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Purpose: The purpose of this study was to develop a convolutional neural network
(CNN) for automated localization of the scleral spur in ultrasound biomicroscopy (UBM)
images of open-angle eyes.

Methods: UBM images were acquired, and one glaucoma specialist provided reference
coordinates of scleral spur locations in all images. A CNN model based on the Efficient-
NetB3 architecture was developed to detect the scleral spur in each image. The predic-
tion errors and Euclidean distance were used to evaluate localization performance of
the CNN model. Trabecular-iris angle 500 (TIA500) and angle-opening distance 500
(AOD500) weremeasured and analyzed using the scleral spur locations provided by the
specialist and predicted by the CNNmodel.

Results: The CNN was developed using a training dataset of 2328 images and tested
using an independent dataset of 258 images. The mean absolute prediction errors
of CNN model were 48.06 ± 45.40 μm for X-coordinates and 30.84 ± 27.03 μm for
Y-coordinates. The mean absolute intraobserver variability was 47.80 ± 44.45 μm for
X-coordinates and 29.50 ± 25.77 μm for Y-coordinates. The mean Euclidean distance
of the CNN was 60.41 ± 49.02 μm and the intraobserver mean Euclidean distance was
59.78± 47.12 μm. Themean absolute error in TIA500was 1.26± 1.38 degrees for all test
images and in AOD500 was 0.039 ± 0.051 mm.

Conclusions:ACNN can detect the scleral spur onUBM images of open-angle eyeswith
performance similar to that of a glaucoma specialist.

Translational Relevance: Deep learning algorithms for automating scleral spur local-
ization would facilitate the quantitative assessment of the opening of the angle and the
risk in angle closure.

Introduction

Gonioscopy is the clinical standard for evaluat-
ing the anterior chamber angle (ACA).1,2 However,
gonioscopy assessments are subjective, qualitative, and
depends on the examiner’s clinical experience.3 Ultra-
sound biomicroscopy (UBM) is a noninvasive imaging
technique that is not affected by optical media opacities
and has intense penetration through ocular tissues.4–6
UBM images provide quantitative assessments of the
opening of the angle and the ocular biometric param-
eters. In light of these significant advantages, UBM

has been widely used in the clinical examination of
several ophthalmic diseases, especially angle closure
glaucoma.7,8

Angle-closure is a significant risk factor for primary
angle-closure glaucoma (PACG).9–11 In open-angle
eyes, quantitative assessments of the opening of the
angle can monitor the progression of angle narrow-
ing and angle-closure over time, which helps diagnose
and manage angle-closure glaucoma and other angle-
closure diseases. Trabecular-iris angle (TIA) and
angle-opening distance (AOD) are typical parame-
ters in the quantitative assessment of the opening
of the angle.12,13 However, UBM image analysis is
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semi-automated, and the operator must first identify
the specific anatomic structure before quantifying the
opening of the angle.

The scleral spur is a crucial anatomic marker for the
assessment of the opening of the angle. The accurate
localization of the scleral spur is fundamental in the
precise measurement of TIA andAOD. It also presents
a difficulty in the measurement process, which usually
requires the operator to have rich clinical experience
and imaging knowledge. However, in the case of UBM
images with low signal noise and edge blur, which
is a common finding, the judgment of the position
of the scleral spur highly relies on the manual detec-
tion of the scleral spur, and this affects the position-
ing accuracy of the scleral spur to a certain extent
due to the subjective differences among ophthalmolo-
gists. Even in some automated measurement methods,
such as the one reported by Leung et al. to automati-
cally measure TIA and AOD based on UBM images,14
the scleral spur’s location needs to be manually deter-
mined. Therefore, a credible and accurate automatic
localizationmethod for the sclera spur is of great signif-
icance for the automatic quantitative assessment of the
opening of the angle and the risk in angle closure.

With the development of artificial intelligence, the
intelligent processing algorithm of medical images
based on deep learning has made continuous progress
in ophthalmology, proving the effectiveness of deep
learning.15–18 In this study, we develop a convolutional
neural network (CNN) for automated localization of
the scleral spur in UBM images of open-angle eyes.

Methods

According to the World Medical Association’s
Declaration of Helsinki, the work was carried out and
approved by the Ethics Committee of Tianjin Medical
University Eye Hospital (2019KY-24).

Dataset

The dataset used in this study was acquired using
UBM (MD-300L;MEDACo. Ltd, Tianjin, China; 50-
MHz transducer) between May 2014 and June 2020 at
the Tianjin Medical University Eye Hospital (Tianjin,
China). The glaucoma specialist (Song Lin) and two
of his colleagues captured UBM images from various
directions according to clinical needs. These ophthal-
mologists have more than 8 years of clinical experience
and have been trained according to a uniform operat-
ing procedure before acquiring images to minimize
deviations between examiners. The UBM examination

Table 1. Demographics of the UBM Dataset

Parameters Training Dataset Testing Dataset

No. of patients 1012 258
No. of eyes 1668 258
Age (mean ± SD) 43.98 ± 15.62 44.34 ± 16.79
Sex (M/F) 487/525 121/137
Eye (R/L) 831/837 127/131

was performed under normal room lighting condi-
tions, the illumination of which was not measured, but
bright lights were avoided. UBM images were acquired
with the probe and was oriented perpendicular to the
corneoscleral limbus. There were no noticeable differ-
ences in the anatomic presentation of the scleral spur
in different directions.

UBM images were selected from the database
consecutively without regard for the visibility of
the scleral spur. One hundred fifty-six images were
excluded due to ACA structural abnormalities caused
by iridodialysis (55 images), motion artifacts (12
images), or incompleteness (89 images). Two hundred
sixteen angle-closure imageswere also excluded.Angle-
closure in UBM images is defined by iridotrabecu-
lar contact.19 In this study, each angle-closure images
was judged by a glaucoma specialist based on clini-
cal experience. Because the boundary between the
corneoscleral and the iris is blurred in UBM images
of angle-closure, it is difficult for even experienced
glaucoma specialists to determine the exact location of
the scleral spur. Therefore, based on the deep learn-
ing classification network, we previously realized the
automatic classification of the open-angle and angle-
closure of the UBM image (the results have been
described in another paper). In this study, we only
studied the automatic localization of the scleral spur
on the open-angle image as the basis for automatically
quantitative assessment of the opening of the angle.

This dataset contained 2586 UBM images from
1926 eyes of 1270 patients, 2328 images were assigned
to the training set and 258 images to the test set
(Table 1). The test set is one image per patient. The train
and test sets were split randomly at the patient’s level
so that images from a single patient were only included
in the test or train sets. This operation is essential to
prevent data leakage.

In UBM images, the intersection of the demarca-
tion line between scleral tissue and ciliary body tissue
and the extension line of the corneal inner surface
is the scleral spur location.12 A glaucoma specialist
(Song Lin) uses Labelme software to manually marked
the scleral spur’s location in each image (Fig. 1). For
images where the scleral spur location was ambiguous,
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Figure 1. Images were captured by UBM. The UBM examinationwas performed under normal room lighting conditions; UBM images were
acquired with the probe was oriented perpendicular to the corneoscleral limbus. The left image shows the temporal side (9 o’clock) of the
right eye of one patient, and the right image shows the nasal (3 o’clock) side of the right eye of another patient. The yellow cross is the scleral
spur location marked by glaucoma specialist.

the specialist was encouraged to estimate its location
based on clinical experience. These labels of scleral
spur locations were used as the reference standard. The
specialist marked the test set images for the second time
1 month later. These scleral spur locations were used to
calculate intraobserver variability.

Deep Learning Model Development

The CNN model used in this study, a typical U-
shaped network structure, including a feature encoder
module and a feature decoder module, is shown
in Figure 2.

We selected EfficientNetB3 as the feature encoder
module for the sclera spur localization model. To
satisfy the need for semantic information extraction
of sclera spur location, we retained the structure body
of EfficientNetB3, removed the final pooling layer, the
fully connected layer, and used the 3 × 3 convolutional
layer for further semantic information extraction. The
feature decodermodule is similar to the feature decoder
module of the Unet model. We combined the feature
map of the encoding and decoding stages by using skip
connection. A 1 × 1 convolution was used in the final
layer to generate heatmaps containing the scleral spur’s
position information.

Gaussian heat maps were generated using the scleral
spur’s labeled coordinates in UBM images to train the
localization model. We used this model to learn the
transformation from the UBM image to the Gaussian
heat map. We used randomly shifting with 0.2 scales,
randomly rotating with 20 degrees, randomly zooming
with 0.2 scales, and randomly horizontally flipping as
data augmentation. The model was trained with mean
square error loss for 200 epochs using Adam optimizer
and a batch size of 2. Adam optimizer’s learning rate

was 0.001 and the decay parameter was set to 0.01 to
adjust the learning rate dynamically. The localization
implementation is based on the public Keras platform.
The training and testing bed is Windows 10 operating
system with the GeForce RTX 2080TI graphics cards,
which has 12 Gigabyte memory.

Scleral Spur Coordinate Extraction

The localization model’s output is a heat map
containing the scleral spur’s position information, from
which the coordinates of the scleral spur are extracted.
In this study, we used a coordinate (xc, yc) acquisi-
tion method based onmaximum likelihood estimation,
which is defined as follows:

xc =
∑

i∈C xi pi
∑

i∈C pi
(1)

yc =
∑

i∈C yi pi
∑

i∈C pi
(2)

where C represents a set of pixel points whose pixel
value is more than half of the maximum pixel value in
the heatmap, (xi, yi) represents the pixel coordinates,
and pi represents the ith pixel value in C. We, accord-
ing to the size of the UBMmanufacturers to provide a
pixel (9.575 μm × 9.575 μm), were able to convert pixel
coordinates into micron coordinates.

Deep Learning Model Testing

The scleral spur coordinates marked by the
glaucoma specialist were used as the reference
coordinates to evaluate the CNN model’s overall
localization performance.

X- and Y-coordinate prediction errors were calcu-
lated by subtracting CNN-predicted coordinates from
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Figure 2. Architecture of the scleral spur localization model.

the corresponding reference coordinates. X- and Y-
coordinates’ intraobserver errors were calculated by
subtracting the second set of scleral spur coordi-
nates by the specialist from corresponding reference
coordinates. Euclidean distance was calculated as:
�(X-coordinate error2 + Y-coordinate error2). The
normality of X- and Y-coordinate distributions were
assessed with the Kolmogorov-Smirnov test. The intra-
class correlation coefficient (ICC), assessed by a single
grader (absolute agreement and 2-way random effect
model) was used to indicate the degree of agree-
ment between scleral spur locations. An ICC value
between 0.4 and 0.75 indicates good reproducibility,
and more than 0.75 indicates excellent reproducibil-
ity.20 The Mann-Whitney U test was used to test for
significant differences in localization errors between
quadrants.

Calculation of Angle Parameters

According to Pavlin and associates,12,21,22 TIA500
was defined as an angle measured with the deepest
point of the iris recess and the arms passing through
the point on the trabecular meshwork 500 μm from
the scleral spur and the point on iris anterior surface

perpendicularly. AOD500 measured by the length of a
line drawn perpendicular to the trabecular meshwork
500 μm from the scleral spur and ending on iris anterior
surface. Whereas the specialist marked the scleral spur
location on the test set images, the angle recess location
and the ACA contour also were marked. We wrote
Python programs to automatically calculate TIA500
and AOD500 using the scleral spur locations marked
by the expert and predicted by CNN.

Results

The training time of the CNN model was 31 hours,
21 minutes, and 36 seconds, and the testing time for
each image in the test set was 102 ms.

Deep Learning Model Performance

The distributions of X- and Y-coordinates were
normally distributed (Kolmogorov-Smirnov test, P >

0.05). The ICC was calculated for each pair for the
X- and Y-coordinates of the scleral spur location
(Table 2). The ICC (95% confidence interval [CI])
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Table 2. The ICC for the Scleral Spur Location (2-way, Single Score, Absolute Agreement ICC, 95% CI)

X CNN M1 M2 Y CNN M1 M2

CNN 1 0.996 (0.995–0.997) 0.995 (0.994–0.996) CNN 1 0.995 (0.993–0.996) 0.994 (0.992–0.995)
M1 1 0.996 (0.995–0.997) M1 1 0.995 (0.994–0.996)
M2 1 M2 1

X indicates the X-coordinate; Y, Y-coordinate; CNN, the scleral spur localizationmodel; M1, the first markedmanually by the
specialist (reference standard); M2, the second marked manually by the specialist.

Table 3. The Scleral Spur Localization Error of the CNNModel and Intragrader Variability

CNNModel Prediction Error (μm) Intragrader Variability (μm)

X-coordinate 11.32 ± 65.21 6.75 ± 64.99
Y-coordinate 0.63 ± 41.05 0.04 ± 39.22
Absolute X-coordinate 48.06 ± 45.40 47.80 ± 44.45
Absolute Y-coordinate 30.84 ± 27.03 29.50 ± 25.77
Euclidean distance 60.41 ± 49.02 59.78 ± 47.12

Data are expressed as mean ± SD.

of the CNN model was 0.996 (0.995–0.997) for X-
coordinates, 0.995 (0.993–0.996) for Y-coordinates. It
shows that the coordinates of the scleral spur predicted
by the CNN model were in excellent agreement with
those by manual marking.

The mean prediction error of the CNN model
was 11.32 ± 65.21 μm for X-coordinates and 0.63 ±
41.05 μm for Y-coordinates. The mean absolute predic-
tion error of the CNN model was 48.06 ± 45.40 μm
for X-coordinates, 30.84± 27.03 μm for Y-coordinates,
and 60.41± 49.02 μm for Euclidean distance. Themean
intra-observer error of scleral spur location was 6.75 ±
64.99 μm for X-coordinates, and 0.04 ± 39.22 μm for
Y-coordinates. The mean absolute intra-observer error
of scleral spur location was 47.80 ± 44.45 μm for X-
coordinates, 29.50 ± 25.77 μm for Y-coordinates, and
59.78 ± 47.12 μm for Euclidean distance (Table 3). As
shown in Table 3, although the CNN model predic-
tion error is very close to the intra-observer variabili-
ties, the intragrader variabilities were slightly less than
the CNN model prediction error.

The distribution of absolute prediction errors of the
CNN was 22.48% within 10 μm, 66.67% within 50 μm,
90.70% within 100 μm, and 96.12% within 150 μm
for X-coordinates. The distribution of absolute predic-
tion errors of the CNN was 35.27% within 10 μm,
81.40% within 50 μm, 97.67% within 100 μm, and
99.61% within 150 μm for Y-coordinates. The distri-
bution of Euclidean distance of the CNN was 6.59%
within 10 μm, 55.04% within 50 μm, 85.66% within
100 μm, and 95.35% within 150 μm (Fig. 3). Figure 4

shows representative images of various Euclidean
distances.

The distribution of absolute errors from intra-
observer variability was 19.38% within 10 μm, 68.99%
within 50 μm, 91.09% within 100 μm, and 97.29%
within 150 μm for X-coordinates. The distribution
of absolute errors from intra-observer variability
was 32.17% within 10 μm, 84.11% within 50 μm,
98.06% within 100 μm, and 99.61% within 150 μm
for Y-coordinates. The distribution of intra-observer
Euclidean distance was 6.20% within 10 μm, 52.33%
within 50 μm, 87.21% within 100 μm, and 94.96%
within 150 μm (see Fig. 3). The distribution of the
CNN model prediction error was similar to the distri-
bution of the intragrader variabilities.

The test set showed that 82, 75, 46, and 55 images
were acquired in the temporal, nasal, superior, and
inferior quadrants, respectively. The mean Euclidean
distance of the scleral spur localization model at the
temporal, nasal, superior and inferior quadrants was
57.03± 47.70 μm, 63.65± 48.15 μm, 58.90± 45.22 μm,
and 62.62 ± 55.68 μm, respectively, as shown in
Table 4.

The distribution of localization errors (Euclidean
distance) in each quadrant was not normally
distributed (Kolmogorov-Smirnov test, P < 0.05).
Therefore, the Mann-Whitney U test was used to
test for significant differences in localization errors
between quadrants. We found no statistically signif-
icant difference in localization error between each
quadrant (Mann-Whitney U test, P > 0.05).
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Figure 3. Distribution of CNN prediction error and intraobserver errors. (TOP) The distribution of the CNN prediction absolute error (left)
and intra-observer errors (right) for X-coordinates. (Middle) The distribution of the CNN prediction absolute error (left) and intra-observer
errors (right) for Y-coordinates. (Bottom) The Euclidean distance distribution of the CNN (left) and intra-observer (right).

Impact of Scleral Spur Location on Angle
Parameters

We evaluated the TIA500 and AOD500 calcu-
lated using the CNN model predicted scleral spur
coordinates and the TIA500 and AOD500 calculated
using the reference coordinates as reference values.
The mean Euclidean distance between 2 scleral spur
locations identified by the expert andCNNwas 60.41±
49.02 μm. The mean absolute error in TIA500 was 1.26
± 1.38 degrees for all test images and themean absolute
error in AOD500 was 0.039 ± 0.051 mm. Figure 5

shows the impact of the localization error of the scleral
spur on TIA500 and AOD500. When the Euclidean
distance increased by 10 μm, the mean absolute error
in TIA500 increased by 0.162 degrees and the mean
absolute error in AOD500 increased by 0.006 mm.

Discussion

This study developed and tested a deep learning
model that detects the scleral spur in UBM images
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Figure 4. Representative images of various Euclidean distances (10, 50, 100, and 150 μm) between the scleral spur locations marked by
the glaucoma specialist (yellow cross) and predicted by CNNmodel (red cross).

Table 4. Comparison of the Scleral Spur Localization Errors of the CNNModel in Different Quadrants

Quadrants No. of Images Mean Euclidean Distance (μm)

Temporal 82 57.03 ± 47.70
Nasal 75 63.65 ± 48.15
Superior 46 58.90 ± 45.22
Inferior 55 62.62 ± 55.68

Figure 5. The scleral spur localization error impact on TIA500 (left) and AOD500 (right).

of open-angle eyes. The CNN was based on the
EfficientNetB3model and achieved localization perfor-
mance close to that of human experts. We believe that
the algorithm has essential implications for automatic

quantitative assessment of the opening of the angle
and the risk in angle closure.

The ACA is evaluated by gonioscopy, anterior
segment optical coherence tomography (AS-OCT), and
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UBM in clinical practice.23,24 UBM can dynamically
reflect the morphology of the ACA in the natural
state and is more economical than AS-OCT. There-
fore, UBM plays a vital role in ACA assessment.
Many researchers evaluate ACA automatically based
on artificial intelligence. Shi et al. proposed a deep
neural network for the automated classification of
ACA using UBM images.15 Fu et al. proposed a
CNN for automated angle-closure detection using
OCT images.16 However, most of these studies have
carried out qualitative research on ACA, and quanti-
tative research is still limited. The scleral spur is a
crucial anatomic landmark for the quantitative assess-
ment of the opening of the angle, such as TIA and
AOD. Accurate localization of scleral spur forms the
premise of the precise measurement of these parame-
ters.

Automated scleral spur detection has important
implications for developing and testing new quanti-
tative methods for automatic quantitative assess-
ment of the opening of the angle. The Zhongshan
AngleAssessment Programproposed a semi-automatic
measurement method in AS-OCT images25; however,
their method requires the ophthalmologist first to enter
the sclera spur’s location. Leung et al. introduced
another intuitive approach for measuring TIA based
onUBM images.14 However, the user is still required to
enter the scleral spur’s location. Our automatic scleral
spur localization method forms the basis for automatic
quantitative assessment of the opening of the angle.
Automating the quantitative analysis of UBM images
could also help monitor the progression of angle
narrowing and closure over time, which helps diagnose
and manage angle-closure glaucoma and other angle-
closure diseases.

The intra-observer mean Euclidean distance was
59.78 ± 47.12 μm. This error may be due to the limita-
tions of UBM image resolution or low signal-to-noise
ratio in some images in the test set, which affects
the specialist’s judgment on the scleral spur location.
The Euclidean distance calculated by the CNN model
was similar to that provided by the specialist, with
85.66% and 95.35% of Euclidean distance within
100 μm and 150 μm of reference scleral spur locations,
respectively. Xu et al. studied the localization of the
scleral spur based on AS-OCT images.26 That study
reported that a CNNmodel’s distribution of Euclidean
distance was 76.22% within 100 μm, compared with
85.33% in our study. However, these results should be
interpreted with some caution because their dataset
contained angle-closure eyes. In contrast, our study
was only based on open-angle eyes, which likely
contributed to differences in scleral spur locations’
distributions.

The coordinates of the scleral spur predicted by
the CNN model were in excellent agreement with
those by manual marking. We also assessed our scleral
spur localization model’s performance by comparing
it to the glaucoma specialist’s intra-observer variabil-
ity. The CNNmodel achieved localization performance
close to that of human experts. However, as shown
in Table 3, although the CNN model prediction error
is very close to the intra-observer variability, the CNN
model prediction error is slightly larger than the intra-
observer variability. In the future, we may need to
increase the number of UBM images in the dataset and
continue to optimize the CNNmodel to achieve better
localization performance.

The localization errors of the CNNmodels in differ-
ent quadrants showed no statistically significant differ-
ence (Mann-Whitney U test, P > 0.05), which may
be because the anatomic presentation of the scleral
spur in different quadrants was basically consistent.
Our dataset includes UBM images captured in various
directions by multiple examiners. Although we have
verified no significant difference in localization errors
between each quadrant, UBM is a manually operated
device, andUBM images captured by different examin-
ers in different directions may have slight deviations,
which may bring potential biases to the results.

In general, the error of TIA500 and AOD500
increases with the increase of Euclidean distance.
However, this is not an absolute finding. We found
that TIA error and AOD error are close to 0 when the
scleral spur localization error exceeds 100 μm in some
cases. The scleral spur localization error impact on
TIA500 and AOD500 is influenced by angle width and
iris morphology to a certain extent. The TIA500 and
AOD500 changes may be small if the iris is straight-
ened and has a flat anterior surface.

Our study also had a number of limitations. First,
the reference coordinates of the scleral spur were
provided only by one glaucoma specialist. Although
the specialist has extensive clinical experience, his
judgment of the scleral spur’s position is subjective.
Using the average values of coordinates marked by
multiple ophthalmologists as reference coordinates for
CNN model training may help improve the model’s
positioning performance. Second, all UBM images
came from the same UBM device. Image size and
resolution may differ among UBM devices; as such,
this study’s research results may not apply to other
UBM devices. The use of multiple UBM devices for
image acquisition may improve the generalizability of
the results.

In summary, we have proposed a deep learning
method for the automatic localization of scleral spurs
in UBM images of open-angle eyes. The accuracy
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of scleral spur localization using this deep learning
method is similar to that of glaucoma specialist. We
believe that the automatic localization of scleral spur
would facilitate the automated quantitative assessment
of the opening of the angle and improve the automatic
evaluation of PACG risk. These findings will prove to
be valuable to future clinical practice.
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