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ABSTRACT Estimating genetic relatedness, and inbreeding coefficients is important to the fields of
quantitative genetics, conservation, genome-wide association studies (GWAS), and population genetics.
Traditional estimators of genetic relatedness assume an underlying model of population structure. Each
individual is assigned to a population, depending on a priori assumptions about geographical location of
sampling, proximity, or genetic similarity. But often, this population assignment is unknown and assump-
tions about assignment can lead to erroneous estimates of genetic relatedness. I develop a generalized
method of estimating relatedness in admixed populations, to account for (1) multi-allelic genomic data, (2)
including all nine Identity By Descent (IBD) states, and implement a maximum likelihood based estimator of
pairwise genetic relatedness in structured populations, part of the software, InRelate. Replicated estima-
tions of genetic relatedness between admixed full sib (FS), half sib (HS), first cousin (FC), parent-offspring
(PO) and unrelated (UR) dyads in simulated and empirical data from the HGDP-CEPH panel show consid-
erably low bias and error while using InRelate, compared to several previously developed methods. I also
propose a bootstrap scheme, and a series of Wald Tests to assign relatedness categories to pairs of
individuals.
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Estimating genetic relatedness is an important problem in biological
statistics and population genetics. For instance, paternity or maternity
assignment (see Avise 2001, Pearse et al. 2002, Yue and Chang 2010,
Coleman and Jones 2011), and forensic studies (reviewed inWeir 2004)
require a robust statistical framework to infer relatedness between gen-
otyped individuals. Genetic relatedness also plays an important role in
the study of quantitative traits where the proportion of trait variability
explained by shared alleles indicates the strength of the genetic com-
ponent of the trait (Falconer andMackay 1996, Visscher et al. 2008). In
several allied fields, accurate estimation of genetic relatedness is critical.
For instance, association studies and linkage analyses without account-
ing for the increased relatedness due to population genetic structure
could lead to spurious associations (Pritchard et al. 2000a). Genetic

relatedness is also important in fields such as conservation genetics
(Oliehoek et al. 2006, Wang 2018).

The genetic relatedness, rXY ; between two individuals X and Y can
be defined in terms of the probability that their alleles are Identical By
Descent (IBD). rXY is thus also twice the coefficient of coancestry, uXY ;
and can be thought of as the inbreeding coefficient of any offspring that
X and Y may sire (Weir et al. 2006).

Conventional relatedness estimatorswork in either of threeways: (1)
estimating a coefficient of relatedness between two individuals using
multilocus genotype data, and linkage data to inform the length of IBD
tract sharing; or (2) assigning sib-ship partitions, reconstructing ped-
igrees, and using the pedigrees to estimate relatedness; or (3) directly
estimating relatedness from known pedigrees (Weir et al. 2006). All
relatedness estimators, however, have high variances, primarily owing
to difficulty in parsing out true IBD states from observed Identity By
State (IBS) states (Blouin 2003). This delineation of IBS vs. IBD is
achieved by estimating the conditional probabilities of observing a ge-
notype at a locus in one individualX, given the observed genotype at the
same locus in individual Y.

In the presence of population genetic structure though, localized
inbreeding makes individuals within the same subpopulation ‘more
related’, than as suggested by their pedigree. Pervasive or specific in-
breeding in recent generations past between two related individuals can
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be quantified though, if sufficient information is available on the exist-
ing genetic subpopulation structure. The estimated inbreeding coeffi-
cients (e.g., u, Weir 1994) affect the aforementioned conditional
probabilities (Weir 1994). Alternately, maintenance of advantageous
alleles in subpopulations by selection within a total population could
also yield ‘artificial’ patterns of relatedness between individuals that
share alleles, but not necessarily by direct descent.

Not accounting for such ‘shared’ allelic ancestry by utilizing true, or
estimated subpopulation allele frequencies leads to incorrect estimates
of genetic relatedness. Anderson and Weir (2007) subvert this issue of
estimating subpopulation allele frequencies by directly quantifying the
amount of inbreeding due to subpopulation structure, conditioned on a
priori knowledge of existing subpopulations within a total population.
Thus estimates of relatedness using the inbreeding coefficient u in its
formulation could be potentially biased.

Several othermethods also utilize current population allele frequen-
cies as proxies for ‘ancestral’ (this could mean subpopulation allele
frequencies of the current generation, as in Anderson and Weir 2007,
or allele frequencies of subpopulations from generations past, equated
to current allele frequencies, as in Wang 2002) subpopulation allele
frequencies, under Hardy-Weinberg Equilibrium (HWE), in their es-
timates of the inbreeding coefficient, u. This assumption can be prob-
lematic because we do not know the precise number of ancestral
subpopulations. However, the number of ancestral subpopulations
can be approximated by the current subpopulation structure in a ref-
erence population.

Most methods for estimating pairwise genetic relatedness also
assume that individuals whose pairwise relatedness is being estimated
are derived from the same single, panmictic subpopulation. The meth-
ods of Anderson and Weir (2007), and Wang (2011b), that attempt to
relax this assumption by handling samples from multiple subpopula-
tions, assume that individuals derived from different subpopulations
are genetically unrelated. However, in the presence of genetic admix-
ture and migration, alleles are shared between subpopulations.

To account for unobserved population structure in bi-allelic
genetic data, Moltke and Albrechtsen (2013) develop a two-step method
(RelateADMIX), which estimates population genetic structure as ad-
mixture or ancestry proportions, and subpopulation allele frequencies.
This method, when compared with other popular tools for estimating
relatedness, including REAP (Thornton et al. 2012) and PLink (Purcell
et al. 2007) shows considerable reduction in bias in estimating IBD
probabilities. This method uses the following information: (a) admix-
ture proportions of alleles at multiple bi-allelic loci in individuals, in
“most likely” genetic subpopulations, as determined by likelihood or
Bayesian methods such as those implemented in STRUCTURE (Falush
et al. 2007), ADMIXTURE (Alexander et al. 2009), and MULTICLUST
(Sethuraman 2013); and (b) subpopulation allele frequencies that are
estimated as parameters in the model. Specifically, the model uses the
probability distribution that an allele at a locus in an individual, or a
multilocus genotype of an individual, was derived from a subpopu-
lation in the recent past. IBS probabilities for two individuals, condi-
tioned on the three IBD states ðD7;D8;D9Þ sensu Jacquard 1972,
Anderson and Weir 2007) are then calculated. This calculation con-
tributes to a likelihood function (sensu Thompson 1975), which is
then maximized using an Expectation Maximization (EM) algorithm
(Dempster et al. 1977 to obtain maximum likelihood estimates for
relatedness coefficients. These IBD coefficients are then used in cal-
culating pairwise genetic relatedness, rXY and coancestry coefficients,
uXY This method however assumes that alleles derived from different
ancestral subpopulations are not IBD, and hence accounts for recent
population structure. Here I develop an alternate formulation that

utilizes estimated subpopulation allele frequencies, and ancestry pro-
portions to estimate genetic relatedness in structured populations to
include all nine IBD states ðD029Þ; and to be applicable to multi-allelic
data, which accounts for ancestral subpopulation structure, where al-
leles derived from different subpopulations can also be IBD in an
ancestral population. I develop a new package, InRelate based on a
non-linear programming solution to this problem. I then address sev-
eral questions based on the new framework 1) how does this estimator
of pairwise genetic relatedness compare with other estimators of re-
latedness for structured and unstructured populations in simulated and
empirical datasets?, 2) how does this estimator compare to other esti-
mators with increase in available information (measured in terms of the
number of genotyped loci)?, 3) how do bias and mean squared errors
(MSE’s) in estimation using InRelate change with demographic model
of evolutionary history?, 4) how does erroneous estimation of subpop-
ulation structure due to label switching affect estimates of relatedness
under the InRelate model? I also describe a method of bootstrapping
and a series of statistical tests in order to obtain confidence intervals
around estimates of relatedness.

MATERIALS AND METHODS

Relatedness Under the Admixture Model

Theory: I use the admixture model introduced by Pritchard et al.
(2000b) to model population structure, since it makes few assumptions
about the demography or history of the studied population.

It is to be noted that this model assumes that all individuals in the
sample are unrelated, which in our case, is not actually true. If there are
however, proportionately few relatives in the sample, then estimation
under theadmixturemodel shouldbe reliable.For sampleswithrampant
relatedness, pedigree estimation, or using methods that rely on linkage
information may be more appropriate.

Data: Assume that a sample of I largely unrelated, diploid individuals
has been collected from a population possibly consisting of K unknown
subpopulations. Each individual has been genotyped at L unlinked,
codominant, neutrally evolving loci. Assume that locus l exhibits Al

possible allelic states in the sample. For example, at SNP or AFLP
presence/absencemarkers,Al ¼ 2:Microsatellite markers evolving un-
der the infinite alleles model theoretically have infinite states, but we
observe some Al ,N in the finite sample. Missing data due to failed
genotyping are allowed, but assumed to be missing completely at
random.

The observed genotype data fromdiploids can then be combined
into a three-dimensional matrix X of size I · L· 2: Thus, 1#Xilm #Al

is the mth (first or second) allele at a locus l in individual i. The
data can then be reduced to sufficient statistics. Specifically, let
N ¼ nila : 1# i# I; 1# l# L; 1# a#Al be a jagged array with entry
nila; the number of alleles of type a observed at locus l in individual i.

Relatedness Under the Admixture Model
The admixturemodel Pritchard et al. (2000b) posits that all the alleles in
an individual are independent draws from a mixture of K subpopula-
tions. Each subpopulation is characterized by its allele frequencies: pkla
is the frequency of allele a ð1# a#AlÞ at locus l ð1# l# LÞ in sub-
population k ð1# k#KÞ: Each unrelated individual is characterized
by a particular mixture of the K subpopulations: each allele of individ-
ual i ð1# i# IÞ is derived from subpopulation k with probability hik:

The parameters are constrained such that
PK

k¼1hik ¼ 1 for each indi-
vidual i, and

PAl
a¼1pkla ¼ 1 for each subpopulation k and locus l.
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The likelihood of the observed multilocus genotype data, N ; given
the parameters Q ¼ hik; pkla : 1# i# I; 1# k#K; 1# a#Al under
the admixture model is:

LðN jQÞ ¼
YI
i¼1

YL
l¼1

YAl

a¼1

 XK
k¼1

hikpkla

!nila

: (1)

Relatives are then characterized by their shared alleles, i.e., shared
alleles that are identical by descent (IBD). As shown in Figure 1,
the four alleles at a locus in two diploid individuals can be in one of
nine possible, unobserved IBD states, D ¼ D1;D2; :::;D9: The mar-
ginal probability distribution over the IBD states for a pair of indi-
viduals at a locus is determined by their relationship. I use the
notation dq ¼ PðDqÞ for this distribution. For example, in non-
inbred populations, unrelated pairs are in state D9 with probability
d9 ¼ 1; while full siblings will share no alleles at a locus with prob-
ability d9 ¼ 0:25; one allele with probability d8 ¼ 0:5; and both
alleles with probability d7 ¼ 0:25; assuming their parents are
unrelated.

We only know if alleles are identical in state (IBS), and each IBD state
is consistent with one or more of the nine IBS states, S ¼ S1;S2; :::;S9:
Methods of relatedness estimation, use the IBS states observed at
multiple, independent loci of two individuals to estimate d, and hence
their relationship.

Consider two individuals i and j. We observe their IBS state,
Yl ¼ Xil1;Xil2;Xjl1;Xjl2; at each locus l, where a1 Each Yl follows an
observed configuration in S; but the true IBD state, Zl; is unobserved.
Given a known relationship, R; between i and j, the likelihood of the
observed data are

PðY jRÞ ¼
YL
l¼1

PðYljRÞ ¼
YL
l¼1

X1;2;...;9
s

PðYljZl ¼ Ds;RÞPðDsjRÞ

(2)

If two individuals were full siblings from parents from the same
subpopulation, genetic relatedness estimated using ancestral subpop-
ulation frequencies would be expected to account for deep descent, and
potential inbreeding of the parents. The relatedness between these full
siblings, estimated using the parameters of the admixture model,
should be as close to the true estimate, i.e., rXY ¼ 0:5; as possible.

On the other hand, if two individuals are full siblings from parents
derived from two different subpopulations, genetic relatedness esti-
mated using current subpopulation allele frequencies would likely be
an over- or under-estimate, because the recent admixture event be-
tween the two parents in the previous generation is not accommo-
dated. This result permits defining conditional probabilities of IBS
states, given their IBD state using this new parametrization, sensu
Jacquard (1972).

Following the leads of Jacquard (1972), Anderson andWeir (2007),
and Wang (2011b), define the set of nine IBD states (see Figure 1),
fD1;D2; :::;D9g given a diploid locus between two individuals, 1 and
2. Each IBD state could have nine, or more possible IBS states,
fS1S2; :::;S9g. Under the above assumptions, the probability that an
allele ap; is observed at a locus l, in individual i is

PK
k¼1pklaphik ¼ Zpi;

the probability that an allele aq; observed at the same locus l, in indi-
vidual j is

PK
k¼1pklaqhjk ¼ Zqj; and so on. All the conditional proba-

bilities, PðSx

��DyÞ are shown in Table 1. The likelihood of the IBD states
over a single locus, LðXjDÞ can be written as

LðXjDÞ ¼ PðSxjDÞ ¼
X1;2;...;9
y

P
�Sx
��Dy
�
Dy (3)

, where D is the set of 9 IBD states observable, X is the observed data,
and Sx is the observed IBS state of x 2 X: Over L independent loci,
this likelihood can be written as a product of individual locus likeli-
hoods as

LðXjDÞ ¼
YL
l

PðSxjDÞ ¼
YL
l

X1;2;...;9
y

P
�Sx
��Dy
�
Dy (4)

This likelihood function can be maximized using the constraints
that each IBD coefficient, Dy; y 2 1; :::; 9 is $ 0 and # 1; andP1;...;9

y Dy ¼ 1: I used the solnp function in the Rsolnp package in R
(Ghalanos and Theussl 2012), which implements the augmented
Lagrange method of Ye (1988) to solve this nine-dimensional prob-
lem with linear constraints. The coancestry coefficient, uXY ; be-
tween two individuals, X and Y then can be calculated as
uXY ¼ D1 þ 1

2 ðD3 þ D5 þ D7Þ þ 1
4D8 and, by definition, the related-

ness as rXY ¼ 2uXY : Note that rXY is # 1 only if the population is
outbred (Dj; j ¼ 1; :::; 6 ¼ 0; and D7;D8;D9 6¼ 0).

Figure 1 Nine possible Identity By
Descent (IBD) states for the observed
genotypes of two diploid individuals i
and j at a genomic locus l. In each IBD
state (D1 2D9), The alleles are con-
nected by a line if they are IBD. Ob-
served Identity By State (IBS) states
are not shown.
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Other Relatedness Estimators
I also implemented the methods of Anderson and Weir (2007), and
Wang (2011b) under the same optimization framework, using Rsolnp:
The method of Wang (2011b) is different from that of Anderson and
Weir (2007) in that it accounts for inbreeding. In both cases, subpop-
ulation allele frequencies are modeled under the Dirichlet distribution,
with the global parameter, u, measured as the probability that two
randomly sampled individuals from a subpopulation are IBD under
an island model. Anderson andWeir (2007) do not state explicitly how
they estimate u, but Wang (2011b) indicates using the Weir and Cock-
erham u estimatorWeir and Cockerham (1984), which I used as well in
the framework of Anderson and Weir (2007) (and Wang 2011b) to
obtain comparable relatedness estimates. Regardless, under the
equilibrium assumption that population subdivision is unchanging
in time, the probability of drawing two of the same a alleles at a
locus from the same subpopulation is pa þ ð12 uÞpa; where pa is
the frequency of allele a at that locus. This leads into the same
likelihood framework described above (3,4), for the estimators of
Anderson and Weir (2007), and Wang (2011b). Anderson and
Weir (2007) utilize a simplex method to obtain maximum likeli-
hood estimates of the IBD coefficients, D7; D8 and D9; using the
constraints that

P9
i¼7 D ¼ 1; 0#Di # 1; and 4D7D9 ,D2

8; for large,
non-inbred populations.

Wang (2011b) offers another numerical solution by using Powell’s
quadratically convergent method (Press 2007) to obtain likelihood es-
timates for all 9 variables above, as well as derives moment estimators
under the same population structure framework, accounting for in-
breeding using the inbreeding coefficient, u, for other previously de-
rived estimators (Queller and Goodnight 1989, Lynch and Ritland
1999, Wang 2002).

In this manuscript, the same non-linear programming method in
9 variables (Di; i 2 1; 2; :::; 9) was used to obtain maximum likelihood
estimates for both estimators of Anderson and Weir (2007) and Wang
(2011b). Genetic relatedness, rXY and the coancestry coefficient, uXY
were then calculated as before.

Other estimators that were compared include those of Queller and
Goodnight (1989), Wang (2002), Lynch and Ritland (1999), Lynch
(1988), Ritland (1996), Wang (2007), and Milligan (2003), as imple-
mented in the program COANCESTRY (Wang 2011a). Note that all
the methods implemented in Wang (2011a) do not account for sub-
population structure (Table 2). However, all these methods account for
multi-allelic data, which allow for equitable comparison with InRelate.
The methods of Thornton et al. (2012) (REAP), Purcell et al. (2007)
(PLINK), and Moltke and Albrechtsen (2013) (RelateAdmix), while
more popular in recent years, are only applicable to di-allelic data
(e.g., SNP’s), and hence were not used for comparison in this
manuscript.

Bootstrapping and Pedigree Assignment
Under the assumption that sampled loci between two individualsX
and Y are independent, we can obtain variance in estimation of
relatedness by bootstrapping over loci. For every pair of individ-
uals, loci are sampled with replacement to construct bootstrap
replicates, and relatedness is estimated under the maximum likeli-
hood framework. I then construct 95% confidence intervals of the
estimated relatedness values. Simulated bootstrap standard errors
are calculated as:

SEðûXYÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPB

b¼1

�
ûXY ;b2

�̂uXY ;b
�2

B2 1

s
(5)
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where B is the number of bootstrap replicates and:

�̂
uXY ;b ¼

ûXY ;b
B

(6)

These variance estimates are then used in a series of Wald Tests,
compared to a normal distribution, to assign relatedness categories to
eachpairof relatednessestimates.TheWaldTest statistic is calculatedas:

ûXY 2 u0

SEðûXY Þ
(7)

After correcting for multiple testing by the Bonferroni method, pairs
are assigned to a relatedness category at a p-value threshold of 0.05.
Relatedness categories tested include: MonoZygotic twins - MZ, Full
Siblings - FS, Half Siblings - HS, First Cousins - FC, Parent-Offspring -
PO, Second Cousins - SC, AvunCular - AC, and UnRelated - UR.

Simulations
Five separate sets of multi-allelic genomic data were simulated to test
the performance of relatedness estimates using InRelate (MC2013,
hereon), against other estimators. In all scenarios, subpopulations
from which individuals were sampled from were assumed to be the
‘true’ subpopulation, for comparison with other methods. Admixture

proportions and subpopulation allele frequencies for all analyses were
obtained by performing runs of MULTICLUST (Sethuraman 2013).
MULTICLUST uses an EM algorithm to estimate parameters under
the admixture model (Pritchard et al. 2000b), and extends themethod
of Alexander et al. (2009) for multi-allelic data. It is much faster than
STRUCTURE, and does not have MCMC convergence and mixing
problems. Convergence of the EM algorithm was assumed if the log
likelihood was not increasing by $ 1026 in all scenarios.

Scenario 1: Hierarchical Island Model: Under Scenario 1, all initial
allele frequencieswere simulatedat50diploid, codominant,multi-allelic
(maximumof 50 allelic variants per locus), unlinked loci, using Easypop
v.1.7 (Balloux 2001). The Hierarchical Island Model was used, wherein
each total population (out of 3) is comprised of subpopulations, which
are in turn comprised of smaller subpopulations. I varied the number of
subpopulations (K) to be one of 3, 5, 10, or 15. To allow for genetic
admixture, I specified relatively greater levels of gene flow of 0.01 total
proportion of migrant females and males per generation, between sub-
populations inside each population, and relatively lower gene flow of
0.001 total proportion of migrant females and males per generation,
between populations. Subpopulation sizes of 25 males and 25 females
per subpopulation were held constant across generations. A forward-
time simulation was performed for 3000 generations, and I utilized the
last generation’s allele frequency distribution for all further simulations.

n Table 2 List of estimators tested and their references

Label Reference Accounts for structure?

1 AW2007 Anderson and Weir 2007 Yes
2 Wang2011 Wang 2011b Yes
3 MC2013_WI Sethuraman 2013 with inbreeding Yes
4 MC2013 Sethuraman 2013 Yes
5 TrioML Wang 2007 No
6 Wang2002 Wang 2002 No
7 LynchLi Lynch 1988, Li et al. 1993 No
8 LynchRi Lynch and Ritland 1999 No
9 Ritland Ritland 1996 No
10 QuellerG Queller and Goodnight 1989 No
11 DyadML Milligan 2003 No

Figure 2 Comparing (a) MSE and (b) Bias in estimates of genetic relatedness between 1000 Full Sib (FS) dyads with increasing degree of
subpopulation structure. Number of subpopulations (K) here was varied between K = 3 to K = 15 under the hierarchical island model described in
Scenario 1.
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All populations at generation 3000 were tested for Hardy-Weinberg
Equilibrium (HWE).

Scenario 2: Island Model: Under Scenario 2, I simulated multi-allelic
genomic data using the same demographic parameters as in scenario
1 using a single Island Model (K ¼ 1), with no migration.

Simulating related dyads: I then simulated k ¼ 1000 replicate dyads
each of Parent-Offspring (PO), Full Siblings (FS), Half Siblings (HS),
First Cousins (FC), and UnRelated (UR) individuals under different
levels of known population subdivision (K ¼ 3; 5; 10; 15). For FS
dyads, two parents were randomly picked from the same subpopula-
tion, and two offspring were created from theirmultilocus genotypes by
randomly sampling their allele distribution from either parent. Since
these loci are unlinked, I did not explicitly account for IBD tract
length distribution. For HS dyads, one shared parent, and two other
parents were simulated, and offspring generated from each cross. For
FC dyads, a pair of FS dyads were created first, then their mates were
randomly picked from the same subpopulation, to create offspring

from each cross. PO dyads were picked similar to the FS simulation,
with two parents being sampled randomly from the same subpopu-
lation to create an offspring, and one of the parents were sampled as
part of the dyad. UR dyads were created by randomly sampling two
individuals from the same subpopulation.

Admixture proportions and subpopulation allele frequencies were
estimated using MULTICLUST (Sethuraman 2013) at the ‘true’ as-
sumed number of subpopulations (i.e., K ¼ 1; 3; :::; 15). These esti-
mates were then used in determining pairwise genetic relatedness
with InRelate.

I estimated Fst; using the geneclust package in R, and utilized those
estimates in the same IBD-IBS framework in R to obtain pairwise re-
latedness by the methods of Anderson and Weir (2007) and Wang
(2011b). The package geneclust implements the method of Weir and
Cockerham (1984) to obtain a normalized multi-locus global u
estimate. For comparison with methods that did not account for
population structure, I used the program COANCESTRY (Wang
2011a). Table 2 shows a summary of methods tested in this
manuscript.

Figure 3 Comparing (a) MSE and (b) Bias in estimates of genetic relatedness between 1000 Half Sib (HS) dyads with increasing degree of subpopulation
structure. Number of subpopulations (K) here was varied between K = 3 to K = 15 under the hierarchical island model described in Scenario 1.

Figure 4 Comparing (a) MSE and (b) Bias in estimates of genetic relatedness between 1000 Parent Offspring (PO) dyads with increasing degree
of subpopulation structure. Number of subpopulations (K) here was varied between K = 3 to K = 15 under the hierarchical island model described
in Scenario 1.
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Scenario 3: Effect of number of loci: Toquantify the effect of increasing
the number of genotyped loci on estimates of genetic relatedness, I
simulated datasets under the samemodels specified in scenario 1 above,
and the number of observed loci were varied between 10 and 40, to
simulate a realistic scenario wherein individuals are genotyped at , 50
variant STR loci.

Scenario 4: Effect of method of estimating Fst : Under scenario 4, I was
interested in how the estimation of Fst affected estimates of genetic
relatedness using the methods of Anderson and Weir (2007) and
Wang (2011b), against MC2013 (InRelate using all 9 IBD states), and
MC2013WI (InRelate using only the last 3 IBD states, assuming an
outbred population, sensu Moltke and Albrechtsen 2013). To study
this, I simulated a total of 1000 individuals distributed among K ¼ 3
subpopulations, genotyped at 50 STR loci (# 50 allelic states per locus),
with a mutation rate of 1 · 1026 mutations per generation, and a con-
stant bidirectional migration rate of 0.001 of total individuals per gen-
eration, for 5000 generations. This gives a theoretical Fst ¼ 1

ð1þ 4NmÞ of

0.2, while Weir and Cockerham’s normalized Q estimated at genera-
tion 5000 by geneclust was 0.1038. Hundred FS pairs were simulated
from the generation 5000 population as described above. Allele fre-
quency distribution of the generation 5000 population was used in
estimating relatedness by the methods of Anderson and Weir (2007)
and Wang (2011b). Admixture proportions and subpopulation allele
frequencies for use by MC2013 and MC2013WI estimators were
obtained using MULTICLUST at K ¼ 3 as before. To compare the
performance of the methods of Anderson and Weir (2007) and
Wang (2011b), I estimated relatedness under both methods using
(a) theoretical Fst of 0.2, and (b) using the estimated Weir and Cock-
erham Qst of 0.1038.

Scenario 5: Effect of label-switching:Underscenario5, Iwas interested
in understanding how ‘label-switching’ affected estimates of genetic
relatedness in methods that accounted for population structure.
‘Label-switching’ in this context refers to misclassification of individu-
als to subpopulations. To study this, I used the same dataset simulated

Figure 5 Comparing (a) MSE and (b) Bias in estimates of genetic relatedness between 1000 First Cousin (FC) dyads with increasing degree of
subpopulation structure. Number of subpopulations (K) here was varied between K = 3 to K = 15 under the hierarchical island model described in
Scenario 1.

Figure 6 Comparing (a) MSE and (b) Bias in estimates of genetic relatedness between 1000 UnRelated (UR) dyads with increasing degree of
subpopulation structure. Number of subpopulations (K) here was varied between K = 3 to K = 15 under the hierarchical island model described in
Scenario 1.
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for scenario 3, switched the labels of either 0.1, 0.5 or 1.0 fraction of the
total population, and re-estimated Weir and Cockerham’s Qst Weir
and Cockerham (1984), and genetic relatedness using the methods of
Anderson and Weir (2007) and Wang (2011b). Since population as-
signment is not a priori for the MC2013 and MC2013WI methods, I
used the same results obtained from scenario 3 for comparison with the
methods of AW2007 and Wang2011.

Error and Bias: Deviation from true relatedness was examined by
calculating the Mean Square Error (MSE). MSE is measured as:

1
R

XR
i¼1

ðr̂i2rtrueÞ2 (8)

, where R is the total number of replicate dyads (here 1000), r̂i is the
relatedness estimated using one of the above methods, and rtrue is the
true relatedness value, rxy; which is 0.5 for PO and FS dyads, 0.25 for
HS dyads, 0.125 for FC dyads, and 0.0 for UR dyads. Bias was calcu-
lated as the deviation of the mean for all k ¼ 1000 replicates under
each scenario from the true mean.

�rtrue 2 �̂ri (9)

Scenario 6: Bootstrapping: For bootstrap analyses, I simulated another
dataset from the above data set of K ¼ 3 subpopulations, genotyped
over 300 loci. I picked 5 dyads each of FS, HS, PO, FC, and UR
individuals (total of 50 individuals). Boostrap datasets (200 replicates)
were then simulated, with 50 individuals each by resampling loci with
replacement. For each dataset, the true subpopulation structure was
assumed to be comprised of K ¼ 3 subpopulations. Admxiture pro-
portions and allele frequencies were computed using MULTICLUST
(at K ¼ 3), and relatedness was then estimated using InRelate. Relat-
edness category assignment was then performed using the procedure
described above.

Scenario 7: HGDP-CEPH Data: Rosenberg (2006) and several allied
publications (also see Ramachandran et al. 2005, Rosenberg et al. 2006)
describe the use of subsets of ‘unrelated’ individuals from the HGDP-
CEPH Human Genome Diversity Cell Line Panel (H1048 Cann et al.

2002, Rosenberg et al. 2005). In these studies, relatedness was estimated
between all pairs of individuals from within each sampled locale using
RELPAIR (Boehnke and Cox 1997, Epstein et al. 2000), and several
putatively related individuals from both within and across sampled
locations were identified. For the purpose of this manuscript, I mined
the original H1048 dataset for individuals reportedly related from
within the African continent. The African continent was represented
in this data set by 115 individuals, classified as Bantu (South Africa),
Bantu (Kenya), Mandenka, Yoruba, San, Mbuti Pygmy, or Biaka
Pygmy, andwere genotyped at a total of 783microsatellite loci. Average
differentiation, measured as Nei’s Gst between these sampled locations
was estimated as 0.1169, using the method of Nei and Chesser (1983),
which indicates ‘moderate’ levels of differentiation (Wright 1950). I
estimated population structure within these 115 individuals using
MULTICLUST, at an a priori K ¼ 7: Admixture proportions and sub-
population allele frequencies were then obtained for the 24 relatedness
dyads reported in Rosenberg et al. (2005), and I used these in estimating
pairwise relatedness using InRelate. Allele frequencies were calculated
assuming sampled locations as subpopulations, and used in estimating
relatedness by the methods of Anderson and Weir (2007) and Wang
(2011b) for comparison. Note that RELPAIR (Boehnke and Cox 1997)
utilizes recombination information to obtain genetic relatedness, and is
therefore very different from all the other methods compared in this
manuscript. For the purpose of this comparison, I used RELPAIR
estimates as the ‘truth’ to measure concordance with MC2013 and
MC2013WI.

Data Availability
All simulated data, and R scripts can be accessed at https://github.com/
arunsethuraman/inrelate.

RESULTS

Scenario 1: Hierarchical Island Model
In general, in all scenarios that measured genetic relatedness among FS,
PO, and HS dyads, the InRelate estimator (MC2013) performed better,
or comparably with the AW2007 (Anderson and Weir 2007) and
Wang2011 (Wang 2011b) estimators (Figures 2, 3, 4, 5, 6). FS and
PO relatedness had the least bias, compared to all other estimators.
Interestingly, MC2013 and MC2013WI underestimated relatedness in

Figure 7 Distribution of estimates of genetic relatedness between 1000 Full Sib (FS) dyads with increasing degree of subpopulation structure
using (a) MC2013, and (b) MC2013WI estimators implemented in InRelate. Number of subpopulations (K) here was varied between K = 3 to K =
15 under the hierarchical island model described in Scenario 1. True relatedness between full sibs = 0.5 is indicated using the dotted red line.
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FC and UR dyads when compared to the AW2007 and Wang2011
estimators. Distributions of estimated relatedness using MC2013 and
MC2013WI are shown in Figures 7, 8, 9, 10, and 11.

The other estimators that did not account for population structure
consistently over-, or under-estimated genetic relatedness between
dyads, with large mean squared errors (MSE). It was also noted
(Wang 2011b) that all estimators that ignored population genetic struc-
ture had increasing bias, with an increase in the degree of population
genetic structure, except in the inference of PO dyads, and UR dyads.

Correspondingly, MC2013 had the lowest MSE in the estimation of
relatedness in FS, PO, andHSdyads, while themethods of AW2007 and
Wang2011 had the lowest MSE for FC and UR dyads. The Ritland
(Ritland 2005) estimator, and the methods of Anderson and Weir
(2007) and Wang (2011b), had the highest MSE for PO dyads, while
the Ritland estimator (Ritland 2005) had the highest MSE in all the
cases. The estimators of Queller and Goodnight (1989) (QuellerG),
Lynch and Ritland (1999) (LynchRi), and Wang (2007) (TrioML) per-
formed similarly, with higher bias and MSE, than MC2013. Also, the
estimators of Ritland (1996), Queller and Goodnight (1989) may have

values , 0 or . 1; but these were not truncated to fall inside this range,
as performed by Wang (2011b) in order to observe the true trend in
estimation of relatedness.

Scenario 2: Island Model
In the absence of population structure, under a panmictic islandmodel,
all methods performed comparably, with low MSE and bias for all FS,
PO, HS dyads. The method of Ritland (1996) had considerably higher
MSE compared to all the othermethods in the estimation of FS, PO, HS
and FC dyads. The MC2013 and MC2013WI estimators have higher
MSE and bias in determining relatedness between FC and UR dyads
(see Figures 12, 13).

Scenario 3: Effect of Number of Loci
Bias and MSE estimates of pairwise genetic relatedness in FS dyads
showed a trend of decrease with an increase in the number of loci
(Figures 14, 15, 16, 17, 18, 19) across all estimators at K ¼ 3; 5, and 10,
indicating the relative better estimation with increased genotypic in-
formation. Estimates of relatedness at K = 3, 5 and 15 are shown in

Figure 8 Distribution of estimates of genetic relatedness between 1000 Half Sib (HS) dyads with increasing degree of subpopulation structure
using (a) MC2013, and (b) MC2013WI estimators implemented in InRelate. Number of subpopulations (K) here was varied between K = 3 to K =
15 under the hierarchical island model described in Scenario 1. True relatedness between half sibs = 0.25 is indicated using the dotted red line.

Figure 9 Distribution of estimates of genetic relatedness between 1000 Parent Offspring (PO) dyads with increasing degree of subpopulation structure
using (a) MC2013, and (b) MC2013WI estimators implemented in InRelate. Number of subpopulations (K) here was varied between K = 3 to K = 15 under
the hierarchical island model described in Scenario 1. True relatedness between parent-offsprings = 0.5 is indicated using the dotted red line.
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Figures 15, 17, and 19 respectively. In general, InRelate had the least
bias and least MSE in estimation of FS dyads across different levels of
available information, measured as a function of the number of loci,
with and without accounting for inbreeding (Figures 14, 16, 18). The
estimator that accounted for inbreeding (MC2013WI) outperformed
all other estimators with the least bias and MSE in estimation of FS
relatedness. All other estimators of relatedness which did, or did not did
not account for subpopulation structure performed with consistent
decrease in bias andMSE with increase in the number of analyzed loci,
as expected. The Ritland estimator was the least accurate, at
K ¼ 3; 5; 10; across L ¼ 10; 20; 30; 40; followed by the estimators of
Anderson and Weir (2007), and Wang (2011b).

Scenario 4: Effect of method of estimating Fst
The methods of Anderson and Weir (2007) and Wang (2011b) have
larger confidence intervals in estimating relatedness in FS dyads, with
theQst ofWeir andCockerham (1984) having lower deviation from the

truth (rxy ¼ 0:5), compared to the theoretical Fst: The MC2013 and
MC2013WI methods outperform both methods with smaller confi-
dence intervals around the mean (as shown in Figure 20).

Scenario 5: Effect of ‘label-switching’
InRelate estimators do not have problems with ‘label-switching’, since
population assignment is determined by the clustering method, and
hence the ancestry proportions and allele frequencies are recomputed
every time. On the other hand, both the methods of Anderson and
Weir (2007) and Wang (2011b) show increased deviation from the
mean (true rxy ¼ 0:5) when labels are switched, due to the erroneous
computation of differentiation (See Figure 20).

Scenario 6: Bootstrapping
Out of the 5 dyads of FS, HS, PO, FC and UR categories were correctly
assigned after 200 bootstrap iterations in 44% of pairs. All Parent-
Offspring pairs were correctly assigned, while two each of FS, FC, and

Figure 10 Distribution of estimates of genetic relatedness between 1000 First Cousin (FC) dyads with increasing degree of subpopulation structure
using (a) MC2013, and (b) MC2013WI estimators implemented in InRelate. Number of subpopulations (K) here was varied between K = 3 to K = 15 under
the hierarchical island model described in Scenario 1. True relatedness between first cousins = 0.125 is indicated using the dotted red line.

Figure 11 Distribution of estimates of genetic relatedness between 1000 UnRelated (UR) dyads with increasing degree of subpopulation
structure using (a) MC2013, and (b) MC2013WI estimators implemented in InRelate. Number of subpopulations (K) here was varied between K =
3 to K = 15 under the hierarchical island model described in Scenario 1. True relatedness between half sibs = 0.0 is indicated using the dotted red
line.
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UR pairs were correctly assigned. None of the HS pairs were signif-
icantly assigned to any category. Plots of confidence intervals around
estimates using both the MC2013 and MC2013WI estimators are
shown in Figure 21.

Scenario 7: HGDP-CEPH Panel
Across24dyadswhichwere either identifiedasFS,HS(orAvuncular), or
PO by Rosenberg et al. (2005), theMC2013 andMC2013WI estimators
outperformed the methods of Anderson and Weir (2007) and Wang
(2011b) (see Figure 22), with consistently lower bias (MC2013WI -
mean bias = 0.0114 (sd = 0.0667), MC2013 - mean bias = 0.0114 (sd
= 0.0667), AW2007 - mean bias = -0.2857 (sd = 0.0779), Wang2011 -
mean bias = -0.3204 (sd = 0.0895)). The MSE was also considerably
lower (MC2013WI - 0.0044, MC2013 - 0.0044, AW2007 - 0.0874,
Wang2011 - 0.1103) when comparing the MC2013 estimators with

AW2007 and Wang2011. As reported before, these populations are
‘moderately’ differentiated (with a Gst = 0.1169), and have historically
been reported to have significant levels of gene flow or admixture, as
well as exhibiting serial founder effects (see Tishkoff et al. 2009,
Ramachandran et al. 2005).

DISCUSSION
The presence of ancestral subpopulation structure affects estimates of
pairwise genetic relatedness between individuals from the same sub-
population, owing to pervasive inbreeding, and non-randommating in
recent ancestral generations.

The primary goal of this paper was to develop a maximum-likelihood
frameworkusing an alternate parametrization, to estimate pairwise genetic
relatedness between two individuals X and Y, while accounting for the
‘true’ genetic subpopulation structure in the population. This ‘true’ genetic

Figure 12 (a) MSE and (b) Bias in estimates of genetic relatedness between 1000 Full Sib (FS) dyads sampled from a panmictic population (K = 1)
under Scenario 2, as described in the methods. Methods compared in this figure are those of Anderson and Weir (2007), Wang (2011b), Wang
(2007), Wang (2002), Lynch (1988), and Lynch and Ritland (1999).

Figure 13 (a) MSE and (b) Bias in estimates of genetic relatedness between 1000 Full Sib (FS) dyads sampled from a panmictic population (K = 1)
under Scenario 2, as described in the methods. Methods compared in this figure are MC2013, MC2013WI, Ritland (1996), Queller and Goodnight
(1989), and Milligan (2003).
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subpopulation structure is unobserved and can be inferred from the data.
Since the proposal of an admixture model by Pritchard et al. (2000b),
several tools have been developed to estimate subpopulation structure,
primarily to infer the number of subpopulations, K, admixture propor-
tions (herehik), and subpopulation allele frequencies, pkla:These estimates
have been applied widely, including to infer ancestral migration patterns
(e.g., Rosenberg et al. 2002,Eriksson and Manica 2012), in association

studies (e.g., Collins-Schramm et al. 2002), and to inform conservation
decisions (see Allendorf et al. 2010). InRelate uses inferred information
from population structure studies (using methods such as STRUCTURE
(Pritchard et al. 2000b) or MULTICLUST (Sethuraman 2013) - see Liu
et al. 2013) to inform the estimation of relatedness.

Across my simulations and analyses of the HGDP-CEPH African
datasets, InRelate estimators of relatedness (MC2013 and MC2013WI)

Figure 14 Bias and Mean Squared Error in esti-
mates of genetic relatedness between 1000 Full
Sib (FS) dyads sampled from K ¼ 3 subpopula-
tions, simulated under Scenario 5, with increas-
ing number of genotyped loci between L = 10 and
L = 40.

Figure 15 (a) MC2013 and (b) MC2013WI estimates of genetic relatedness between 1000 Full Sib (FS) dyads sampled under Scenario 5 (K = 3), by
varying the number of loci sampled between L = 10 to L = 40. True estimate of relatedness between Full Siblings = 0.5 is shown in the dotted red line.
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outperform several previously developed methods for relatedness esti-
mation in admixed populations with considerably less error and bias.
This accuracy is more pronounced particularly in between pairs of full
siblings, parent-offspring, or half-siblings. The previously developed
methods of Anderson and Weir (2007) and Wang (2011b) outper-
form InRelate in estimating first cousins or unrelated dyads in my

simulations. As noted by Anderson and Weir (2007), estimates of re-
latedness in unrelated individuals are upwardly biased by all methods
(see Figure 6)). I surmise this result is an artifact of ignoring subpop-
ulation structure, in the presence of undetected ancient admixture,
which results in an upward bias for all estimates. While MC2013 and
MC2013WI account for this by using estimated subpopulation allele

Figure 16 Bias and Mean Squared Error in esti-
mates of genetic relatedness between 1000 Full
Sib (FS) dyads sampled from K ¼ 5 subpopula-
tions, simulated under Scenario 5, with increasing
number of genotyped loci between L = 10 and
L = 40.

Figure 17 (a) MC2013 and (b) MC2013WI estimates of genetic relatedness between 1000 Full Sib (FS) dyads sampled under Scenario 5 (K = 5), by
varying the number of loci sampled between L = 10 to L = 40. True estimate of relatedness between Full Siblings = 0.5 is shown in the dotted red
line.
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frequencies, the other estimators (AW2007(Anderson and Weir 2007,
Wang2011(Wang 2011b) approximate it by using current allele fre-
quencies, estimated from sampled populations.

Of note though are general difficulties in estimation of relatedness
betweenfirst cousins, secondcousins, andothermoredistantly relatedor
unrelated pairs. These are also seen and reported by other likelihood
methods (see Thompson 1975, Anderson andWeir 2007,Wang 2011b,

Konovalov andHeg 2008), other estimators that use summary statistics
(see Lynch and Ritland 1999, Blouin 2003, Anderson and Weir 2007,
Wang 2002), and methods that utilize linkage or recombination in-
formation (see Pemberton et al. 2013, Rosenberg et al. 2005). This is
primarily due to the fact that the most predominant relationship be-
tween two individuals is usually inferred, while the historical related-
ness, due to evolutionary demographic processes, between them is

Figure 18 Bias and Mean Squared Error in esti-
mates of genetic relatedness between 1000 Full
Sib (FS) dyads sampled from K ¼ 10 subpopula-
tions, simulated under Scenario 5, with increasing
number of genotyped loci between L = 10 and
L = 40.

Figure 19 (a) MC2013 and (b) MC2013WI estimates of genetic relatedness between 1000 Full Sib (FS) dyads sampled under Scenario 5 (K = 10),
by varying the number of loci sampled between L = 10 to L = 40. True estimate of relatedness between Full Siblings = 0.5 is shown in the dotted
red line.
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ignored by most methods. Methods that account for this ‘deep’ relat-
edness are yet to be devised, and could help resolve issues with esti-
mating deeper pedigrees, and relatedness between individuals. Wang
(2011b) also notes this bias in estimating relatedness values close to the
lower bound of 0 in the methods of Anderson and Weir (2007) and
Wang (2011b).

Varying the number of loci minimally affects all relatedness esti-
mators. This outcome may derive from variation in allele frequencies
being sufficiently explained by the parameters of the admixture model
(admixtureproportionsandsubpopulationallele frequencies), as against

biasing all estimates using a single non-varying parameter, u (or Fst ,
sensuAnderson andWeir 2007 andWang 2011b). Several methods can
estimate this coefficient u and each method has its own biases and
efficiencies. This approach could potentially cause increased bias
and MSE in using the estimators of Anderson andWeir (2007) and
Wang (2011b), which could be addressed by utilizing a population
structuring method to assign individuals to subpopulations, con-
ditioning on that population structure in estimating u. Regardless,
increasing the number of sampled loci decreased bias of all esti-
mators, as expected.

Figure 20 Estimates of relatedness for 1000 FS dyads simulated under the panmictic island model (K = 1). (a) Estimates of relatedness under
Scenario 3 where method of estimating Fst was varied. MC1 denotes the method of MC2013, MC2 is MC2013 accounting for inbreeding, A1 is
the method of Anderson and Weir (2007) using the estimated Qst of Weir and Cockerham (1984), W1 is the method of Wang (2011b) using
estimated Q; A2 and W2 denote the above methods using expected Fst : (b) Estimates of relatedness under Scenario 4, where the population ID’s
were shuffled to simulate ‘label switching’. MC1, MC2, A1 and W1 are the same as before. A2 and W2 are the methods of Anderson and Weir
(2007) and Wang (2011b) respectively, with 0.1 proportion of labels shuffled, A3 and W3 have 0.5 proportion of labels shuffled, and A4 and W4
have 1.0 proportion of labels shuffled.

Figure 21 (a) MC2013 and (b) MC2013WI relatedness estimates and confidence intervals for 5 different relatedness categories, constructed using
200 bootstrap replicates under Scenario 6. The simulation used K = 3 subpopulations, and a total of 5 dyads of FS, HS, PO, FC, and UR individuals
were picked.
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InRelate estimators do not have problemswith ‘label-switching’, since
the subpopulation structure is inferred from the data and not assumed a
priori as in all other methods. Correspondingly, all allele frequencies, and
ancestry proportions are re-calculated with switched labels, which are
then used in estimates of relatedness.While all my analyses have inferred
admixture proportions at the assumed ‘true’ subpopulation structure (i.e.,
K), perhaps the true utility of this method would be if this K was inferred
from the data, and the corresponding inferred admixture proportions
and allele frequencies used in the estimation of relatedness. However, this
is a statistical problem (Pritchard et al. 2000b, Falush et al. 2003, Hubisz
et al. 2009, Sethuraman 2013, Alexander et al. 2009), with estimates of
subpopulation allele frequencies and ancestry proportions confounded
by (1) different demographic histories (Falush et al. 2016, (2) overpar-
ametrization, and a general improvement in the likelihood with increas-
ing the parameter K (Evanno et al. 2005), and (3) issues with label
switching (Jakobsson and Rosenberg 2007). InRelate and the method
of Moltke and Albrechtsen (2013) are hence both affected by the ‘accu-
racy’ of estimates of structure and admixture parameters.

InRelatemethods are of best utilitywhendealingwithmulti-allelic data,
generated from individuals that are sampled from populations that are
ancestrally structured, and generally outdo the methods of Anderson and
Weir (2007), and Wang (2011b), which are both relatedness estimators
under similar models. InRelate also does not require linkage maps, which
makes it more utilitarian for estimating relatedness in non-model systems
that don’t have detailed genomic information. I have also shown that
InRelate outperforms all themethods implemented in theCOANCESTRY
(Wang 2011a) software, since all these methods do not account for

ancestral population structure. However, the RelateAdmix method of
Moltke and Albrechtsen (2013), which has been shown to outperform
the methods of REAP (Thornton et al. 2012), PLink (Purcell et al.
2007), and KING (Manichaikul et al. 2010) is more applicable when
analyzing SNP (di-allelic) data, generated from non-inbred populations
that are recently admixed. When the underlying demographic history of
the sampled individuals is unknown (or difficult to estimate),methods that
are model-free, such as PC-Relate (Conomos et al. 2016) are bound to
perform better (summarized in Ramstetter et al. 2017).
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