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Abstract

Nucleosome positioning is important for neurodevelopment, and
genes mediating chromatin remodelling are strongly associated
with human neurodevelopmental disorders. To investigate changes
in nucleosome positioning during neural differentiation, we gener-
ate genome-wide nucleosome maps from an undifferentiated
human-induced pluripotent stem cell (hiPSC) line and after its dif-
ferentiation to the neural progenitor cell (NPC) stage. We find that
nearly 3% of nucleosomes are highly positioned in NPC, but signifi-
cantly, there are eightfold fewer positioned nucleosomes in
pluripotent cells, indicating increased positioning during cell dif-
ferentiation. Positioned nucleosomes do not strongly correlate
with active chromatin marks or gene transcription. Unexpectedly,
we find a small population of nucleosomes that occupy similar
positions in pluripotent and neural progenitor cells and are found
at binding sites of the key gene regulators NRSF/REST and CTCF.
Remarkably, the presence of these nucleosomes appears to be
independent of the associated regulatory complexes. Together,
these results present a scenario in human cells, where positioned
nucleosomes are sparse and dynamic, but may act to alter gene
expression at a distance via the structural conformation at sites of
chromatin regulation.
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Introduction

Placement of nucleosomes has been implicated in gene regulation

from Saccharomyces cerevisiae [1] to human cells [2], and mutations

in chromatin remodelling enzymes that control nucleosome posi-

tioning have a demonstrable role in gene regulation. Chromatin

remodelers of the SNF2 protein family have strong associations with

human disease, including mental health and cancer biology [3,4].

The SNF2 protein Brg-1 is associated with a range of psychiatric

disorders and intellectual disabilities (ID), such as Coffin–Siris

syndrome [5]. More strikingly, the chromodomain-helicase-DNA

binding (CHD) sub-family proteins are intimately associated with

neuropsychiatric or neurodevelopmental disorders [3]. CHD2 and

CHD4 increase the risk of epileptic encephalopathies, and CHD2,

along with CHD5 and CHD6, confer risk for ID. CHD7 is causative of

CHARGE syndrome [6,7], a multi-system, developmental disorder,

but also imparts genetic risk for autism spectrum disorder (ASD) as

does CHD1, CHD2 and CHD3. Finally, CHD8 has a strong association

with both ASD and schizophrenia [8,9]. Ultimately to understand

why aberrant chromatin remodelling is important for disease risk,

we need to establish the underlying principles that determine the

relationship between nucleosome positioning and gene regulation.

Nucleosome interactions within chromatin are likely to be

complex but can be described by the following quantitative param-

eters: position, the sequence coordinates where nucleosomes occur

across the cell population; occupancy, the frequency that a nucleo-

some is present at an individual site; and accessibility, the degree

to which the presence of nucleosomes restricts access to the DNA.

In organisms with small genomes, such as in the yeasts and

Dictyostelium, nearly 80% of nucleosomes are positioned in the

same place in the genome across the cell population, forming

arrays that span gene bodies [10–13]. There are distinct regions of

low occupancy and increased accessibility, for example in the

nucleosome-free region (NFR) found at the transcriptional start site

(TSS) of genes. Finally, there is evidence for mutual exclusivity

between a positioned nucleosome and transcription factor (TF)

binding at the same site [14]. Nucleosomes at active genes appear

to be more positionally organised than at inactive genes and

changes in nucleosome positioning, such as the specific increase in

nucleosome spacing seen in a Dictyostelium mutant lacking the

CHD8 homologue, ChdC, alter gene expression. Nonetheless, even

in these organisms the actual correlation between positioning and

gene expression can be low; for example, only 15% of genes with

altered nucleosome spacing in a chdC mutant show corresponding

changes in gene expression [12].

In mammalian cells, including human cells, with large and

complex genomes, non-coding and intragenic DNA sequences can

make up approximately 98% of the genome. In these larger and

more complex genomes, the pattern of positioned nucleosomes

1 MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
2 School of Biosciences, Cardiff University, Cardiff, UK
3 Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Cardiff, UK

*Corresponding author. Tel: +44 2920688492; E-mail: harwoodaj@cf.ac.uk

ª 2019 The Authors. Published under the terms of the CC BY 4.0 license. EMBO reports 20: e46960 | 2019 1 of 12

https://orcid.org/0000-0002-3225-0069
https://orcid.org/0000-0002-3225-0069
https://orcid.org/0000-0002-3225-0069
https://orcid.org/0000-0002-4114-1307
https://orcid.org/0000-0002-4114-1307
https://orcid.org/0000-0002-4114-1307
https://orcid.org/0000-0003-4009-186X
https://orcid.org/0000-0003-4009-186X
https://orcid.org/0000-0003-4009-186X
https://orcid.org/0000-0003-3124-5169
https://orcid.org/0000-0003-3124-5169
https://orcid.org/0000-0003-3124-5169


appears to be radically different. Studies in human cells have shown

that only a very small proportion of the total nucleosome number

are strongly positioned [15,16]. Although the nucleosome patterns

flanking TSSs can conform to those of non-metazoan organisms,

arrays within gene bodies have not been widely reported. Studies

also suggest that occupancy and accessibility may be uncoupled.

Mapping DNA accessibility in chromatin by its sensitivity to DNase

digestion can reveal hypersensitive sites, which are often found at

gene regulatory elements distant from the gene body. Other regions,

although not hypersensitive, show increased sensitivity to MNase

digestion; hence, accessibility of proteins is higher in these regions

of DNA. These MNase-sensitive regions coincide with regions of

open chromatin as defined by ATAC-seq, certain chromatin marks

and transcriptional activity [17]. Interestingly, such MNase accessi-

bility maps (MACC) show that increased accessibility can occur

without changes of nucleosome occupancy [18].

Here, we focus on the relationship between gene expression and

nucleosome positioning, rather than accessibility, in the context of

human neural differentiation. Unlike the relationship of MACC to

open chromatin and gene expression, the relationship of these posi-

tioned nucleosomes to gene expression is unclear. By comparing

maps of well-positioned nucleosomes with low MNase sensitivity

for the same human iPSC line in the pluripotent state and following

differentiation to neural progenitor cells (NPCs), we have directly

examined the developmental dynamics of nucleosome positioning

during early neural differentiation and its relationship to gene

expression.

Results and Discussion

Positional mapping of nucleosomes during human
neural differentiation

To generate nucleosome maps based on positioning, we used a

modified MNase-seq methodology, where chromatin is rapidly

digested with MNase in situ in permeabilised cells without cross-

linking [11]. Bulk chromatin of pluripotent iPSC, and following their

differentiation to NPCs, was digested with MNase to an equivalent

degree, giving near identical levels of mono-nucleosome fragments

(Fig EV1A). Size-fractionated, MNase-protected DNA digestion frag-

ments were paired-end-sequenced to generate between 2.25 and

2.5 × 109 paired-end reads per digest, and the positions of the frag-

ment mid-points were mapped to the genome. To monitor the initial

digestions, the abundance of fragment sizes was plotted for both cell

types (Fig EV1B), and directly compared in the size classes that

span the range of fragment sizes seen for human nucleosomes

(Fig EV1C). This confirmed comparable degrees of digestion

between the two cell states in the mono-nucleosome size range, but

with a slight bias towards larger fragments in the pluripotent cell

samples.

To map nucleosome positions in the genome, we plotted the

sequence read mid-point frequency distribution of fragments in the

138–161 bp range, corresponding to the nucleosome footprint size

(Fig 1A). We developed a heuristic, peak-finding algorithm

(PeakFinder) to identify highly positioned nucleosomes, based on

peak shape and read depth. This identified more than 400,000

highly positioned nucleosomes in NPCs (Fig 1B). For brevity, we

will refer to these nucleosomes as “positioned”. Using this tool on

published MNase-seq datasets from the human cell lines, K562 and

GM12878 [19], we identified broadly similar numbers of positioned

nucleosomes to those reported in their associated publication

(Table EV1). Thus, we estimate that 2.7, 2.4 and 1.6% of nucleo-

somes are positioned in human NPC, K562 and GM12878 cells,

respectively. Based on a theoretical total of 15 million nucleosomes

in the human genome, assuming 1 nucleosome per 200 bp. This is

consistent with observations from other human cells [15,16].

In contrast, there were 8.4-fold fewer positioned nucleosomes

(0.33% of the total nucleosome number) in the pluripotent cell

state, indicating that a substantial increase in positioned nucleo-

somes occurs during differentiation from pluripotent cells to NPC.

We recognise that it may be difficult to detect positioned nucleo-

somes that have high MNase sensitivity using our methodology. To

investigate the impact of this possibility on the detected nucleosome

number, we mapped the mid-points of DNA fragments in the 112–

137 bp sub-nucleosome size range (Fig 1B). We found no evidence

for increased cleavage of nucleosomes or accumulation of sub-

nucleosome size fragments in pluripotent iPSC. Furthermore, in the

total population of DNA fragments, there was no accumulation of

small DNA fragments (Fig EV1B).

Comparison of both pluripotent iPSC and NPC maps indicated

that only 32% of the positioned nucleosomes present in the pluripo-

tent state retain their position during differentiation to NPC

(Fig 1C). This indicates that there are considerable changes in

nucleosome positioning during human neural differentiation due to

both re-positioning and the de novo formation of positioned nucleo-

somes. Importantly, there is a small population of nucleosomes that

retain their positions in both cell states, albeit corresponding to only

approximately 0.1% of the total nucleosome population.

Global organisation of nucleosome positioning

To determine how human nucleosomes are distributed throughout

the genome, the organisation of positioned nucleosomes was anal-

ysed in pluripotent iPSC and NPC states, and for the K562 cell line.

A frequency distribution was plotted for all nucleosome positions

and their surrounding window (� 300 bp) centred on the nucleo-

some peak (Fig 1D). This showed that very few nucleosomes appear

in evenly spaced arrays. To quantify the number and length of posi-

tioned nucleosome arrays, we calculated the frequency that posi-

tioned nucleosomes occur with a spacing of 50 bp or less (Fig 1E)

and the distribution of their inter-nucleosome spacing from 0 to

100 kb (Fig EV2). Approximately 90% of positioned nucleosomes

are present as singletons, and few nucleosomes (7.1, 7.0 and

13.1%, respectively) occur in pairs or nucleosome arrays. The same

basic pattern of nucleosome positioning is seen across the different

human cell types tested here (Fig 1D and E). This distribution

contrasts with the arrays of nucleosomes that are seen across gene

bodies in organisms with small genomes. Nonetheless, in total there

are in fact more positioned nucleosomes in the human genome than

in the yeast genome. This apparent sparsity of positioned human

nucleosomes may arise from the need to precisely position nucleo-

somes at key regulatory sites rather than organise nucleosome

arrays on active genes.

To probe the relationship between nucleosome positions and

gene activity further, we examined the distribution of positioned
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nucleosomes across different chromatin states. Using the 15-state

model of Ernst and Kellis [20,21], which classifies chromatin

from highly active to repressed states based on modifications,

functions and associated proteins, we investigated whether posi-

tioned nucleosomes partition into particular chromatin states in

pluripotent cells. We found no significant enrichment for the

major chromatin states associated with transcriptionally active,

repressed or heterochromatin. An exception was for chromatin

state 8, where we observed an approximate sixfold enrichment

of nucleosome positioning over that expected for random place-

ment in the genome (Fig 2A). This state is characterised by its

association with the chromatin architectural protein CCCTC-

binding factor (CTCF) [22] (Fig 2B). Analysis of our NPC data

showed that despite an eightfold increase in the number of

positioned nucleosomes, the increase was distributed evenly

across all states, with no particular state showing a strong

proportional increase (Table EV2).

Finally, we examined the relationship between nucleosome posi-

tioning and open and closed chromatin. Using the map coordinates

for open chromatin regions (based on high ATAC-seq accessibility)

for pluripotent human embryonic stem cells (H9), [23] we calcu-

lated that 5.7% of positioned nucleosomes fall within regions of

open chromatin, but given that only 0.72% of chromatin is in the

open state, this is an eightfold enrichment over that expected by

random placement (Fig 2A). 40% of CTCF sites are in the open state

(Fig 2B), and the overlap between positioned nucleosomes with

CTCF sites could substantially contribute to their partitioning into

open chromatin.
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Figure 1. Nucleosome dynamics of human pluripotent stem cell and differentiated cells.

A Genome-wide nucleosome maps were generated from the frequency distribution of the read mid-point positions of paired-end sequenced MNase-resistant fragments
in the size range 138–161 bp (spanning the nucleosome footprint). Figure shows a section of a nucleosome map taken from chromosome 12 derived from pluripotent
iPSC (pl-iPSC) to show examples of nucleosomes selected as highly positioned, marked*.

B The distribution of positioned nucleosomes (derived 138–161 bp size class) and sub-nucleosome fragments (derived 112–137 bp size class) for pl-iPSC- and iPSC-
derived NPC (NPC). Actual calculated numbers are presented above each column.

C Venn diagram showing the overlap in the genomic location of positioned nucleosomes in pl-iPSC and in the same cell line differentiated into neural progenitor cells
(NPCs).

D Average frequency distribution of nucleosome positions relative to each other. Data were aligned to each mapped nucleosome in the genome and plotted for a 600-
bp window for pl-iPSC, NPC and the chronic myelogenous leukaemia (Cml)-derived cell line, K562. In all cases, a prominent single nucleosome is presented with only
minor flanking peaks, indicating that the majority of nucleosomes do not occur as evenly spaced arrays in human cells.

E Distribution of nucleosome array sizes for pl-iPSC, NPC and K562, calculated as the number of nucleosomes within a distance of 150-200 bp of each other. Bars show
the number of nucleosomes arrayed as singletons (1), pairs (2), triplets (3) and greater than 3 (> 3), displayed as log10 values, and the percentage distribution within a
cell line is shown above the column.
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The relationship between nucleosome positioning and
gene activity

The poor correlation between the presence of positioned nucleo-

somes and transcriptionally active chromatin states was unexpected

given the known association of nucleosome positioning within active

gene loci of non-mammalian cells and the association of gene expres-

sion with SNF-2 family chromatin remodelers [24]; therefore, we

investigated the local distribution of nucleosome positioning at TSS.

In non-mammalian cells, actively transcribed genes possess a posi-

tioned nucleosome at their TSS, termed the +1 nucleosome. In the

human genome, we identified individual loci where positioned

nucleosomes were present flanking the TSS. For example, a nucleo-

some was present at the �1 position in the pluripotent cell state but

not in NPC at the TSS of the pluripotent-specific gene NANOG.

(Fig 3A). Conversely, we found individual loci where a positioned

nucleosome was present at the +1 position only in NPC, such as at

the TSS of the ionotropic glutamate receptor subunit GRIA1 (Fig 3B).

However, this correlation did not hold at the whole genome level.

We conducted a global analysis of chromatin patterns at the TSS

of protein-coding genes, using a non-redundant list of 66,047

mapped human TSS. The frequency distribution of MNase-protected

fragments at and surrounding protein-coding TSS showed a distinct

MNase-hypersensitive region at the TSS (Fig 3C), a NFR, as reported

previously by others [25]. We also noted distinct nucleosome peaks

flanking the NFR and TSS, sitting at positions �1, +1 and +2. This

demonstrates the presence of distinctive consensus nucleosome

pattern at the TSS, to which our two gene examples, NANOG and

GRIA1, conform.

This raises the question of whether positioned nucleosomes in

general are required for active gene expression. This can be addressed

by comparison between our two developmental states by examining

genes expressed only in the pluripotent or NPC state. By cross-

comparison of published RNA-seq data from human cells [26] with

the non-redundant TSS list of all human TSS (n = 83,179), we created

datasets containing the locations of TSS of human genes that are tran-

scribed only in pluripotent or NPCs. These datasets were then filtered

for the presence or absence of a positioned nucleosome within

� 300 bp of the TSS. The results of this analysis show that for genes

expressed only in pluripotent cells there were in fact more nucleo-

somes positioned at the TSS of genes inactive in the NPC state than

for the same genes when they are actively expressed in pluripotent

state (Figs 3D and EV3). For genes expressed only in NPCs, a substan-

tial number of NPC-specific genes had nucleosomes associated with

the gene TSS in the inactive, pluripotent cell state (Figs 3D and EV3).

Overall, we did not see a strong correlation between the presence

of positioned nucleosomes at the TSS and gene expression. In

contrast to nucleosome modifications [27,28], the presence of highly

positioned nucleosomes at TSS is not a genome-wide predictor of

gene activity in human cells. Our findings also mirror the conclu-

sions of [18] and co-workers, who found that nucleosome accessi-

bility, not occupancy, is the predominant predictor of gene

expression for UPR-associated gene activation in Drosophila.

Nucleosome positioning at NRSF/REST-binding sites

To widen our analysis further, we examined the patterns of nucleo-

some positions at selected transcription factor (TF) binding sites

involved in neural differentiation, namely YY1, ATF2 and PAX6 [29–

31]. We did not observe a pattern of highly positioned nucleosomes

flanking these TF binding sites (Fig EV4). In contrast, well-positioned

nucleosomes were present flanking the RE1 binding site [32] of

NRSF/REST (Fig 4). NRSF/REST promotes epigenetic repression of

gene activity by binding to DNA and acting as a scaffold for a protein

complex containing enzymes mediating repressive nucleosome modi-

fications, including the H3K9 dimethyltransferase G9a/EHMT2, the

histone deacetylase complex Sin3/HDAC1/2 and the H3K4 demethy-

lase LSD1 as well as the chromatin remodeller Brg1/SMARCA4 [33].

RE1 sites were selected by mapping the consensus sequence of

RE1 sites to NRSF/REST ChIP-seq data [34] creating a dataset of 871
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well-characterised RE1 sites. Aligning nucleosome positioning data to

these RE1 sites across the genome revealed a consensus pattern

comprising an array of nucleosomes flanking the RE1 site (Fig 4A).

The NRSF/REST complex is present at RE1 sites in mouse pluripotent

cells [35], but it is lost upon neuronal differentiation. It was therefore

unexpected to find that the pattern of nucleosomes surrounding the

RE1 site in human pluripotent cells was still present in NPC (Fig 4A).

To analyse this pattern in more detail, we stratified sequencing reads

into the fragments in the 122–137 bp range for protection by tran-

scription factors or regulatory complexes with large DNA footprints

and identified a distinct peak of protected fragments in this smaller

size-class at the RE1 site in pluripotent cells corresponding to the

NRSF/REST complex. This peak is reduced by more than 90% in

NPCs (Fig 4B). To separate the NRSF/REST footprint from that of the

flanking nucleosomes, we constructed a nucleosome map using only

larger fragment sizes (162–188 bp), minimising the overlap with the

smaller 122- to 137-bp fragments (Fig 4C). This shows a complete

separation of NRSF/REST binding from nucleosome positions and

significantly that the average pattern of nucleosome positioning is

unchanged in NPC in the absence of the NRSF/REST complex.

To ensure that genome averaging did not mask any differences at

these sites, we carried out cluster analysis (Fig 4D) to establish that

64% of the selected RE1 sites had detectable peaks, corresponding

to NRSF/REST complex in undifferentiated pluripotent cells. These

were absent at the same sites at the NPC stage. In pluripotent cells,

there was a strong correlation between the presence of NRSF/REST

at the RE1 binding site and an array of well-positioned nucleosomes.

This nucleosome array pattern was retained at the same sites in
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list of 66,047 mapped human protein-coding gene TSS. The features corresponding to the nucleosome-free region (NFR) and �1 to +2 nucleosomes are marked.
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NPCs, despite the absence of the NRSF/REST complex. These obser-

vations indicate that NRSF/REST-binding sites are associated with a

distinct consensus nucleosome positioning pattern; however, this

pattern is not dependent on the presence of high levels of the NRSF/

REST protein complex (Fig 4E). The function of this retained chro-

matin structure is unknown. However, it is possible that this struc-

ture might persist so that the protein complex can rapidly re-engage

in the neuronal state, where it is normally absent. It is known that

REST levels can increase in later development or in response to

cellular stress and target a subset of genes that are poised to respond

to changes in REST levels [36,37].

Nucleosome positioning at CTCF sites

Our analysis of chromatin states indicated a strong enrichment of

nucleosomes at CTCF sites (chromatin state 8). To probe this

interaction further, we derived 9,516 CTCF sites based on the

presence of the CTCF-binding motif [38] in CTCF ChIP-seq data

from H1 human embryonic stem cells (H1ESC). 67% of these

CTCF sites are present within chromatin state 8, representing a

600-fold enrichment (Fig 2B). Again, there was a distinct peak in

our small fragment data (122–137 bp) from pluripotent iPSC

(Fig 5A), corresponding to CTCF binding. This peak was

M
ea

n 
m

id
-p

oi
nt

 fr
eq

ue
nc

y 
M

ea
n 

m
id

-p
oi

nt
 fr

eq
ue

nc
y 

C

pl-iPSC

NPC

A

M
ea

n 
m

id
-p

oi
nt

 fr
eq

ue
nc

y 

122-137 bp

162-188 bp

Distance relative to CTCF site (bp)

B

F

pl-iPSC
NPC

pl-iPSC
NPC

pl-iPSC
K562

4.0

0.0

1.0

2.0

3.0

4.0

0.0

1.0

2.0

3.0

M
ea

n 
m

id
-p

oi
nt

 fr
eq

ue
nc

y 
M

ea
n 

m
id

-p
oi

nt
 fr

eq
ue

nc
y 

D
122-137 bp

162-188 bp
E

pl-iPSC
NPC

pl-iPSC
NPC

4.0

0.0

1.0

2.0

3.0

Distance relative to CTCF site (bp)

pl-iPSC

NPC

a)

b)
nucleosomes

nucleosomes

CTCF

0
1
2
3
4
5
6

Figure 5. Nucleosome patterning associated with the CTCF-binding sites.

A Average frequency distribution for sequence read mid-point data in the size range of 122–137 bp centred on the CTCF-binding site (n = 9,516). This shows a
distinctive peak corresponding to the CTCF protein complex, which is present in pl-iPSC, but reduced in NPC.

B Average frequency distribution for sequence read mid-point data centred on the CTCF-binding site in the size range of 162–188 bp, corresponding to
larger nucleosome footprints, for pl-iPSC and NPCs. This shows that the pattern of nucleosome positioning is independent of the amount CTCF protein
complex. Although positioned nucleosomes are retained flanking CTCF sites, their positions are shifted closer to the CTCF site and their spacing is
altered.

C Average frequency distribution for sequence read mid-point data centred on the CTCF site for pl-iPSC (162–188 bp) and K562 (total MNase-seq data) cells. Positioned
nucleosomes are retained flanking CTCF sites in K562 cells, but with shifted positions and altered spacing.

D Average frequency distribution for sequence read mid-point data in the size range of 122–137 bp for pl-iPSC and NPCs centred on the 2,522 CTCF-binding sites
identified from NPC-specific ChIP-seq data. A distinctive peak corresponding to the CTCF protein complex is present in the NPC state, but reduced to background
levels in pl-iPSC.

E Average frequency distribution for sequence read mid-point data centred on the CTCF-binding sites in the size range of 162–188 bp, corresponding to larger
nucleosome footprints, for pl-iPSC and NPC centred on the 2,522 CTCF-binding sites identified from NPC-specific ChIP-seq data. Nucleosome arrays are present in
both cell states, independent of the CTCF protein complex. Nucleosomes in the CTCF sites in pl-iPSC tend to position closer to the CTCF site than in NPC. The data
derived from the unique NPC CTCF sites have greater noise due to the smaller number of sites analysed.

F Schematic of nucleosome patterning at the CTCF site in pl-iPSC and NPC. Nucleosome arrays are present in both cell states in the absences of CTCF complex. When
CTCF is present, nucleosomes reposition to move a small distance from the CTCF-binding site and increase their spacing. Nucleosomes are represented by filled black
circles.
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significantly reduced in the NPCs, but not completely absent.

Cluster analysis demonstrated that this peak did not arise from

averaging a smaller number of sites with strong peaks, but in fact

represented a decreased occupancy at all CTCF sites during the

transition from pluripotent cells to NPC (Fig EV5). Nucleosome

positioning data revealed an array of positioned nucleosomes

flanking the CTCF site in pluripotent iPSC, and again, in a similar

fashion to that seen for NRSF/REST, these were retained in NPCs,

despite a substantial decrease in CTCF binding (Fig 5B). Further-

more, our analysis of the MNase-seq dataset for K562 cells

showed a similar nucleosome patterning surrounding the CTCF

sites of these lymphoblastoid cells (Fig 5C) [19].

To investigate this further, we examined the pattern of nucleo-

somes at CTCF sites occupied only in NPCs and not iPSC. By cross-

comparison between our 122- to 137-bp small fragment data and

CTCF ChIP-seq data from NPC (derived from H9 ESC), we identified

2,522 unique sites with CTCF bound only in the NPC state (Fig 5D).

These sites again possessed positioned nucleosomes flanking the

bound CTCF complex (Fig 5E). When the same sites were aligned

using the nucleosome data from the pluripotent iPSC state, posi-

tioned nucleosomes were also present in the absence of bound CTCF

(Fig 5E). These results demonstrate that just as nucleosomes remain

positioned after loss of CTCF following differentiation from pluripo-

tent cells to NPC, the reciprocal relationship also occurs as positions

where CTCF will bind after differentiation possess a pre-existing

array of positioned nucleosomes.

Close inspection of the nucleosome positioning pattern showed

that the spacing of nucleosomes both upstream and downstream of

the CTCF site in NPC was altered and that they were positioned

nearer to the CTCF site than in pluripotent cells (Fig 5B). A similar

small positional shift is present in the K562 cells (Fig 5C). This indi-

cates that minor re-positioning of nucleosomes flanking CTCF sites

occurs during the early stages of neural cell differentiation. Data

generated using the unique NPC CTCF sites also showed small

changes in nucleosome position; however, in this case nucleosomes

in the pluripotent state are generally closer to the CTCF site

(Fig 5E). This suggests a mechanism where CTCF sites either retain

or pre-form nucleosome arrays with low CTCF occupancy but are

then slightly repositioned in the presence of high concentrations of

the CTCF protein complex (Fig 5F).

A recent report using an alternative method based on Histone 3

ChIP-seq also showed a nucleosome array centred on CTCF of

human myeloid leukaemia cells (HL60) and altered nucleosome

spacing following retinoic acid-induced differentiation [39]. In

Dictyostelium, loss of ChdC increases nucleosome spacing, indicat-

ing a capacity to specifically regulate spacing within nucleosomes

[12]. In mammals, CTCF has been shown to complex with CHD8,

an orthologue of ChdC [40], suggesting a mechanism for nucleo-

some translocation at these sites. Although apparently minor, small

changes in nucleosome spacing are likely to have profound changes

in the local chromatin structure [41] and given the role of CTCF in

determination of the topological associated domain (TAD) struc-

tures, this may lead to quite significant changes of high-level chro-

matin architecture and hence gene regulation.

In conclusion, we have used genome-wide mapping of human

iPSC to follow the dynamics of nucleosome positioning from the

pluripotent state to an early stage of neuronal development. This

provides the opportunity to follow changes across two

developmental states and is particularly valuable to assess changes

in gene activity. We observed a substantial increase in the number

of positioned nucleosomes and re-positioning of nucleosomes

during differentiation to NPC. Although the existence of small

subgroups of genes where positioning is important cannot be

excluded, there was no strong correlation between nucleosome posi-

tioning and gene activity at the genome-wide level. In general, there

are very few organised arrays of nucleosomes within the genomes

of these human cell types, but remarkably, where nucleosome

arrays do occur, they mark chromatin structures that are retained

during cell differentiation. These may represent defined regulatory

sites that control long-range chromatin changes and higher order 3D

organisation [42]. We propose that these sites where arrays of posi-

tioned nucleosomes are retained during development mark impor-

tant regulatory nodes within the dynamic chromatin architecture—

the 4D Nucleome.

Materials and Methods

Cell culture

The 34D6, male, human iPSC line (a gift from Prof Chandran, Edin-

burgh) [43] was cultured in mTeSR1 (Stem Cell Technologies)

following the manufacturer’s instructions. Tissue culture plates

(Nunclon, Invitrogen) were coated for at least 2 hours with Matri-

gelTM (BD Biosciences, VWR) diluted 1:75 with DMEM/F12 (Invit-

rogen). 34D6 iPSCs were plated at a density of ~106 cells/10-cm

plate in complete mTeSR1TM medium containing 10 lM Y27632

(Tocris) and incubated at 37°C in a standard 5% CO2, humidified

incubator (Binder). To passage iPSC, cells were first treated with

10 lM Y27632 for 2 h, then washed with Ca2+/ Mg2+-free PBS and

cell colonies lifted from the plate by incubation with Dispase (Stem

Cell Technologies) containing 10 lM Y27632 (Tocris). Colonies

were fragmented by gentle trituration, collected by centrifugation

(180 g) and re-suspended in medium for re-plating.

Cell differentiation

For neural differentiation, a dual SMAD inhibition protocol was

used [44]. 34D6 iPSCs were harvested as described above for iPSC

passaging. 34D6 iPSC colony fragments were plated in non-adherent

bacteriological grade culture dishes in ADF differentiation medium

to allow for embryoid body formation [45]. ADF differentiation

medium comprised advanced DMEM/F12TM medium (Invitrogen)

supplemented with penicillin/streptomycin (5 lg/l, Invitrogen),

L-glutamine (200 mM, Invitrogen), 1× lipid concentrate (Invitrogen),

7.5 lg/ml holo-transferrin (Sigma), 14 lg/ml insulin (Merck), and

10 lM b-mercaptoethanol (Sigma). Medium was supplemented with

10 lM Y27632 (Tocris) for the first 2 days, with 10 lM SB-431542

(Tocris) until day 4 of differentiation and 0.5 lM LDN193189 (Mil-

tenyi) until day 8 of differentiation. Medium was changed every

2 days. At day 8, neuralised embryoid bodies were washed with

Ca2+/Mg2+-free PBS and then dissociated by incubation at 37°C

with Accutase (PAA laboratories). A single-cell suspension was

obtained by gentle trituration and cells washed with ADF medium

and harvested by centrifugation at 1,000 rpm. Neural progenitors

were then plated onto tissue culture plates coated with 0.1 lg/ml
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poly-L-lysine (Sigma) and 10 lg/ml laminin (Sigma) in ADF

medium + 5 ng/ml FGF2. 34D6-derived neural progenitors were

grown to sub-confluency and passaged once by dissociation with

Accutase and re-plating. The 34D6 iPSC-derived neural progenitors

were harvested for nucleosome preparation on day 16 of differentia-

tion. The NPC population was validated using immunocytochem-

istry by checking for the presence of the NPC-specific markers, such

as nestin and the loss of pluripotency markers, for example Oct-4.

Greater than 90% of the differentiated population contained neural

progenitors.

In vivo MNase digestion of chromatin

Chromatin was prepared from three bioreplicates of human iPSC

and the same cells differentiated to NPCs as described previously for

the S. cerevisiae genome [11]. The cell membranes and nuclei were

made permeable to MNase using NP-40 [46,47], and each biorepli-

cate was treated by in vivo digestion with 300 U/ml MNase at room

temperature for 4 min. DNA fragments were purified from each

MNase treated sample, and then, the samples for each cell type were

pooled in equimolar amounts. DNA extracted from chromatin

samples was size-fractionated on agarose gels. 25–35 lg of DNA less

than 300 bp was size-selected for each cell type.

Paired-end mode DNA sequencing

All of the DNA fragments less than 300 bp in size were utilised for

paired-end mode sequencing by Source BioScience (http://

www.sourcebioscience.com/) on an Illumina HiSeq 2000 platform

(HiSeq) using a read-length of 50 bp. Eight flow cells were used for

each cell type to obtain a sufficient depth of coverage of the human

genome. A standard Illumina paired-end mode sequencing protocol

was used, apart from the omission of the nebulisation step and the

addition of a further gel purification step to eliminate any excess

concatenated linkers after the ligation of linker DNA to the sample.

Base calling and quality control of the sequencing data were

performed using Real Time Analysis (RTA) 1.09, CASAVA 1.8 soft-

ware.

Alignment of paired-end reads to the genome

A total of 3.4 and 3.0 billion paired-end reads were obtained in fastq

format from iPSC and NPC, respectively, and aligned to the human

genome assembly hg19 using Bowtie version 0.12.8 [48]. The

command line options for bowtie were as follows: bowtie -v 3 –

trim3 14 –maxins 5000 –fr -k 1 –best -p 12.

Creation of nucleosome maps

Subsequent data processing to create nucleosome maps from iPSC

and NPC was undertaken in a similar manner to the method previ-

ously described for the S. cerevisiae genome [11].

Data validation and normalisation

The number of reads obtained for each human autosome in each

cell type was determined and utilised for further analysis. To

compensate for the slight genome-wide difference in total read

counts between the two cell types, the read counts for the NPC auto-

somal genome were multiplied by the ratio of the total aligned reads

in the autosomal genomes of iPSC v NPCs, which was 1.117.

Read mid-point frequency distributions

Paired-end reads obtained from Bowtie alignments in SAM format

were sorted into separate chromosome-specific files. To represent a

unique position for each paired-read, the genomic position of the

mid-point of the insert DNA was calculated. The reads were sepa-

rated and filtered into three size classes: 112–137 bp, 138–161 bp

(nucleosomes), 161–188 bp. The frequency distribution for the mid-

point position of the sequencing reads was derived at 10-bp resolu-

tion, and the data were smoothed using a 3-bin moving average.

Frequency distributions were output as chromosome-specific files in

.sgr format: chromosome identification: chromosomal location of

the start of each 10-bp bin: frequency of the paired-read mid-point

values that fall within that 10-bp bin.

Published human nucleosome maps

Published human nucleosome maps [19] from the K562 chronic

myelogenous leukaemia (Cml) cell line [49] and from the B-

lymphoblastoid cell line GM12878 (Coriell Biorepository) were

converted from bigwig to bedgraph format, and the chromosome-

specific bedgraph files were then converted to .sgr files by

binning the data into 10-bp bins and calculating a 3-bin moving

average exactly as described for the iPSC and NPC data above.

The final re-processed maps were validated as for the iPSC and

NPC maps, generating the total numbers of aligned paired-end

reads for each genome.

Locating patterns of positioned nucleosomes

In order to locate and quantify the number of highly positioned

nucleosomes, a heuristic peak-finding algorithm was developed.

Peaks were defined as three consecutive 10-bp bins where the value

of the paired-read mid-point frequency in the central 10-bp bin was

between 30 and < 1,000. The lower threshold for the paired-read

mid-point frequency values for the bins either side of the central bin

was set at two (the “noise” threshold). The upper threshold for each

of the paired-read mid-point frequency values for the bins either

side of the central bin was less than the paired-read mid-point

frequency in the central bin. The upper threshold was chosen to

exclude regions of the genome with high frequencies of paired-read

mid-point values found at the ends of chromosomes and at runs of

repeats and at centromeres. Peaks in the genomic distribution of

sequence read mid-points were given explicit genome positions

using PeakFinder for all of the nucleosome maps: iPSC, NPC and

K562.

Detecting nucleosome arrays

An in-house python script was used to calculate the distance

between the genomic locations of all highly positioned nucleosomes

across the genome for each cell type, iPSC, NPC and K562. Posi-

tioned nucleosomes 150–200 bp apart were located, and those exist-

ing as singletons or in arrays of 2, 3 or more nucleosomes
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were counted. In-house Perl scripts were used to compare the

genome-wide overlap in the locations of positioned nucleosomes

within � 10 bp in iPSC and NPC (Fig 1C).

Chromatin states

Chromatin state data file: wgEncodeBroadHmmH1hescHMM.bed

containing chromatin state information derived from H1ESCs was

downloaded from http://genome.ucsc.edu/cgi-bin/hgFileUi?db=

hg19&g=wgEncodeBroadHmm. For iPSC, we aligned the genomic

positions of the peaks in the nucleosome map determined using the

heuristic PeakFinder with the chromatin state regions determined in

H1ESC. Thus, we calculated the genome-wide total for the number

of nucleosomes in the following chromatin states [20,21]: active

promoter = state 1; insulator = state 8; repressed = state 12; hete-

rochromatin = state 13. We calculated the expected number of

nucleosomes in any particular chromatin state, assuming that posi-

tioned nucleosomes are dispersed randomly across the genome

(Table EV3). Similarly, we determined the chromatin state for the

CTCF sites we derived (using the H1ESC ChIP-seq data combined

with the CTCF-binding motif) and calculated the expected chro-

matin states for CTCF sites assuming that their distribution across

the genome is random (Table EV4).

Open chromatin

Published open chromatin data [23] derived from ATAC-seq studies

of two undifferentiated human iPSC were downloaded from GEO

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85330).

We aligned the genomic positions of the peaks in the nucleosome

map determined using the heuristic PeakFinder with the autosomal

ATAC-seq regions from each of two replicate cell lines C15_0_1_ATAC-

seq (GSM2264802) and C15_0_2_ATAC-seq (GSM2264803) using in-

house python scripts. The results of these analyses from the two repli-

cates were similar. Figure 2C and D show the results of the analysis

from ATAC-seq regions from C15_0_1_ATAC-seq (GSM2264802). We

calculated the expected number of nucleosomes and CTCF sites in open

chromatin assuming that nucleosomes are randomly distributed across

the genome.

Construction of genomic feature lists

The positions of transcriptional start sites for all of the full-length

transcripts for human genome assembly GRCH37/hg19 were

derived as follows. Track = Gencode Genes v17, table = basic,

was downloaded from the UCSC genome browser (contains

94,151 TSS). From this, a list of non-redundant, strand-specific

autosomal TSS was derived (n = 83,179) and a list of non-redun-

dant, strand-specific autosomal TSS from protein-coding genes

(n = 66,047) using in-house scripts was derived. Expression data

from ESCs and ESCs differentiated to the N2 stage of develop-

ment [26] were used to generate two lists of genes expressed

specifically in a) ESCs (n = 3,833) and b) N2 cells (n = 2,082).

The minimum expression threshold was 0.1 (normalised RPKM),

and the difference in expression was at least twofold difference

between ESC and NPC in each case. TSS of genes expressed

specifically in (i) ESC and (ii) N2 cells were tested for the pres-

ence of positioned nucleosomes within � 300 bp of the TSS by

mapping the genomic locations of highly positioned nucleosomes

generated by the PeakFinder tool to a window � 300 bp of the

TSS in each case.

Transcription factor binding motifs

The genomic positions of the consensus binding sequence for each

transcription factor were extracted from FASTA files from human

genome assembly GRCH37/hg19 using in-house Perl scripts. FASTA

files were downloaded from: http://hgdownload.cse.ucsc.edu/golde

nPath/hg19/chromosomes/.

The consensus binding motif used in this study for each transcrip-

tion factor is shown in Table EV5. The consensus binding motif for

YY1, M1, from factorbook derived from H1ESC ChIP-seq data was

used (http://www.factorbook.org) [50]. The ATF2 CRE-binding motif

was taken from Hai et al [51]. The PAX6 consensus binding sequence

was derived using (ChIP) in ES-derived neuroectodermal cells (NECs)

[52]. CTCF-binding positions in pluripotent cells were derived by

mapping the consensus binding motif derived by Ong et al [38] with

H1ESC ChIP region data from the Broad Institute downloaded from

the UCSC genome browser, file wgEncodeAwgTfbsBroadH1h-

escCtcfUniPk.narrowPeak (UCSC accession wgEncode EH000085).

NPC-specific CTCF-binding sites were derived by matching using

the locations of the peaks in the protected DNA fragments in the size

range 122-137bp in NPCs with H9ESC-derived NPC ChIP data from

the ENCODE project (https://www.encodeproject.org/files/

ENCFF796YPF), from data with conservative idr thresholded peaks

using in-house python scripts. RE1 sites were derived by mapping the

consensus binding motif derived by Bruce et al [32] with ChIP data

that were derived from the ENCODE database [34]. ChIP data were

downloaded using the UCSC genome browser from human genome

assembly GRCH37/hg19 Group = regulation, Track name = TXnFac-

torChiP, Table = wg EncodeRegTfbsCLusteredv2 from uniform

processing of data from the Jan. 2011 ENCODE data freeze.

SiteWriter

The in-house Perl script SiteWriter [11] was used to construct

average frequency distributions of the sequencing read mid-point

values at and surrounding genomic feature loci within a user-

defined window, for example at transcription factor binding sites,

and surrounding positioned nucleosomes (Fig 1D). The output

from the SiteWriter script comprises two files: (i) a CFD.txt file of

the normalised average frequency values. The values are normal-

ised by dividing the frequency value in each bin by the number

of bins specified in the user-defined window. (ii) a C3.txt file

which contains a matrix of locally normalised dyad frequency

values for every bin position. The C3.txt file data were used in

cluster analysis.

Cluster analysis

Cluster analysis was undertaken in R, using the Canberra method to

generate a distance matrix from the C3.txt file from the output of

the SiteWriter script. Dendrograms generated by hierarchical

agglomerative clustering were used to determine the number of

groups to use in k-means clustering. Cluster data for genomic

features were used to construct average frequency distributions of
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the read mid-point values at and in the bins surrounding genomic

feature loci within a user-defined window for selected clusters.

Data availability

Raw and processed sequencing read data are available on GEO:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117870

All the scripts used in this analysis are available on request.

Expanded View for this article is available online.
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