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ABSTRACT
The gastrointestinal microbiota has an important role in human health, and there is increasing
interest in utilizing dietary approaches to modulate the composition and metabolic function of the
microbial communities that colonize the gastrointestinal tract to improve health, and prevent or
treat disease. One dietary strategy for modulating the microbiota is consumption of dietary fiber
and prebiotics that can be metabolized by microbes in the gastrointestinal tract. Human alimentary
enzymes are not able to digest most complex carbohydrates and plant polysaccharides. Instead,
these polysaccharides are metabolized by microbes which generate short-chain fatty acids (SCFAs),
including acetate, propionate, and butyrate. This article reviews the current knowledge of the
impact of fiber and prebiotic consumption on the composition and metabolic function of the
human gastrointestinal microbiota, including the effects of physiochemical properties of complex
carbohydrates, adequate intake and treatment dosages, and the phenotypic responses related to
the composition of the human microbiota.

KEYWORDS
fermentation; human
microbiome; non-digestible
carbohydrate; short-chain
fatty acids

Introduction

The human gastrointestinal microbiota—one of the
most densely populated microbial communities on
earth—contains highly diverse microbial communities
that provide metabolic, immunologic, and protective
functions that play a crucial role in human health.1-3

The gastrointestinal microbiota is influenced by a
number of factors including genetics, host physiology
(age of the host, disease, stress, etc.) and environmen-
tal factors such as living conditions and use of medica-
tions.3-7 Increasingly, diet is recognized as a key
environmental factor that mediates the composition
and metabolic function of the gastrointestinal micro-
biota.8 Indeed, consumption of specific dietary ingre-
dients, such as fiber and prebiotics, is an avenue by
which the microbiota can be modulated.

Dietary fibers, carbohydrate polymers which are
neither digested nor absorbed, are subjected to bacte-
rial fermentation in the gastrointestinal tract and thus
impact the composition of bacterial communities as
well as microbial metabolic activities, including the
production of fermentative end products. Some

dietary fibers can also be classified as prebiotic.9 Prebi-
otics are defined as “selectively fermented ingredients
that result in specific changes, in the composition
and/or activity of the gastrointestinal microbiota, thus
conferring benefit(s) upon host health.”10 This review
discusses the impact of consumption of dietary fibers
and prebiotics on the gastrointestinal microbiota,
including the role of the ingredients’ physiochemical
properties and dose, as well as the phenotypic
responses related to the composition of the resident
microbiota.

The role of diet, fiber, and prebiotics on the
gastrointestinal microbiome

The capacity of diet to modify the gastrointestinal
microbiota of humans and other mammals has been
extensively studied indicating that the composition of
the diet, habitual dietary intake, and acute dietary
changes all impact the microbial communities within
the gut. Among mammals, the microbiota of herbi-
vores, omnivores, and carnivores are compositionally
and functionally distinct.11 Specific to humans,
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habitual dietary patterns are associated with the com-
position of individual’s gastrointestinal microbiota,
but significant changes in macronutrient and fiber
intake also can rapidly induce changes.12 Pronounced
shifts in bacterial diversity and production of micro-
bial derived fecal fermentative end products have been
demonstrated in as little as 24 hours in humans
switching between an agrarian diet rich in fiber (> 30
grams/day) to a meat-based diet that was essentially
devoid of fiber.13

Dietary fiber intake is notably different across
industrialized and unindustrialized parts of the
world—Westernized diets are characterized by their
high content of animal protein, fat, sugar, and starch,
and low fiber content while the diets of inhabitants
of unindustrialized rural communities in African
countries, such as Burkina Faso,14 and Tanzania,15

provide up to seven times more fiber due to
increased intake of fibrous plants. On average, adults
consume between 12–18 grams/day of dietary fiber
in the United States,16 14 grams/day in the United
Kingdom,17 and 16–29 grams/day in Europe.18

Cross-sectional studies of human populations across
the globe reveal that greater dietary fiber intake is
associated with increased gastrointestinal microbial
community diversity.19 Preclinical studies have dem-
onstrated a causal role of fermentable fiber consump-
tion on microbiota diversity, whereby, mice fed diets
that are devoid of fermentable fibers develop depleted
microbiota diversity over a few generations.20 In
addition, intervention studies in humans have dem-
onstrated that dietary fiber and whole grain intake
increase gut bacterial diversity.21,22 Low-fiber intake
in Western societies is purported to be a driver in
the depletion of the human gastrointestinal micro-
biota and subsequent increases in chronic non-com-
municable diseases, such as obesity, cardiovascular
disease, type 2 diabetes, and colon cancer.23

Dietary fiber

Dietary fiber is a broad term, and thus the impact of
fiber consumption on the gastrointestinal microbiota
will vary based on the type of fiber consumed. Dietary
fibers, as defined by the Codex Alimentarius Commis-
sion in 2009,24 are “carbohydrate polymers with ten or
more monomeric units, which are neither digested
nor absorbed in the human small intestine and belong
to the following categories: (i) edible carbohydrate

polymers naturally occurring in foods as consumed,
(ii) edible carbohydrate polymers which have been
obtained from food raw materials by physical, enzy-
matic, or chemical means and which have a beneficial
physiological effect demonstrated by generally
accepted scientific evidence, and (iii) edible synthetic
carbohydrate polymers which have a beneficial physi-
ological effect demonstrated by generally accepted sci-
entific evidence.” There is some flexibility in the
definition of fiber, whereby national authorities may
make the decision to include carbohydrates with three
to nine monomeric units instead of restricting the def-
inition to only include carbohydrates that are � 10
monomeric units in length. In Australia, Brazil, Can-
ada, China, Europe and New Zealand, the definitions
of fiber includes nondigestible carbohydrates with
greater than three monomeric units.24,25

Dietary fibers are heterogeneous, and thus different
classifications are utilized to describe them, including,
origin, chemical composition, and physicochemical
properties with additional subcategorization based on
the degree of polymerization (e.g. chain length).
Importantly, each of these properties can also impact
microbial fermentation. With regard to origin, plant-
based fibers can be separated into fibers derived from
cereals and grains, fruits, vegetables, nuts, and legumes.
However, it is important to note that the fibers present
in different types of plants will also have variable
chemical compositions, as well as physicochemical
properties.26-28 For example, bananas contain resistant
starch and inulin-type fructans, while apples are a
source of pectin. Thus, diets rich in plant-based foods
provide many different types of dietary fibers thereby
supporting a more diverse microbiota composition.29,30

The physicochemical characteristics of fibers
include fermentability, solubility, and viscosity, and
these properties influence not only fermentation, but
also the therapeutic effects of consumption.27 Insolu-
ble fibers, such as cellulose, are generally poorly fer-
mented by gut microbes, but their presence in the diet
increases gut transit rate and thus reduces the amount
of time available for colonic bacterial fermentation of
non-digested foodstuff.31 Psyllium is also a non-
fermentable fiber; however, its high solubility and vis-
cosity results in unique therapeutic effects including
improved glycemic control and reduced blood choles-
terol levels.27,32 Fibers that are highly fermentable
while also possessing high solubility and viscosity
include b-glucan and pectins.27 These fibers are
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naturally found in the diet in whole grains such as oats
and barley (b-glucan) and fruits such as apples (pec-
tin).26,28 Slowed glucose absorption and binding of
bile acids—the mechanisms underlying the physiolog-
ical benefits of psyllium, b-glucans, and pectin —are
also purported to impact the gastrointestinal micro-
biota. Non-viscous, soluble fibers that are readily fer-
mented by gastrointestinal microbiota include inulin,
resistant maltodextrins, resistant starch, polydextrose,
and soluble corn fiber.33-35 Inulin-type fructans are
naturally found in agave, artichokes, asparagus,
bananas, chicory root, garlic, onions, leeks, and
wheat.36 While varying botanical origins and degree of
polymerization of inulin-type fructans has been shown
to impact fermentation profiles in humans,37,38 evi-
dence for physiological benefits of inulin-type fructans
in clinical studies are limited. Rodent studies, however,
have demonstrated that consumption of inulin-type
fibers differentially reduces body weight, blood choles-
terol and blood glucose concentrations.39-41

In addition to the degree of polymerization, the sol-
ubility of complex carbohydrates impacts the location
of fermentation within the human gastrointestinal
tract. Soluble fibers, such as short-chain fructooligo-
sacchaides (FOS) and pectin are metabolized by bacte-
ria more proximally in the gastrointestinal tract (e.g.,
the ileam and ascending colon) while fibers that are
less soluble, such as cellulose, can be partially fer-
mented in the distal colon where transit time is slower,
and bacterial densities are higher.42 Recently, it was
shown that fibers with varying chain lengths and solu-
bility differentially impact the composition of the cecal
microbiota of mice—diets supplemented with 5–10%
cellulose, an insoluble fiber, had significantly different
microbial community compositions than mice con-
suming 10% FOS or inulin, soluble fibers.43 The
impact of fermentable fibers in the diet, or microbiota
assessable carbohydrates (MACs),20 has been exten-
sively studied. Indeed, it is this last category of dietary
fibers that encompasses the term prebiotic.

Prebiotics

Not all fibers can be classified as prebiotic; however,
most prebiotics can be classified as dietary fibers.9

Consumption of prebiotics is a dietary strategy by
which the gastrointestinal microbiota can be modified
for health benefit. Prebiotics were originally defined in
1995 by Gibson and Roberfroid as “a non-digestible

food ingredient that beneficially affects the host by
selectively stimulating the growth and/or activity of
one or a limited number of bacteria in the colon, and
thus improves host health.”44 At the time of the origi-
nal definition, culture-based methods were almost
exclusively used for studying the microbiota, and bifi-
dobacteria and lactobacilli were the primary commen-
sals targeted in prebiotic feeding studies. In 2004, the
definition of prebiotic was updated to add three crite-
ria: 1) resistant to gastric acidity and hydrolysis by
mammalian enzymes and gastrointestinal absorption;
2) fermented by intestinal microbiota, and 3) selec-
tively stimulate the growth and/or activity of intestinal
bacteria associated with health and wellbeing.45

Over time, advances in molecular methods, inde-
pendent of culture-based approaches, revealed denser
and more diverse bacterial communities than those
originally studied. Accordingly, in 2010, the prebiotic
definition was revised to “a selectively fermented ingre-
dient that allows specific changes, both in the composi-
tion and/or activity of the gastrointestinal microbiota
that confers benefits.”10 The updated definition
expanded the language on the number bacteria—from
one or a limited number of bacteria to specific changes
in the microbiota—and the location—from the colon
to the entire gastrointestinal tract.

As our understanding of the impact of diet on the
microbiota continues to evolve, there has been con-
tinued discussion on the need to expand the defini-
tion even further. Recently, Bindels and colleagues
proposed that a prebiotic should be defined as “a
nondigestible compound that, through its metaboli-
zation by microorganisms in the gut, modulates
composition and/or activity of the gut microbiota,
thus conferring a beneficial physiological effect on
the host.”46 Their proposed definition identifies the
ingredient as the causative agent for changes in the
microbiota. It also excludes the restrictive language
related to selectivity and specificity while maintain-
ing the need to identify a beneficial physiological
effect. This helps to pave the way for investigation of
bacteria other than those historically studied (e.g.,
bifidobacteria and lactobacilli). For example, buty-
rate-producing bacteria, such as Faecalibacterium
prausnitzii, and Akkermansia muciniphila, a mucin
degrading bacterium, have both been associated with
beneficial health effects, including reduced inflam-
mation and improved gut barrier function, respec-
tively.47 As our understanding of the role of the
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microbiota in host health continues to expand, it is
likely this definition will continue to evolve.

Microbial fermentation

Advances in molecular and computational methods
have expanded our understanding of how diet influen-
ces gastrointestinal microbiota composition and func-
tion. Metagenomic sequencing, for example, has
revealed that the gastrointestinal microbiota contains
approximately 150 fold more genes than that of the
human genome.48 Intriguingly, human enzymes are
not able to digest most fibers and prebiotics; indeed,
less than 20 glycosidases have been identified in the
human genome as enzymes involved in digestion of
dietary polysaccharides.49 The metabolization of die-
tary polysaccharides by the gastrointestinal bacteria is
an example of the symbiotic relationship between the
host and the microbiota. Furthermore, this relation-
ship provides an avenue for dietary modulation of the
microbiota because microbial growth and metabolism
depend on substrate availability, e.g., the type of die-
tary fiber or prebiotic consumed by the host.

Humans enzymes are capable of degrading only a few
glycosidic linkages present in a subset of carbohydrates,
including starch polysaccharides, via the action of pan-
creatic and salivary amylase, and the disaccharides
sucrose and lactose via the brush border disaccharidases,
sucrase and lactase.49 Although the ability to digest lac-
tose does vary across the globe and lactase activity can
decrease across the lifespan. Carbohydrates that escape
digestion by human enzymes are substrates for bacterial
fermentation within the gastrointestinal tract. Bacteria
vary widely in their ability to metabolize dietary glycans.
The human diet, when rich in different types and num-
bers of fruits, vegetables, whole grains, nuts, and legumes
provides an abundant source of plant polysaccharides
that contain different types of glycosidic linkages. In gen-
eral, the more complex the polysaccharide, the more gly-
cosidase are necessary to metabolize it.50 Some bacteria
possess many different enzymes that allow them to
metabolize dozens of different complex carbohydrates,
while other microbes are only able to utilize one or a few
different polysaccharides. For example, Bacteroides the-
taiotaomicron and B. ovatus, bacteria found in the
human microbiota, are capable of metabolizing more
than a dozen different types of glycans.50,51

The microbial conversion of complex polysaccharides
to monosaccharides involves various biochemical

pathways, which are mediated by the enzymatic activities
of microbes. The main bacterial fermentative end prod-
ucts of complex carbohydrates are SCFAs, namely ace-
tate, propionate, and butyrate, and gases (H2, and CO2).
SCFAs are an important indicator of bacterial fermenta-
tion in the colon. The concentration of SCFAs changes
throughout the length of the gastrointestinal tract, with
the highest concentrations in the proximal colon and
diminishing concentrations in the distal colon, the region
of the gastrointestinal tract with the greatest density of
microbes.52

Among the SCFAs, butyrate is the key energy
source for colonocytes and enterocytes. Propionate
also can be utilized locally through conversion into
glucose by intestinal gluconeogenesis53 or diffuse into
the portal vein to be utilized as a substrate for hepatic
gluconeogenesis.52 Between 90 and 99% of SCFAs are
absorbed in the gut or used by the microbiota.54 How-
ever, a small amount of SCFAs, primarily propionate
and acetate, are found in peripheral circulation. Ace-
tate is the most abundant SCFA found in circulation
and has been shown to cross the blood-brain bar-
rier.55,56 SCFAs influence gastrointestinal epithelial
cell integrity, glucose homeostasis, lipid metabolism,
appetite regulation, and immune function.57

Dietary consumption of fiber and prebiotics
modulates the microbiota

Fermentation of undigested carbohydrates by bacteria
depends on the physiochemical properties the carbohy-
drate, as discussed above, as well as the fiber dosage, and
the bacterial community composition on the individual
consuming the fiber. Bacteria possess carbohydrate-bind-
ing modules and an extensive set of enzymes, including
glycoside hydrolases, glycosyltransferases, polysaccharide
lyases, and carbohydrate esterases that allow for the
hydrolysis of a wide variety of fibers.58,59 Therefore, hav-
ing a variety of dietary fibers (e.g., cellulose, hemicellulo-
ses, pectins, gums, fructans, etc.) and resistant starches in
the diet that contain a range of monosaccharide units and
a- and b-linkages is more supportive of a varied gastroin-
testinal microbial community compared to a diet that has
a less diverse substrate load (e.g., refined diets).60,61

Polysaccharide chain length or the degree of poly-
merization and branching of the fiber influences
the ability of bacteria to utilize it as an energy
source. Many bacteria can ferment short chain FOS,
and Bifidobacterium, Bacteroides, Faecalibacterium,
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Lactobacillus, and Roseburia can ferment oligofructose
in vitro; however, relatively few can utilized long-
chain fructans.62,63 Bacterial species within the same
genera also have varying abilities to degrade fiber
sources. For examples, B. bifidum can grow on FOS in
vitro, but not inulin.64,65 Branching of fiber molecules
also differentially impacts the location of fermentation
within the gastrointestinal tract. Clinical studies using
breath hydrogen as a marker of fermentation illustrate
this because microbial fermentation is the only source
of hydrogen production in the human body and 14%
of total hydrogen produced in the gut is perfused into
the lungs.66 For example, short-chain FOS is fer-
mented within 4 hours67; agave inulin, a highly
branched fructan begins to be fermented four hours
postprandially and peaks within 6 hours,37; and chic-
ory inulin, a long-chain linear fructan, has peak fer-
mentation 8 hours postprandially.38

Consumption of dietary fiber promotes extensive
metabolic interactions among bacterial species present
in the gastrointestinal microbial community. Therefore,
there is considerable potential for indirect stimulation
of the growth of other microbes within the community
through the utilization of by-products of other commu-
nity members. This process is called cross-feeding;
whereby, the products produced from fermentation of a
polysaccharide by one bacterial species provide sub-
strates for growth of other bacteria present in the com-
munity. Thus, dietary modulation of the human
gastrointestinal microbiota via fiber or prebiotic con-
sumption can result in metabolic consequences that are
different from results of single culture based experimen-
tations that assess bacterial growth on isolated sub-
strates. For example, dietary consumption of fructans
has been shown to result in increased butyrate concen-
trations even though the primary increases in bacteria
following fructan consumption do not directly metabo-
lize butryate.34,62 Bifidobacteria and lactobacilli, the
main utilizers of fructans, are lactic acid bacteria, which
produce lactate and acetate as their major fermentation
end products when grown in pure culture. The likely
cause of this phenomenon is that the lactate and acetate
produced by bacteria metabolizing fructans as an
energy source is then used by many other bacteria,
including Eubacterium, Roseburia, and Faecalibacte-
rium, that produce butyrate.68,69 Therefore, cross-feed-
ing is one mechanism that underlies differential results
of single culture in vitro experimentation as compared
to co-culture in vitro experimentation or in vivo studies.

While cross-feeding may be beneficial to some bac-
teria, nutrient competition and changes in pH that
occur due to metabolite production can inhibit the
growth of other microorganisms in the community.
Bacterial fermentation of polysaccharides results in
the production of acidic fermentation end products,
primarily lactic acid and SCFAs, that reduce the
colonic pH, which in turn impacts the composition of
the microbial communities present in the gastrointes-
tinal tract. Normal human colonic pH values are
between pH 5.5 and 7.5. In vitro fermentation experi-
ments utilizing human fecal samples to model the
colon reveal that a reduction in pH from 6.5 to 5.5 sig-
nificantly alters the bacterial community—more acidic
conditions better support growth of butyrate-produc-
ing Firmicutes, such as Roseburia spp., while reducing
the proliferation of the acid sensitive Bacteroides
spp.70,71

Although the gastrointestinal microbiota can be
effected by fiber and prebiotic consumption, individ-
ual responses can vary. These phenotypic responses
are related to a combination of host genetics,7 ade-
quate dosages of the dietary polysaccharide of inter-
est,72,73 and the unique microbiota composition of
the individual.74 Thus, “responders” and “non-res-
ponders” to dietary modulation of the microbiota via
specific fibers may be linked to inadequate dosages
and/or lack of bacteria that can ferment the supple-
mented fiber(s). For example, consumption of
2.5 grams/day of short-chain FOS72 or galactooligo-
saccharide (GOS)73 did not increase bifidobacteria,
but doses of 10 grams/day were adequate to induce a
bloom in bifidobacteria in the gastrointestinal micro-
biota. Furthermore, individuals without detectable
levels of bifidobacteria failed to respond to consump-
tion of up to 7.5 grams/day agave inulin.34 Responses
are also dependent on fiber intake in the context of
the entire diet; for example, dietary fiber per kilocalo-
rie has been shown to be positively related to both
Bifidobacterium spp. abundances and fecal butyrate
concentrations.34 Intriguingly, the composition of an
individual’s microbiota and the presence of keystone
species also influences fiber fermentation. In one
well-controlled feeding study, individuals without
Ruminococcus bromii present in their microbiota had
a reduced capacity to ferment the supplemented
resistant starch, resulting in 20–30% fermentability
compared to 100% fermentability in those with
Ruminococcus bromii.74
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State of the science

Clinical studies on the impact of fiber or prebiotic
consumption on the composition and function of the
human gastrointestinal microbiota provide examples
of varied responses related to consumption of different
types of fibers in the context of the complex milieu of
the gastrointestinal tract (Table 1). Briefly, clinical
studies conducted in adolescents or adults free of gas-
trointestinal diseases that utilized molecular methods
to assess � two microbes and fermentative profiles
and were published in the last 5 years (2011–2016)
were identified by searching PubMed and Google-
Scholar databases using combinations of keywords
including “fiber,” “fibre,” “prebiotic,” “human,”
“microbiota,” and “microbiome.” These clinical trials
reveal that GOS, inulin, xylooligosaccharide, and ara-
binoxylan oligoscaharides induced blooms in Bifido-
bacterium spp. while, soluble corn fiber and
polydextrose stimulated more diverse changes in
microbes in the Bacteroidetes and Firmicutes phyla.
Molecular approaches that aimed to assess the com-
munity composition of the human microbiota follow
GOS,73 agave inulin,34 and resistant starch type 436

consumption revealed that consumption of these
fibers, in adequate doses, primarily selectively
enriched Bifidobacterium spp. and resistant starch
type 236 enriched Eubacterium. Although other minor
shifts in bacterial community composition were pres-
ent, these results support the designation of GOS and
inulin as prebiotic fibers. Microbial metabolism results
were highly variable, with the same fiber inducing
changes in SCFAs concentrations depending on the
clinical population. Alternatively, polydextrose and
soluble corn fiber33 broadly induce changes among
several taxa in the Firmicutes and Bacteroidetes phyla
with subsequent reductions in fecal butyrate, phenol
and indole concentrations.

The differential effects of consumption of the fibers
(Table 1) is driven by their chemical structures. GOS
are generally composed of galactose polymers linked
by b-1,6 bonds and b-1,4 linkage to the terminal glu-
cose, and a DP between 2 and 10.75 Agave inulin is a
linear and branched fructose chain linked by b-2,1
and b-2,6 linkages, and a DP between 25 and 34.76

Resistant starch type 2 and 4 are both composed of
glucose monosaccharides linked by a-1,6 glycosidic
bonds, resistant starch type 4 has additional cross-
linkages by phosphorylation.35 Soluble corn fiber is

corn starch fraction rich in 1,6-glycosidic bonds.77

Polydextrose contains both a- and b-linked 1,2, 1,3,
1,4, and 1,6 glucose monomers.78 Each fiber’s distinct
molecular structure provides a partial explanation for
the differential effects of consumption of the human
gastrointestinal microbiota.

Conclusions

Host-microbe interactions are undeniably complex
with the balance of benefit and harm depending on
many dietary and microbial factors. Technological
and computational advances over the past decade
have allowed researchers to gain a better understand-
ing of the composition and function of the trillions of
microbes that reside in the gastrointestinal tract, and
there is mounting evidence of an interrelationship of
diet, the gastrointestinal microbiota, and human
health. Herein, the impact of specific dietary fibers
and prebiotics on the human gastrointestinal micro-
biota composition and function was reviewed includ-
ing the role of ingredients’ physiochemical properties,
dosages, and phenotypic responses related to the com-
position of the resident microbiota.

Human, animal, in vitro, and computational
research are all necessary to continue to move the field
forward as each type of investigation has limitations.
In human research, randomized, controlled trials are
the gold standard approach, and crossover studies
with washout periods should be utilized when feasible
and appropriate. Care must be taken to monitor study
participant compliance to the dietary intervention.
Use of stable isotopes to label foods is a fidelity mea-
sure that should be incorporated whenever possible.
Clinical trials are expensive and frequently generate
extensive databases that are under-utilized. As such,
computational modeling and bioinformatics
approaches should also be undertaken to extend our
understanding of these data sets.

Animal experiments, including gnotobiotic studies,
are useful to determine mechanisms and can be used to
complement clinical research findings. Limitations, how-
ever, include the physiological difference of preclinical
models compared to humans. Notably, rodents are cecal
fermenters and practice coprophagy. Single housing of
animals and wire bottom cages can be utilized to reduce
coprophagy. It is also important to consider the transla-
tion of dosages used in animal studies to human con-
sumption values. Rodent trials frequently supplement
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Table 1. Dietary fiber and prebiotic studies published in the last 5 years in adolescents and adults free of gastrointestinal diseases that
assessed microbiota composition and function. Abbreviations: RCT, randomized controlled trial; GC, gas chromatography; SCFA, short-
chain fatty acids; FISH, fluorescent in situ hybridization; DGGE, denaturing gradient gel electrophoresis; NMR, nuclear magnetic reso-
nance spectroscopy.

Fiber Design Population Measures Microbiome changes References

Arabinoxylan-oligosaccharies, 2.2 g 3-wk, RCT, crossover,
3 wk wash outs

20 F, 20 M FISH Increased Lactobacilli and Bacteroides Walton et al., Nutr
J 201279GC Increased butyrate

Arabinoxylan oligoscaharides, 3
and 10� g

3 wk, RCT crossover,
2 wk washout

30F, 33M FISH Increased Bifidobacterium� Francois et al.,
BJN 20128018–85 yr GC Increased acetate, propionate,

butyrate�, lower pH�BMI 23.3C/¡
3.2 kg/m2

Arabinoxylan oligoscaharides, 5 g/d 3 wk, RCT crossover,
2 wk washout

11F, 18M (8–12 yr) FISH Increased Bifidobacterium Francois et al.,
JPGN 201481GC Decreased isobutyric acid and

isovaleric acid
Whole grains (> 80 g/d vs < 16 g/d);

26 g/d total dietary fiber vs. 16 g/
d total dietary fiber

6 wk crossover, 4 wk
washout

21F, 12M FISH No significant changes Ampatzoglou
et al., J Nutr
201582

40–65 y GC
BMI 20–
35 kg/m2

Galactooligosaccharides (5.5 g/d) RCT, crossover,
10 weeks

25 F, 15 M (65–80y) FISH Increase Bifidobacterium spp,
Bacteroides spp,

Vulevic et al. BJN,
201583NMR

Increased lactate, glutamate,
ornithine and caproic acid
concentrations

Agave inulin (5.0 and 7.5� g/d) 3 wk, RCT, crossover,
1 wk washout

15F, 14 male; 20–
36 y

MiSeq Increased Bifidobacterium Holscher et al, J.
Nutr, 201534GC decreased Ruminococcus�,

Lachnobacterium, Desulfovibrio,BMI 20–29 kg/
m2

Inulin C oligofructose, 16 g/d 12 wk, RCT 30 F PCR-DGGE Increased Bifidobacterium longum,
Bifidobacterium pseudocatenulatum
and Bifidobacterium adolescentis

Salazar et al., Clin
Nutr 20148418–65 y q-PCR

BMI > 30 kg/m2 GC
Decreased total SCFA, acetate and

propionate
Inulin C partially hydrolyzed gaur

gum, 15 g/d
3-wk, RCT 32 F PCR Decreased Clostridium spp, no changes

in SCFA
Linetzky et al.,

Nutr Hosp,
201285

18–65 yr GC

Xylo-oligosaccharide (XOS), 5 g 4 wk, parallel arm, RCT 34F, 26M qPCR XOS: Increased Bifidobacterium, Lecerf et al., BJN
20128618–24 yr GC Increased butyrate, propionate, and

decreased acetate, p-cresol, and
pH

Inulin-and-XOS mixture, 3 g inulin
C 1 g XOS BMI 18.5–27 kg/

m2

XOS C Inulin: increased total SCFA
and propionate, and butyrate

Xylooligosaccharide, 1.4 and 2.8�

g/d
8 week, RCT,

crossover,
2 wk washout

21 F, 11 M pyrosequencing Increased Bifidobacterium, Bacteroides
fragilis�

Finegold et al.,
Food Funct
201487

21–49 yr
No effect on pH, SCFA, or lactic acidmean BMI: 24.1

and 25.6 kg/
m2

Polydextrose (8 g/d) 3 wk double-blind,
controlled,
crossover, 3 wk
washout

16F, 15M FISH, DGGE, qPCR FISH analysis: decreased C. histolyticum,
lactobacilli/enterococci

Costabile et al., BJ
Nutr 20128822–52 yr

BMI 19–25 kg/
m2

GC
NMR Lamichhane et al.,

J. Ag Food
Chem 201489

qPCR: increased C. histolyticum, R.
intestinalis, C. leptum

DGGE: increased diversity
No significant changes in SCFA
No changes in fecal metabolites

(SCFA, BCFA, biogenic amine,
succinate)

Polydextrose, 21 g/d 3 wk, RCT, crossover 21M Whole genome
sequencing

Increased Bacteroidetes:Firmicutes
Ratio

Holscher et al.,
AJCN 201533Soluble corn fiber, 21 g/d 21–28 y

20–34 kg/m2 Vester-Boler
et al., BJN
201190

GC Increased Parabacteroides
Decreased Eubacterium,

Ruminococcus, Roseburia, Dorea
Decreased bacterial butyrate

metabolism genes
Decreased fecal butyrate, phenol,

and indole
Soluble corn fiber, RCT, crossover; 4-wk 28 F (11–14 y) MiSeq Increased Parabacteroides,

Bifidobacterium�, Dialister�
Whisner et al., J.

Nutr (2016)9110, and 20� g/d GC
Decrease: Anaerostipes, Dorea�,

Ruminococcus
Decreased fecal pH, numeric increase

in SCFA

(Continued on next page )
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fiber at 5–20% weight/weight of feed and the translation
of these doses in humans is often an unattainable
amount. For example, 5% of the diet as fiber is at least
20 grams/day for adult humans. If the fiber of interest is
highly fermentable, e.g., inulin-type fibers, this dosage is
near the top of the tolerable limit for human consump-
tion, and consumption at this level is likely to result in
unpleasant side effects such as gas, bloating, and diar-
rhea.94 Other fibers, such as polydextrose and soluble
corn fiber, have been shown to be tolerable up to
50 grams/day in clinical trials.95 Pigs provide an alterna-
tive preclinical model for studying the impact of fiber
and prebiotic consumption as their gastrointestinal phys-
iological is more similar to humans than rodents. How-
ever, challenges such as substrate availability can occur
when there is limited ingredient availability. In all animal
experimentation, defined diets rather than chow should
be utilized to improve reproducibility of results among
studies.

Future directions

Insights into how fiber, including those considered
prebiotics, impacts the gastrointestinal microbiota are
emerging; however, more research is needed to deter-
mine if modulation of the composition and function
of the human gastrointestinal microbiota translates to
health benefits in human populations. Large prospec-
tive studies are necessary to determine the

directionality of the associations between perturba-
tions in the microbiota and disease. Well-controlled
clinical trials, optimally, complete feeding studies with
single ingredient modifications utilizing crossover
designs with washout periods, are needed to assess not
only the impact of fiber on the gastrointestinal bacte-
rial taxa, but also microbial metabolites and other
physiological measures of health such as body compo-
sition, blood cholesterol, glycemia, and inflammation.
When complete feeding trials are not feasible, cross-
over study designs are useful to account for the inter-
individual make-up of the microbiota that contributes
to a large portion of variability. When parallel arm
designs are the most appropriate to assess other study
outcomes, microbiome sample collection and analysis
at baseline and over time will enable additional statis-
tical analyses to account for variation and changes
over time. The use of food frequency questionnaires
and diet records or recalls are useful to assess the
impact of other dietary factors that may be contribut-
ing to study outcomes. In addition, compliance logs to
assess consumption of treatments are recommended.
When possible, the use of stable isotopes to label fibers
will further strengthen these investigations.

Animal models must also be utilized to investigate
mechanisms. Research using gnotobiotics models is
especially powerful, especially when animals are
humanized through the use of fecal transplants. Ex
vivo experimentation that simulates the gastrointestinal

Table 1. (Continued )

Fiber Design Population Measures Microbiome changes References

Butyrylated high-amylose maize
starch, 40 g/d

4 week, double blind,
RCT, 4 week
washout

10F, 13M qPCR Increased SCFA Leu et al. BJN
201592mean age 62 yr GC, HPLC Increased Clostridium coccoides,

Clostridium leptum, Lactobacillus
spp, Parabacteroides distasonis
and Ruminococcus bromii

Decreased Ruminococcus torques and
Ruminococcus gnavus,
Ruminococcus torques and
Escherichia coli

Resistant starch, 22–29 g/d 3 wk, randomized
crossover design

14 M HITChip
microarray

Resistant Starch: Increased Oscillospira
guillermondii, R. bromii, Sporobacter
termitis, Clostridium leptum, C.
cellulosi, Alistipes spp, E. rectale

Salonen et al.,
ISME J 201493

Decreased Papillibacter
cinnamivorans, microbiota
diversity, and acetate,
propionate, butyrate

Non-starch Polysaccharides:
Increased Eggerthella, Collinsella,
Corynebacterium, Bacteroides
vulgatus and Prevotella oralis

Decreased: C. leptum, C. cellulosi,
Oscillospira spp and Sprorobacter
spp

27–73 yr qPCR
SCFABMI 27.9–

51.3 kg/m2
Non-starch polysaccharides, 30–

55 g/d
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tract is also informative because it provides a high-
throughput approach. The collection, comparison,
and integration of the vast data sets generated in
human, animal, and in vitro studies should be further
explored using data processing algorithms, such as
machine learning. Machine learning approaches that
integrate vast multi-omics data sets also allow us to
extend our understanding of host-microbe interac-
tions. In this era of rapid technological and computa-
tional advances, efforts should be made to move
beyond simple characterization of the composition of
the microbiota and toward functional activities of the
microbiota through transcriptomics, metabolomics,
and proteomics. Multidisciplinary approaches are
needed, and research in the field of the human
microbiome will require collaborations among scien-
tists from various disciplines including nutrition,
microbiology, physiology, immunology, and com-
puter sciences to name a few.
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