. In contrast, for FMC 
with only Na stochastic channels the excitability is less than with the two types of stochastic channels work. Obviously, when only the stochastic K 
channels are active and Na deterministic, no Action potentials are elicited in all cases. B. Same results as in A with a membrane potential of − 75 mV. 

Fig. 14. Computation time of OS, FMC and Gillespie’s algorithms, in log-X scale. The computation time for solving HH equations is not taken 
in account here. The total time is equivalent to 100 s of simulation and the time step is 10 μs. The FMC algorithm is about 2 or 3 times slower than 
the OS one for the same sample frequency however it should be noticed that the OS algorithm sometimes needs a sampling frequency ten times 
faster which makes it slower than FMC in practice. 
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in reversal potentials for Na, K and Leak, and a higher temperature (25 ◦C instead 6.3 ◦C). 

5.2. Calculation time 

For reasons of prohibitive calculation time, the original Gillespie method cannot not be used when the “SDE” based methods fail. In 
addition, we have shown that, in all conditions, our FMC algorithm successfully reproduces the noise with the same characteristics as 
that of the Gillespie method (Fig. 6). This success is due to the fact that the FMC algorithm essentially produces a real binomial noise 
and not an imitation of the latter. Because of its slowness, the Gillespie method cannot be used when the number of channels is more 
than a few tens (Fig. 14). Consequently, a lot of fast methods based on stochastic differential equations “SDE” have been proposed [14, 
15,16,17]. These approaches have proven to be either exact but hard to use for reasons of computation difficulties, or to be convenient 
and rapid but at least sometimes inaccurate. Calculation time in Markovian processes can be reduced by simulating only visible 
transitions [22]. This method running with continuous time unit and applied to ligand-gated ion channels is also promising as it 
simplifies the Markovian process. The continuous-time Gillespie algorithm is briefly shown in Fig. 1, but it is the faster, discrete-time 
(tau-leaping) version of this algorithm that has been used as the gold standard. Gillespie’s continuous-time algorithm would be even 
slower. 

5.3. Limitations of the FMC method 

The FMC method is faster than the Gillespie method, but less than the OS method at the same sample frequency (Fig. 14). However, 
in contrast to the OS method, it can be used with a great stability when larger time resolutions are chosen. In practice, because a slower 
sample frequency than OS method can be used, it can be faster which can be essential for experiments using the technique of “Dynamic 
Clamp” [23,24,25]. Another possible limitation of the present study is that we do not consider the precise location of the simulated ion 
channels. In addition, in a segmentation of a neuronal compartment, each segment is localized by its axial abscissa without precisely 
knowing the exact position of each channel in the segment. Biologically, it is known that channel clustering affects the opening 
properties [26,27]. For instance, disruption of Nav channel clustering at the axon initial segment leads to delayed AP initiation and a 
reduced maximal firing rate [28]. In addition, disruption of Kv2.1 channel clustering shifts the activation towards negative potential, 
thus enhancing the current evoked by a constant depolarization [29]. The underlying mechanism could be due to the modulation of 
inactivation properties [30,31]. 

5.4. Biological relevance 

Hodgkin Huxley’s model is based on the simplest interpretation of experimental data rather than direct evidence, and we cannot be 
sure that the resulting stochastic noise model is the best. However, if we consider the principle of parsimony and the fact that we know 
for example that potassium channels are effectively composed of four identical subunits, each of which contains a single voltage-sensor 
domain [32,33,34], it is therefore reasonable to consider the Gillespie method as the reference method for faithfully reproducing the 
noise of ion channels as observed experimentally. However, we must keep in mind that if we want to emulate reality as faithfully as 
possible, we should know the state of each channel at all times, we should know the precise moment and location of any changes in 
channels state. We have seen (see Fig. 12) that even Gillespie’s algorithm with a constant time step can lead to different probability of 
evoked spikes if the temporal resolution is below a certain limit so excitability could be time resolution dependent. We have to admit 
that, to some extent, only channel states tracking (CST) methods are potentially capable of reproducing reality under any conditions. 
The MarkoLAB algorithm belongs to this category [35]. Compared to the FMC algorithm, the MarkoLAB is slow (3.8 s vs. 1.2 s for 1000 
channels) and does not claim to be efficient in terms of speed. However, it offers the advantage to be a didactic tool, well suited for 
students who want to familiar themselves with ion channel stochastic behavior. 

If the segmentation is such that the calculations must be carried out on a few dozen channels only and if we are looking to reproduce 
the reality as faithfully as possible from a quantitative point of view, then this last strategy (i.e., CST) is a good choice. If we are dealing 
with an intermediate or large number of channels and we are interested in the qualitative effects, then the FMC algorithm is 
recommended. 

6. Conclusion 

In conclusion, the FMC method described in this manuscript appears as the more robust and accurate method for simulating 
channel noise. The novelty of the method resides essentially in the reduction of the number of random values needed for applying 
Markovian models by considering in one shot the number of all channels arriving in a certain state. This method has also the advantage 
to be relatively faster than classical Markovian methods. 
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