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Abstract: In this study we evaluated whether single nucleotide polymorphisms (SNPs) in the genes
encoding PTH, VDR, CYP24A1, and CYP27B1 were associated with mandibular retrognathism (MR).
Samples from biologically-unrelated Brazilian patients receiving orthodontic treatment were included
in this study. Pre-orthodontic lateral cephalograms were used to determine the phenotype. Patients
with a retrognathic mandible were selected as cases and those with an orthognathic mandible were
selected as controls. Genomic DNA was used for genotyping analysis of SNPs in PTH (rs694, rs6256,
and rs307247), VDR (rs7975232), CYP24A1 (rs464653), and CYP27B1 (rs927650). Chi-squared or
Fisher’s tests were used to compare genotype and allele distribution among groups. Haplotype
analysis was performed for the SNPs in PTH. The established alpha was p < 0.05. Multifactor
dimensionality reduction (MDR) was used to identify SNP–SNP interactions. A total of 48 (22 males
and 26 females) MR and 43 (17 males and 26 females) controls were included. The linear mandibular
and the angular measurements were statistically different between MR and controls (p < 0.05). In the
genotype and allele distribution analysis, the SNPs rs694, rs307247, and rs464653 were associated
with MR (p < 0.05). MDR analyses predicted the best interaction model for MR was rs694–rs927650,
followed by rs307247–rs464653–rs927650. Some haplotypes in the PTH gene presented statistical
significance. Our results suggest that SNPs in PTH, VDR, CYP24A1, and CYP27B1 genes are associated
with the presence of mandibular retrognathism.

Keywords: mandible; retrognathism; gene; polymorphism

1. Introduction

Skeletal malocclusions are a set of human craniofacial morphologic characteristics
that result in an improper skeletal relationship of the jaws and specific facial patterns.
There is considerable evidence from family and twin studies suggesting that genes play a
significant role in the etiology of skeletal malocclusions [1]. Familial occurrence of skeletal
Class II malocclusion has been reported in some studies including twin and triplet studies
design and in family pedigrees studies design [1]. A clinical and cephalometric study
evaluating 114 patients (48 twin pairs and six sets of triplets) performed an intra- and
inter-pair comparison to determine concordance/discordance rates for monozygotic and
dizygotic twins. The monozygotic twin pairs presented 100% concordance, while almost
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90% of the dizygotic twin pairs were discordant for the Class II division 2 malocclusion [2].
A study evaluating skeletal and dental patterns demonstrated that hereditary factors were
responsible for 40% of the variations resulting in malocclusion and the genetic component
was higher for skeletal than for dental patterns [3]. In a classical study, cephalometric
radiographs of several families were analyzed to evaluate facial morphologic differences
among family members. The authors observed a high correlation between parents and
their offspring and concluded that a strong familial tendency for skeletal malocclusions
exists, supporting the impact of genetic background on face morphology [4]. More recently,
many studies in different populations have been performed and demonstrated that genes
involved in a variety of functions are associated with skeletal malocclusions and morpho-
logical patterns of the face [5,6]. Mandibular retrognathism (MR) is a common skeletal
malocclusion in humans. It refers to a retruded position of the mandible as a consequence
of an anomaly of the skeletal jaw–cranial base relationship. This unfavorable positional
relationship of developing jaws is diagnosed through image exams [7].

Single nucleotide polymorphisms (SNPs) are a type of genetic variant involving
variation of a single base pair in the genome. This is the most common type of genetic
variation in humans, and it has been stated that these variants could explain differences in
individual predisposition to present complex traits [8]. Previous studies have shown that
MR was associated with SNPs in various genes such as Myosin 1H (MYO1H) [9], Matrilin 1
(MATN1) [7], ADAM Metallopeptidase with Thrombospondin Type 1 Motif 9 (ADAMTS9) [10],
and Bone Morphogenic Protein 2 (BMP2) [11] genes. In addition, SNPs in the gene encoding
growth hormone receptor (GHR) have been associated with variations in the mandibular
pattern including prognathism [5,12], supporting that genes coding for hormones, hormone
receptors, hormone precursors, and molecules involved in hormonal synthesis could also
be involved in the etiology of other phenotypes.

Two important hormones that play a crucial role in bone development are parathyroid
hormone (PTH) and vitamin D (a secosteroid hormone). These are major regulators of min-
eral metabolism involved in calcium and phosphate homeostasis as well as in bone growth
and development [13]. The biological actions of vitamin D are exerted by binding to the
nuclear vitamin D receptor (VDR) [14]. VDR is expressed in the parathyroid glands acting
as sensors for the detection and maintenance of adequate vitamin D levels, regulating
PTH synthesis and release [15], which among other tissues affects the periodontal liga-
ment [16]. Additionally, other molecules such as the vitamin D 24-hydroxylase (CYP24A1)
and 1-hydroxylase (CYP27B1) enzymes participate in related processes, being considered
as pivotal determinants of the local concentration of active vitamin D [17].

Nutrition and biomechanical factors can affect the facial pattern, however, the most
important factor related with craniofacial growth and development seem to be hormones,
genetic, and molecular mechanisms as well as the interplay among them [18]. There is some
evidence from animal model studies that PTH is involved in mandible and mandibular
condyle development and mineralization [19,20]. Additionally, a study in rats using
cephalometric analysis to investigate the effects of a low calcium and vitamin D-deficient
diet on craniofacial morphology and growth observed that vitamin D-free and low calcium
diet affects mandible development [21]. However, the role of PTH, vitamin D, and genes
associated with these two hormones in the human MR is still unclear. Therefore, in
the present study, we evaluated if SNPs in genes encoding PTH, VDR, CYP24A1, and
CYP27B1 as well as the interplay among them were associated with MR. A tightly controlled
connection between vitamin D, serum calcium, and genes involved in the maintenance of
vitamin D levels orchestrates mineral homeostasis and development.

2. Materials and Methods
2.1. Sample

This nested case-control study was previously approved by the Human Ethics Commit-
tee of the University of São Paulo—Ribeirão Preto Dental School (# 01451418.3.0000.5419).
Informed consent/assent was obtained from all participants and/or their legal guardians
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where age-appropriate. This project was performed according to the Helsinki Declara-
tion and its amendments. The Strengthening the Reporting of Genetic Association study
(STREGA) statement checklist [22] was followed to develop and report the results of
this study.

Patients undergoing orthodontic treatment at the University of São Paulo were re-
cruited and consecutively included in this study from 2015 to 2017. Patients with syn-
dromes, congenital alterations, hormonal, and/or metabolic disorders or those with previ-
ous orthodontic and/or orthopedic treatments were not included. None of the patients
reported history of vitamin D deficiency. All patients included were Brazilian biologically-
unrelated and self-reported as Caucasian. Additionally, none of the patients were using
vitamin D supplementation and all patients were from the Ribeirão Preto area, which
presents a high total sunshine hour and UVB incidence over the entire year.

2.2. Phenotypes Definition

Pre-orthodontic lateral cephalograms with the mandible in centric relationship were
used and digital cephalometric tracings performed by a calibrated orthodontist using
the software Dolphin Imaging Version 8.0 (Dolphin Imaging, Chatsworth, CA, USA), as
demonstrated in Figure 1. The following landmarks were used to determine the phenotype:
point A, point B, sella (S), and nasion (N) and, therefore, the angular measurements SNB
and ANB were calculated. Patients having a retrognathic mandible (SNB < 78◦) were
selected as cases, and those with an orthognathic mandible (SNB = 78◦–82◦) were selected
as controls. Patients with mandibular prognathism (SNB > 82◦) were excluded.
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Figure 1. Cephalometric tracings. (A) Exemplification of retrognathism (SNB > 78◦). (B) Exemplification of orthognathic
mandible (SNB ranging from 78◦ to 82◦).

Additionally, the linear measurements associated with mandibular size (mandibular
length, Co-Gn; length of mandibular base, Go-Pg; and mandibular ramus height, Co-Go)
were measured in millimeters (mm) and compared between the patients with retrognathic
mandible and the patients with orthognathic mandible.
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2.3. Allelic Discrimination

Genomic DNA extracted from saliva was used for genotyping analysis. Briefly, for
saliva collection, saline mouth solution to rinse in the mouth for 60 s was used. There-
fore, the genomic DNA was extracted from buccal epithelial cells from saliva samples
as previously described [23]. Quantification of the concentration and purity of the DNA
was determined by spectrophotometry (Nanodrop 1000; Thermo Scientific, Wilmington,
DE, USA).

Six SNPs were evaluated in the present study and are reported in Table 1. The
genotyping was blindly performed using the Taqman™ method for real-time PCR in the
StepOnePlusTM sequence detection system, Applied Biosystems™ (Foster City, CA, USA)
or in the Mastercycler®ep realplex-S thermocycler, Eppendorf AG (Hamburg, Germany).
Additionally, 10% of the sample was genotyped twice and an agreement of 100% was
observed. The reaction was previously described in [24].

Table 1. Characteristics of the studied SNPs.

Gene SNP Base
Change #

Functional
Consequence #

Clinical
Significance †,‡ Biological Effects (Reference)

PTH
rs694 C > T Intron Variant Benign Low levels of PTH serum [25]

rs6256 * G > T Stop Gained * Benign Low levels of PTH serum [26]
rs307247 G > A 3′ untranslated region Benign Low levels of PTH serum [27]

VDR rs7975232 # C > A Intron Variant Benign High levels of Vitamin-D serum
[28]

CYP27B1 rs464653 A > G Intron Variant Benign Oral Neoplasm [29]

CYP24A1 rs927650 C > T Intron Variant Uncertain
Significance

High levels of Vitamin-D serum
[30]

Note: * (Arg) > (Ter). # known as Apal. Information was obtained in ncbi.nlm.nih.gov/snp/ (#) (accessed on 22 December 2020), ncbi.nlm.
nih.gov/CBBresearch/Lu/Demo/LitVar/# (†) (accessed on 22 December 2020) and varsome.com (‡) (accessed on 22 December 2020).

2.4. Statistical Analysis

The Chi-squared test was used to estimate the Hardy–Weinberg equilibrium (https:
//wpcalc.com/en/equilibrium-hardy-weinberg/) (accessed on 2 April 2021).

Chi-squared or Fisher’s exact tests were used to compare gender, genotypic, and allelic
distribution among groups. The Mann–Whitney U test was applied for the comparison of
continuous data among the groups after evaluating the normality by the Shapiro–Wilk test,
and Levene’s test was used to assess the homogeneity of variance. These analyses were
performed by GraphPad Prism version 7.0 for Windows (GraphPad Software, San Diego,
CA, USA).

Haplotype analysis was performed for the SNPs in PTH by PLINK version 1.06
(https://zzz.bwh.harvard.edu/plink/ld.shtml) (accessed on 2 April 2021). The estab-
lished alpha for these analyses was p < 0.05.

Multifactor dimensionality reduction (MDR) [31] was done to identify SNP-SNP
interactions using gender and age as co-variables as previously reported [11]. Two specific
software programs (Multifactor Dimensionality Reduction 3.0.2 [31], and MDR Permutation
Testing Module 1.0 beta 2 [32], available in sourceforge.net/projects/mdr/files (accessed
on 2 April 2021)), were used to perform a 10-fold cross-validation consistency (CVC),
testing balancing accuracy (TBA), and the 1000 permutation test to determine the statistical
significance of the models. Models with the cross-validation consistency of 9/10 or 10/10
and the TBA > 0.55 and p ≤ 0.05 were considered as the best models. Entropy values
were calculated according to Jakulin and Bratko [33], and MDR created dendrograms
and interaction graphs using these values. MDR analysis can be performed freely in a
JAVA language.

ncbi.nlm.nih.gov/snp/
ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/LitVar/#
ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/LitVar/#
varsome.com
https://wpcalc.com/en/equilibrium-hardy-weinberg/
https://wpcalc.com/en/equilibrium-hardy-weinberg/
https://zzz.bwh.harvard.edu/plink/ld.shtml
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3. Results

A total of 91 patients were included. Figure 2 presents the flow diagram of the
study participants and genotype success rate for each SNP. The sample characteristics
and mandibular parameters according to the groups (MR and control) are shown in
Table 2. There was no significant difference between the groups according to age and
gender distribution (p > 0.05). The participants in the MR group had significantly lower
linear measurements in the mandible than the control group (p < 0.05). Furthermore, the
SNB angle was significantly lower and the ANB angle was significantly higher in the
retrognathic subjects (p < 0.001).

All SNPs assessed were within the Hardy–Weinberg equilibrium. Genotype and allele
distributions are demonstrated in Table 3. The SNPs rs694 and rs307247 in PTH and the
SNP rs464653 in CYP27B1 were significantly associated with mandibular retrognathism
(p < 0.05).

The best models for MDR analyses were rs694 (PTH), rs927650 (CYP24A1), rs307247
(PTH), rs464653 (CYP27B1), rs927650 (CYP24A1) and rs694 (PTH), rs6256 (PTH), rs307247
(PTH), rs7975232 (VDR), rs464653 (CYP27B1), and rs927650 (CYP24A1) with a cross-
validation consistency of 10 out of 10. Table 4 shows the MDR-predicted interaction models.
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Table 2. Comparison of cephalometric variables between mandibular retrognathism and con-
trol groups.

Variables MR Control p-Value

Gender n (%)
Male 22 (45.8) 17 (39.5)

0.672Female 26 (54.2) 26 (60.1)
Age

Median (IQR) 12.0 (4.0) 12.0 (4.5) 0.809
SNB (◦)

Median (IQR) 76.1 (3.5) 80.0 (2.0) <0.001 *
ANB (◦)

Mean (SD) 4.2 (2.3) 2.4 (2.3) <0.001 *
Co-Gn (mm)
Mean (SD) 110 (8.0) 115 (9.4) 0.008 *

Go-Pg (mm)
Median (IQR) 64.4 (6.9) 68.2 (5.5) 0.014 *
Co-Go (mm)

Median (IQR) 54.0 (8.8) 56.8 (7.4) 0.044 *

Note: IQR means interquartile range; SD means standard deviation. MR means mandibular retrognathism.
* means statistically significant difference (p < 0.05).

Table 3. Genotype and allele distribution among the groups.

Gene SNP
Frequency-n (%)

p-Value OR (CI 95%)
Genotype/Allele Control MR

PTH

rs694
Genotype

TT 4 (10.8) 19 (44.2) Reference -
CT 22 (59.5) 19 (44.2) 0.004 * 0.18 (0.06–0.59)
CC 11 (29.7) 5 (11.6) 0.001 * 0.09 (0.02–0.44)

Allele
T 30 (40.5) 57 (59.4) Reference -
C 44 (59.5) 39 (40.6) 0.014 * 0.46 (0.25–0.87)

rs6256

Genotype
GG 30 (81.1) 32 (76.2) Reference
GT 7 (18.9) 9 (21.4) 0.740 1.20 (0.39–3.39)
TT 0 (0.0) 1 (2.4) >0.999 -

Allele
G 67 (90.5) 73 (86.9) Reference -
T 7 (9.5) 11 (13.1) 0.472 1.44 (0.51–3.71)

rs307247

Genotype
GG 12 (33.3) 26 (60.5) Reference
AG 14 (38.9) 12 (27.9) 0.074 0.39 (0.14–1.16)
AA 10 (27.8) 5 (11.6) 0.019 * 0.23 (0.06–0.78)

Allele
G 38 (52.8) 64 (75.0) Reference
A 34 (47.2) 22 (25.0) 0.003 * 0.37 (0.19–0.73)

VDR rs7975232

Genotype
AA 14 (35.0) 18 (41.9) Reference
AC 17 (42.5) 21 (48.8) 0.934 0.96 (0.37–2.44)
CC 9 (22.5) 4 (9.3) 0.121 0.34 (0.10–1.31)

Allele
A 45 (56.2) 57 (66.3) Reference -
C 35 (43.8) 29 (33.7) 0.184 0.65 (0.34–1.20)

CYP27B1 rs464653

Genotype
AA 13 (33.3) 25 (55.6) Reference -
AG 21 (53.9) 15 (33.3) 0.037 * 0.37 (0.13–0.93)
GG 5 (12.8) 5 (11.1) 0.358 0.52 (0.12–2.09)

Allele
A 47 (60.3) 45 (64.3) Reference -
G 31 (39.7) 25 (35.7) 0.613 0.84 (0.44–1.68)

CYP24A1 rs927650

Genotype
CC 17 (44.7) 15 (34.1) Reference -
CT 16 (42.1) 26 (59.1) 0.197 1.84 (0.75–4.69)
TT 5 (13.2) 3 (6.8) 0.633 0.68 (0.16–3.45)

Allele
C 50 (65.8) 56 (63.6) Reference -
T 26 (34.2) 32 (36.4) 0.773 1.09 (0.57–2.12)

Note: * means statistically significant difference (p < 0.05).
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Table 4. Summary of MDR analysis results.

Locus Number Best Combination CVC # TBA † p-Value ‡

2 rs694 (PTH), rs927650 (CYP24A1) 10/10 0.6742 0.040 *
3 rs307247 (PTH), rs464653 (CYP27B1), rs927650 (CYP24A1) 10/10 0.7651 <0.001 *

4 rs307247 (PTH), rs7975232 (VDR), rs464653 (CYP27B1),
rs927650 (CYP24A1) 8/10 0.7016 0.009 *

5 rs694 (PTH), rs307247 (PTH), rs7975232 (VDR), rs464653
(CYP27B1), rs927650 (CYP24A1) 8/10 0.6832 0.026 *

6 rs694 (PTH), rs6256 (PTH), rs307247 (PTH), rs7975232
(VDR), rs464653 (CYP27B1), rs927650 (CYP24A1) 10/10 0.7085 0.008 *

Note: * means statistically significant difference (p < 0.05). # The 10-fold CVC indicates a prediction error. † TBA values show the proportion
of individuals correctly classified as the case or control. ‡ p-values were based on the 1000 permutations test by a specifically developed
software for MDR analysis. More details can be consulted in Pattin et al. (2009) [32].

Figure 3 shows the interactions between SNPs (dendrogram and interaction map).
The strongest synergism interaction effect was between rs307247 (PTH) and rs927650
(CYP24A1), followed by the interaction between rs6256 (PTH) and rs464653 (CYP27B1).
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The haplotype analysis for the SNPs in the PTH gene is presented in Table 5. Some
haplotypes were associated with mandibular retrognathism.
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Table 5. Haplotype association analysis of SNPs in the PTH gene.

SNPS Haplotype MR Control p-Value

rs694, rs6256,
rs307247

C-G-A 0.25 0.47 0.004 *
C-T-G 0.01 0.03 0.510
T-T-G 0.11 0.06 0.231
C-G-G 0.06 0.09 0.530
T-G-G 0.54 0.34 0.010 *

rs694, rs6256
T-T 0.13 0.09 0.472
C-G 0.33 0.59 0.001 *
T-G 0.53 0.31 0.004 *

rs694, rs307247
C-A 0.25 0.47 0.004 *
C-G 0.08 0.12 0.365
T-G 0.66 0.40 0.001 *

rs307247, rs6256
A-G 0.26 0.47 0.006 *
G-T 0.13 0.09 0.510
G-G 0.60 0.43 0.027 *

Note: * means statistically significant difference.

4. Discussion

Disorders of the face and dental jaws such as skeletal malocclusions are very common
developmental disorders in all ethnic populations [34]. Skeletal malocclusion affects dental
and facial tissues [34]. Mandibular retrognathism is a condition that not only affects facial
aesthetics, but is also associated with problems such as temporomandibular disorders [35]
and alterations in the respiratory pattern and normal sleep [34,36]. The prevalence of
skeletal malocclusion ranges in different ethnic groups [34]. In the orthodontic population
studied here with evaluated Brazilian patients, skeletal class II malocclusion affects about
30% of the sample [11,37] and mandibular retrognathism affects 35% of the sample [8]. Ret-
rognathism is a much more frequent condition than mandibular prognathism; however, its
etiology has been the subject of only a few studies. Most studies on the genetic background
of skeletal malocclusion have focused on prognathism and Class III malocclusion, which
is less frequent in the general population. Studies on genes involved in skeletal Class II
malocclusion, retrognathism, and micrognathia are rarer [2] and only a few genes and
SNPs have been evaluated thus far [7,9–11,38,39]. Therefore, the present study aimed to
explore the role of some SNPs as well as their interaction in the mandibular retrognathism
phenotype in humans.

Sequence variation in human genes is largely confined to SNPs and is valuable in tests
of association with common traits such as retrognathism. Uncovering the SNPs and genes
responsible for the regulation of facial morphology is not a trivial task. Human facial de-
velopment is a complex multistep process, implicating several signaling cascades of factors.
The mechanisms involved in this process include the expression of innumerous genes and
protein translation. These events are precisely timed and are under hormonal control [40].
Therefore, in the present study, we evaluated whether common SNPs in genes involved in
hormonal synthesis and metabolisms were associated with mandibular retrognathism.

PTH is an 84-amino acid peptide hormone synthesized in the cells of the parathyroid
glands. This hormone is a major mediator of bone remodeling and plays a crucial role in
calcium homeostasis, showing several effects on the bone remodeling process, resulting
in anabolic activity (bone formation) and catabolic activity (bone resorption) [41,42]. PTH
promotes calcium release at the bone level, in which a hypocalcemic signal will lead to a
higher release and synthesis of PTH, restoring the serum calcium to normal [43]. In our
study, two SNPs in the gene encoding PTH were associated with retrognathism in the
univariate analysis: the intronic SNP rs694 and the SNP rs307247, which is located in a 3′

untranslated region (3′UTR). One important aspect in genetic association studies is that the
majority of traits were associated with non-coding regions (intronic and intergenic) called
regulatory SNPs [44]. Intronic variants can impact alternative splicing by interfering with
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splice site recognition [45]. Additionally, 3’UTRs can modify gene expression by controlling
the mRNA nuclear export, cytoplasmic localization and stability, or by affecting transla-
tional efficiency. These gene fragments are targeted by microRNA as well as regulatory
molecules [46]. However, one aspect to be highlighted for future studies designs is that a
redundancy was observed between rs694 and rs307247 in the interaction map.

In our study, we also evaluated the SNP rs6256 located in exon 3 of the PTH gene.
This nonsynonymous variant might contribute to the altered gene expression. A previous
study demonstrated that serum PTH levels were higher in individuals carrying the rs6256
AA genotype [26]. We observed that this SNP was associated with MR in the MDR analysis
and in the haplotype analysis.

It is well known that vitamin D requires the involvement of several key proteins in a
closely regulated process. The vitamin D produced in the skin, in response to UVB light or
from exogenous supplements, is sequentially hydroxylated into the active metabolite 1,25-
Dihydroxyvitamin D (1,25(OH)2D, the biologically active form of vitamin D) in the kidney
and other tissues via the enzyme CYP27B1 [47]. Additionally, 1,25(OH)2D concentrations
are regulated by CYP24A1 [48]. In the genotype distribution as well as in the MDR analysis,
the intronic SNP rs464653 in CYP27B1 was associated with mandibular retrognathism. A
strong interaction and synergism were observed between the SNP rs307247 in PTH and
rs927650 in CYP24A1. Parathyroid glands contain CYP27B1 and CYP24A1 and the expres-
sion levels of both these enzymes are transcriptionally regulated by PTH [49]. Therefore,
our results suggest that SNPs in genes involved in this highly regulated interaction are
involved in mandibular morphology in humans.

A study evaluating animals fed with a low calcium and vitamin D-deficient diet
observed that this diet caused alterations in craniofacial morphology including reduced
mandibular dimensions [21]. The biological effects of vitamin D are mediated by binding to
its receptor, a member of the nuclear receptor superfamily, encoded by the gene VDR [14].
Although the studied SNP rs7975232 in VDR seems to only have a small role in the
mandibular retrognathism phenotype, this result should be interpreted with caution. In
our analysis, only one SNP was evaluated in VDR, which is a gene with some well-
known SNPs. Therefore, the coverage of the gene was a limitation of our study. It is
possible that other SNPs in VDR as well as their interaction are also involved in the
retrognathism phenotype. Additionally, the generalizability of our results to populations
of other ancestries is unknown. Further studies are necessary to evaluate the role of these
SNPs in skeletal malocclusions in different populations.

5. Conclusions

Briefly, MR is a polygenic trait. SNPs in coding and regulatory regions can lead to
different gene activities and possible contributions to interindividual variability including
variability in facial morphology. Our results support that genes involved in the maintenance
of vitamin D levels are involved in the etiology of human MR.
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