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Abstract

Schizophrenia is a psychiatric disorder characterized by positive and negative symptoms

and cognitive deficits. The exact cause of schizophrenia is still unknown, but substantial evi-

dence indicates that it has a genetic component. Genome wide association studies demon-

strate variants within miR-137 host gene are a risk factor for schizophrenia. However, the

direct relationship between the pathophysiology of schizophrenia and the dosage of miR-137

remains unclear. Therefore, in this study, we generated transgenic mice overexpressing

miR-137 (miR-137 Tg mice) with the neuron-specific Thy-1 promoter and examined schizo-

phrenia-related phenotypes in these mice. Overexpression of miR-137 was observed in vari-

ous brain regions of the miR-137 Tg mice, with down-regulation of putative miR-137 targets.

MiR-137 Tg mice showed sensory gating deficits in a prepulse inhibition test, social deficits in

a sociability and social novelty test, and cognitive deficits in a novel object recognition test.

Interestingly, the predicted-altered pathways of the medial prefrontal cortex of miR-137 Tg

mice were partially overlapped with those of the dorsolateral prefrontal cortex in postmortem

brain of patients who died in equal to or less than 4 years after initial diagnosis of schizophre-

nia in published data. These results suggest that overexpression of miR-137 in the whole

brain induces the several phenotypes that are relevant to aspects of psychiatric disorders,

such as schizophrenia. Based on these findings, miR-137 Tg mice may have the potential to

become a useful tool in researching the pathophysiology of psychiatric disorders.

Introduction

Schizophrenia is a psychiatric disorder characterized by positive and negative symptoms and

cognitive deficits [1], and is thought to result from a complex interplay of genetics and envi-

ronmental factors [2, 3]. Functional magnetic resonance imaging and electroencephalogram

studies of patients with schizophrenia show abnormal neural activities in various brain

regions, such as the prefrontal cortex (PFC), hippocampus, thalamus, striatum, and cerebellum
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[4–6]. To date, the results of genome-wide association study (GWAS) analyses indicate an

involvement of multiple and heterogeneous genetic factors in schizophrenia [7, 8].

It is demonstrated that the single nucleotide polymorphism (SNP) within the miR-137 host

gene (MIR137) has the strongest genetic association with schizophrenia [9]. In the largest

GWAS for schizophrenia to date, SNPs within MIR137 are the second most significant associ-

ation after the major histocompatibility complex region [10]. MiR-137 is a brain-enriched

miRNA that is highly expressed in whole brain regions except for the cerebellum [11]. MiR-

137 can modulate the expression of multiple genes and the activity of pathways [12] which

play important roles in regulating the development of the embryonic neural stem cell, neuro-

nal proliferation and differentiation, and synaptic maturation [13]. Multiple GWAS analyses

in schizophrenia demonstrate SNPs (rs1625579, rs2660304 and rs1198588) within MIR137 are

associated with schizophrenia [9, 10, 14, 15]. Moreover, rs1625579 within MIR137 is geneti-

cally associated with several phenotypes of schizophrenia, including cognitive deficits and neg-

ative symptoms [16], as well as earlier age at onset [17]. Most of expression quantitative trait

locus studies for miR-137 indicate that major alleles, higher risk of schizophrenia, decrease

miR-137 expression [11, 14, 15], including a study that minor alleles increase miR-137 expres-

sion [18]. Meanwhile, the expression of miR-137 in postmortem brain samples does not

change in the patients with schizophrenia compared to healthy control [11, 19]. On the other

hands, recent studies have demonstrated that the expression of miR-137 in peripheral blood

was increased in the first episode patients with schizophrenia compared to those of healthy

controls [20, 21]. Thus, the direct relationship between the pathophysiology of schizophrenia

and the dosage of miR-137 remains to be unclear.

Lentivirus-mediated overexpression of miR-137 in the mouse hippocampal dentate gyrus

down-regulates the expression level of presynaptic genes and impairs the induction of mossy

fiber long-term potentiation, which results in deficits in hippocampus-dependent learning and

memory [18]. However, the effects of miR-137 overexpression in the whole brain still remain

unknown. Therefore, we generated miR-137 transgenic mice (miR-137 Tg mice) in which

miR-137 is expressed in the whole brain regions with the neuron-specific Thy-1 promoter

[22], and examined the effects of overexpressed miR-137 on psychiatry-like phenotypes, espe-

cially schizophrenia related-phenotypes, such as positive and negative symptom-like behavior

and cognitive deficits. Moreover, we performed a transcriptional analysis comparing with pub-

lic data with postmortem brain samples from patients with schizophrenia.

Materials and methods

Animals

Wild-type (WT) mice and miR-137 Tg mice were housed in groups of 2-4/cage in a light-con-

trolled room (12-hour light/dark cycle, with lights on at 7 AM) and fed with free access to food

and water. After an acclimation period of at least 1 week, male mice at between 3 to 10 months

old were used. The care and use of the animals and the experimental protocols were approved

by the Institutional Animal Care and Use Committee of Takeda Pharmaceutical Company

Limited (protocol number: 00010713). Animal research facilities in Takeda Pharmaceutical

Company Limited (Kanagawa, Japan) are accredited by the Association for Assessment and

Accreditation of Laboratory Animal Care (AAALAC). All efforts were made to minimize

suffering.

Generation of miR-137 Tg mice

The 946 bp genome fragment encompassing murine mature miR-137 (NCBI Gene ID:

387155) was cloned by PCR and ligated with Thy-1 promoter. The pThy1.2 expression cassette
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was gifted from Dr. Pico Caroni at the Friedrich Miescher Institute, Basel, Switzerland [23].

The resulting Thy-1-miR-137 plasmid was linearized by digestion with restriction enzymes

(EcoRI and PvuI) and was then microinjected into fertilized eggs of the C57BL/6J mice (CLEA

Japan, Tokyo, Japan). F1 pups were obtained from F0 transgenic founder mice by in vitro fer-

tilization and were analyzed for the expression of miR-137 in the brain as described below.

List of predicted miR-137 targets

MiRNAs are shown to bind to specific seeding sites in the 3’ UTR [24]. MiRWalk is the com-

prehensive miRNA-target prediction database summarizing the results of several databases

with a different algorithm [25]. We used miRWalk ver. 2.0 and counted the predicted number

as hsa- or mmu-miR-137 target genes in 12 databases (miRWalk, Microt4, miRanda-rel2010,

mirbridge, miRDB4.0, miRMap, miRNAMap, Pictar2, PITA, RNA22v2, RNAhybrid2.1 and

Targetscan6.2). Genes predicted as miR-137 targets in more than 5 databases were used as the

miR-137 target genes in this study.

RNA extraction and quantitative real-time PCR

The mice at 3 and 10 months old were sacrificed by decapitation, and brain tissue from the

medial PFC (mPFC), striatum, thalamus, hippocampus, and cerebellum was quickly dissected,

frozen on dry ice, and stored at −80˚C. Total RNA was extracted using the miRNeasy mini kit

(Qiagen, Hilden, Germany) following the manufacturer’s instruction. Reverse transcription

was performed using the TaqMan MicroRNA Reverse Transcription Kit (Thermo Fischer Sci-

entific, Waltham, MA) and the TaqMan miRNA assay for mature miR-137 and snoRNA202

(Thermo Fischer Scientific). The TaqMan miRNA assay was performed using TaqMan Pre-

Amp Master Mix (Thermo Fischer Scientific). The cDNA samples were subjected to real-time

PCR using the ViiA-7 instrument (Thermo Fischer Scientific), and the threshold cycle (Ct) of

miR-137 was normalized by that of snoRNA202.

Global transcriptional expression

Total RNAs of the mice at 3 months old were used for this analysis and were quantified using

Qubit 3.0 Fluorimeter (Thermo Fisher Scientific). Sequencing libraries were prepared using

the Ion Total RNA-Seq Kit v2 (Thermo Fisher Scientific) from total RNA, according to the

manufacturer’s instructions. Quantification of the amplified cDNA was performed on an Agi-

lent 2100 Bioanalyzer with the Agilent High Sensitivity DNA Kit (Agilent Technologies, Santa

Clara, CA). Libraries were pooled equally with six samples. Emulsion PCR, enrichment, and

loading were performed on an Ion Chef Instrument (Thermo Fisher Scientific) using the Ion

PI Hi-Q Chef Kit (Thermo Fisher Scientific) and the Ion PI Chip Kit v3 (Thermo Fisher Scien-

tific). The samples were then sequenced on an Ion Proton System (Thermo Fisher Scientific)

using the Ion PI Hi-Q Sequencing 200 Kit (Thermo Fisher Scientific).

Comparison of transcriptional changes

Throughout the analysis, genes were selected if they showed a count>0 in at least 20% sam-

ples. The read count was transformed to the fragment per kilo million values. The transcrip-

tional changes between WT mice and miR-137 Tg mice were analyzed by Aspin-Welch test.

We set the criterion for statistical significance at RPKM (reads per kilobase of exon per million

mapped reads) >0.5, p-value <0.05, and absolute fold change>1.2.

The Correlation Engine software (Illumina, San Diego, CA) enables ontology-based meta-

analysis of global collections of the public available gene expression datasets by using the
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pairwise rank-based enrichment analysis [26]. The transcriptome data obtained from miR-137

Tg mice were imported into Correlation Engine (Illumina) and were compared with the bioset

of mmu-miR-137 putative target genes selected by miRWalk ver.2.0. Pairwise rank-based

enrichment analysis was performed by the Correlation Engine software, and enrichment p-

value was calculated (Illumina).

To find biosets whose changing expression is highly overlapped with miR-137 Tg mice, we

used the Correlation Engine database of patients with schizophrenia (Illumina). Public tran-

scriptome data was used under the condition of p-value<0.05 and absolute fold change >1.2.

We selected a similar bioset showing transcriptional changes of patients with schizophrenia

compared with healthy control subjects. Next, we compared the selected biosets with the bioset

of hsa-miR-137 target genes selected by miRWalk ver. 2.0. Pairwise rank-based enrichment

analysis was performed by the Correlation Engine software, and enrichment p-value was calcu-

lated (Illumina).

Finally, biosets showing transcriptional changes in miR-137 Tg mice and patients with

schizophrenia were imported into Ingenuity Pathway Analysis (IPA) (ver. 47547484) (Qiagen).

Core analysis in the IPA software predicted canonical pathways that are changing based on

gene expression. Pathway activation z-score was calculated and predicts whether the pathway

was up-regulated or down-regulated. The positive number indicates that the pathway was up-

regulated, and the negative number indicates that the pathway was down-regulated. Pathway

activation z-scores showing greater than 2 or smaller than −2 were judged as significant. Com-

parisons of the canonical pathways between miR-137 Tg mice and patients with schizophrenia

were performed by comparison analysis in the IPA program (Qiagen).

Prepulse inhibition (PPI) test

The PPI test was performed using 4-month-old mice. The experiments employed 8 SR-LAB

acoustic startle chambers (San Diego Instruments, San Diego, CA). Each chamber consisted of

a clear Plexiglas cylinder resting on a Plexiglas platform inside a ventilated enclosure housed in

a sound-attenuated room. High-frequency speakers mounted above the cylinders produced all

acoustic stimuli. Piezoelectric accelerometers mounted under the cylinders transduced move-

ments of the animals. During the test sessions, individual mice were placed in the startle cham-

bers and the background noise (70 dB) was initiated. After a 5-min acclimation period, each

subject was presented with 54 trials having variable inter-trial intervals (7–23 s). The trials con-

sisted of the following three types: (1) a pulse-only trial of 118 dB presented for 40 ms, during

which the startle response was recorded; (2) two prepulse trial types consisting of 118 dB pre-

sented for 40 ms, which was preceded 100 ms earlier by a 20-ms prepulse of 76 or 82 dB. Startle

response was recorded for 40 ms starting at the onset of the 118-dB pulse; and (3) a no-stimu-

lus trial in which only background noise was presented. The percentage of PPI of the 76 or 82

dB prepulse was calculated using the following formula:

%PPI ¼

ðaverage maximum starle of pulse only trials at 118 dBÞ�

ðaverage maximum starle of prepulse trialsÞ
ðaverage maximum startle of pulse only trails at 118 dBÞ

x100:

Sociability and social novelty test

The sociability and social novelty tests were performed using 6-month-old mice. The apparatus

was a three-chamber grey acryl box (center chamber: 14.5 × 19 × 21.5 cm, outer chamber:

19.3 × 19 × 21.5 cm), and dividing walls were made from clear acryl plates with 8-cm-wide gates.

miR-137 Tg mice show schizophrenia-associated phenotypes
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In the two outer chambers, transparent cylinders with small holes (8.2 cm ϕ × 20.5 cm, hole: 1.3

cm ϕ) were placed to avoid direct physical interaction between mice. The target animals were

age-matched WT mice that had no previous contact with test animals. The mice were habituated

to the test arena without cylinders for 5 min with their cagemates 2 days before the test, and then

were individually habituated to the test arena with cylinders for 5 min 1 day before the test. On

the test day, each test animal was placed in the middle chamber of test apparatus for 3 min with

the gate closed by partition. The target 1 mouse was introduced in one of the cylinders while the

other was kept empty. The partitions were then removed gently, allowing the test animal to

explore freely all three chambers for 5 min (sociability test). The test mouse was placed in the

center area again and the gate was closed for 30 s, during which time another mouse was placed

into the previously empty cylinder (termed as the target 2 mouse). The partitions were removed

and the test mouse was allowed to explore another 5 min (social novelty test). The test mouse

was observed for the total sniffing duration (defined as having the nose in contact with the cylin-

der). The sniffing index was calculated as the index of sociability in the social approach test and

social recognition in the social novelty test using the following equation:

Sniffing index ðsociability testÞ

¼
Sniffing time in cylinder with target 1 ðsÞ � Sniffing time in empty cylinder ðsÞ

Total sniffing time ðsÞ

Sniffing index ðsocial novelty testÞ

¼
Sniffing time in cylinder with target 2 ðsÞ � Sniffing time in cylineder with target 1 ðsÞ

Total sniffing time ðsÞ

Novel object recognition (NOR) test

The NOR test was performed using 9-month-old mice. The test consisted of two parts: the

habituation and test sessions (acquisition trial and retention trial). We used a gray 30 × 30 × 30

cm test box, a silver-aluminum square pole and a gray vinyl chloride circular cone as objects.

In the habituation session on day 1, each mouse was habituated to the empty test box by plac-

ing it in the box and allowing it to explore for 5 min. In the test session for the acquisition trial

on day 2, two identical objects were symmetrically placed in the corner of the test box. Each

mouse was placed in another corner of the box with their head pointing toward the corner.

Five minutes were allowed to explore each object, followed by a 24-hour retention interval in

the home cage. In the test session for the retention trial on day 3, the mouse was placed back

into the same box, where one of the familiar objects used during the acquisition trial was

replaced with a novel object. The mouse was allowed to explore freely for 5 min. A preference

ratio of the time exploring the novel object to the time exploring both objects was calculated as

an index of cognitive function:

Novelty discrimination index ðNDIÞ ¼
exploring time of novel object
exploring time of both objects

� 100 ð%Þ :

Statistics

Data were presented as mean + standard error of the mean (SEM). The statistical difference

between the two groups was analyzed using the Student’s t-test or Aspin-Welch test, and

miR-137 Tg mice show schizophrenia-associated phenotypes
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significance was set at p<0.05. All analyses were performed using the SAS system 8 (SAS Insti-

tute, Cary, NC).

Results

Generation of miR-137 Tg mice

We generated transgenic mice overexpressing miR-137 using a neuron-specific Thy-1 pro-

moter (Fig 1A) and measured the expression of miR-137 in various brain regions at 3 months

old. In WT mice, the miR-137 was obviously expressed in the various regions, such as mPFC,

striatum, thalamus, and hippocampus, but was only slightly detected in the cerebellum (Fig

1B). Compared with WT mice, miR-137 Tg mice showed an apparent overexpression of miR-

137 in all examined brain regions (Fig 1B). Moreover, the expression levels of miR-137 in

miR-137 Tg mice at 10 months old were increased at a degree similar to that seen in miR-137

Fig 1. Generation of miR-137 Tg mice and altered gene expression of the putative targets for miR-137. (A) Transgene constructs. The genomic region encompassing

mature miR-137 was ligated into the XhoI site of the plasmid containing the Thy-1 promoter. The Thy-1 promoter/miR-137 plasmid was linearized using restriction

enzyme digestion and was microinjected into C57BL/6J fertilized eggs. (B) Expression level of miR-137 in several brain regions in WT and miR-137 Tg mice. Data are

expressed as the mean + SEM (3-month-old male mice, n = 3). (C) Comparison of transcriptional changes of the miR-137 Tg mice at 3 months of age and mmu-miR-

137-predicted target genes. Enrichment p-values were calculated in each brain region. mPFC, medial prefrontal cortex; Str, striatum; Thal, thalamus; Hip, hippocampus;

Cb, cerebellum.

https://doi.org/10.1371/journal.pone.0220389.g001
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Tg mice at 3 months old as compared with the WT mice (S1 Fig). These results suggest that

miR-137 Tg mice overexpress miR-137 in the whole brain including the cerebellum from 3 to

10 months of age.

Down-regulation of miR-137 putative target genes in miR-137 Tg mouse

brains

To assess the effects of overexpressed miR-137 on the gene expressions of miR-137 putative

targets, we examined the transcriptome analysis in several brain regions. The number of genes

whose expression levels were changed in the brain tissue of miR-137 Tg mice comparing with

that of WT mice was as follows: mPFC (up: 561, down: 1287), striatum (up: 748, down: 294),

thalamus (up: 1087, down: 563), hippocampus (up: 471, down: 402), and cerebellum (up: 371,

down: 617) (S1 Table). The miRWalk ver. 2.0 dataset was used to select 2356 genes as the puta-

tive target genes, which were predicted in more than 5 databases as the miR-137 target (S2

Table), and we used them in analysis of miR-137 Tg mice. The number of putative mmu-miR-

137 target genes showing the altered expression level was as follows: mPFC (up: 22, down:

365), striatum (up: 37, down: 102), thalamus (up: 97, down: 146), hippocampus (up: 43, down:

90), and cerebellum (up: 46, down: 59) (S3 Table). There was a strong overlap between down-

regulated genes and putative miR-137 target genes in pairwise rank-based enrichment analysis

(enrichment p-value; 2.8E-128, 1.7E-62, 2.1E-74, 1.1E-38, and 3.5E-8 for mPFC, striatum, thal-

amus, hippocampus, and cerebellum, respectively; Fig 1C). In contrast, compared to those of

down-regulated genes, there was a weaker overlap between up-regulated genes and putative

miR-137 target genes, except for the cerebellum (enrichment p-value; 0.50, 0.18, 1.2E-7, 5.9E-6

and 3.5E-11 for mPFC, striatum, thalamus, hippocampus, and cerebellum, respectively; Fig

1C). Brain transcriptome analysis showed that the overexpressed miR-137 significantly

reduced the expression level of the putative target genes.

Behavioral alterations in miR-137 Tg mice

It is of interest that overexpression of miR-137 in the brain leads to behavioral changes associ-

ated with the core symptoms of patients with schizophrenia. We tested the performance of

miR-137 Tg mice in the PPI test, sociability and social novelty test, and NOR test as bench-

marks of positive symptoms, negative symptoms, and cognitive deficits, respectively [27–29].

In the PPI test, the miR-137 Tg mice exhibited a significant increase of startle amplitude (p
<0.001; Fig 2A), whereas the miR-137 Tg mice exhibited a significant decrease of PPI (pre-

pulse 76 dB; p<0.05, prepulse 82 dB; p<0.01; Fig 2B). And the miR-137 Tg mice exhibited a

significant decrease of the sniffing index in both the sociability and the social novelty test (p
<0.05), which are indices of sociability and social recognition, respectively (Fig 2C and 2D). In

the NOR test, under the condition that total duration of object sniffing time in the acquisition

trial did not change between WT mice and miR-137 Tg mice (Fig 2E), the miR-137 Tg mice

exhibited a significant decrease of NDI (p<0.01), an index of cognitive function, compared

with WT mice (Fig 2F).

Overlapping transcriptional changes from the mPFC of miR-137 Tg mice

with those of the dorsolateral PFC (DLPFC) in post-mortem brains of

patients with schizophrenia

Functional abnormalities in the mPFC are implicated in phenotypes of schizophrenia [30].

The mouse mPFC shows to have anatomic and functional homology to the human DLPFC

[31]. We compared transcriptomes from the mPFC of miR-137 Tg mice with data set related

miR-137 Tg mice show schizophrenia-associated phenotypes
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to schizophrenia in public by using the Correlation Engine database, resulting that most simi-

lar was those of the postmortem DLPFC from patients who died in equal to or less than 4 years

after initial diagnosis of schizophrenia (defined as short duration of illness [short DOI]) in the

report of Narayan et al [32]. That is, only direction showing down-regulated genes both in

miR-137 Tg mice and the patients with schizophrenia with short DOI was strongly overlapped

(enrichment p-value; 2.2E-25).

Since the Correlation Engine also includes biosets of patients with schizophrenia with dif-

ferent DOIs in the report of Narayan et al [32], ranging 7–18 years from initial diagnosis to

Fig 2. Behavioral analysis related to core symptoms of schizophrenia. (A, B) PPI test, (C) sociability test, (D) social novelty test, (E) NOR test (acquisition trial) and (F)

NOR test (retention trial) in WT and miR-137 Tg mice. Data are expressed as the mean + SEM. (A, B) 4-month-old male mice, n = 12,
�

p<0.05,
���

p<0.001 vs. WT

(Aspin-Welch test),
��

p<0.01 vs. WT (Student’s t-test); (C, D) 6-month-old male mice, n = 11,
�

p<0.05 vs. WT (Student’s t-test); (E, F) 9-month-old male mice, n = 8,
��

p
<0.01 vs. WT (Aspin-Welch test).

https://doi.org/10.1371/journal.pone.0220389.g002
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death (defined as intermediate DOI) and>28 years from initial diagnosis to death (defined as

long DOI), we also compared the dataset from miR-137 Tg mice with the other two biosets.

The number of genes whose expression levels were changed in the postmortem brain of the

patients with schizophrenia comparing with that of healthy control was as follows: >28 years

(up: 108, down: 137), 7–18 years (up: 685, down: 1059),�4 years (up: 781, down: 1644) (S4

Table). The miRWalk ver. 2.0 dataset was used to select 2714 genes as the putative target genes,

which were predicted in more than 5 databases as hsa-miR-137 target (S5 Table), and we used

them in analysis of the patient with schizophrenia. We observed an inverse overlap between

the number of putative hsa-miR-137 target genes and DOIs (number of miR-137 target genes:

>28 years (up: 19, down: 21), 7–18 years (up: 97, down: 204),�4 years (up: 73, down: 343) (S6

Table). Transcriptional changes of short DOI samples showed the strongest overlap between

down-regulated genes and putative miR-137 target genes (enrichment p-value; 7.0E-4, 8.0E-8,

and 1.3E-12 for >28 years, 7–18 years, and�4 years, respectively; Fig 3A). In contrast, tran-

scriptional changes of short DOI samples showed the weakest overlap between up-regulated

genes and putative miR-137 target genes (enrichment p-value; 3.6E-3, 4.1E-6, and 8.7E-3 for

>28 years, 7–18 years, and�4 years, respectively; Fig 3A).

Finally, we performed a comparison of predicted-altered pathways that were based on tran-

scriptional changes of short DOI samples and the mPFC of miR-137 Tg mice by using IPA

software. Common canonical pathways in patients with schizophrenia with short DOI and

miR-137 Tg mice were summarized (S7 Table). Most of the pathway activation z-score in com-

mon pathway showed the negative number, suggesting that these pathways were down-regu-

lated (Fig 3B). Among them, pathway activation z-score of several common pathways showed

smaller than −2, suggesting that alteration of these pathways were significant. Especially, the

list of top 20 common pathways between the patients with schizophrenia and miR-137 Tg

mice was summarized (Table 1). Synaptogenesis signaling pathway, an inflammatory-related

signaling (CXCR4 signaling, P2Y purigenic receptor signaling pathway and IL-8 signaling)

and the inter-cellular-related signaling (Gαq signaling and CREB signaling in neurons) were

highly ranked.

Fig 3. Comparison of transcriptional changes in patients with schizophrenia and miR-137 Tg mice. (A) Enrichment p-value calculated by comparing increased or

decreased gene expression of miR-137-predicted targets in the mPFC of miR-137 Tg mice and in the DLPFC of postmortem brains in patients with schizophrenia who had

different durations of illness. (B) Comparison of pathway activation z-score with patients who died in equal to or less than 4 years after initial diagnosis of schizophrenia

and miR-137 Tg mice. The positive number indicates that the pathway was up-regulated, and the negative number indicates that the pathway was down-regulated.

https://doi.org/10.1371/journal.pone.0220389.g003
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Discussion

Here, we present the first characterization of miR-137 Tg mice at the behavioral and molecular

levels. Overexpression of miR-137 was observed in various brain regions of the miR-137 Tg

mice, with down-regulation of putative miR-137 targets. Behavioral experiments showed that

the miR-137 Tg mice had psychiatry-like phenotypes, especially schizophrenia related-behav-

ioral deficits in sensory gating, sociability, social recognition, and cognition. Interestingly, the

predicted-altered pathways in the mPFC obtained from the miR-137 Tg mice were partially

overlapped with those seen in the postmortem DLPFC of patients who died in equal to or less

than 4 years after initial diagnosis of schizophrenia [32].

Previous study reports the overexpression of miR-137 in hippocampal dentate gyrus results

in deficits in hippocampal-dependent learning and memory [18]. In this study, we confirmed

that the miR-137 Tg mice display deficits in sensory gating, sociability and cognition, which

are benchmarks of positive, negative symptoms and cognitive deficits, respectively (Fig 2A–2D

and 2F) [27–29]. Sensory gating in the PPI test can be examined both in preclinical and clinical

studies, and PPI of the startle response is associated with the mPFC, striatum, and thalamus

[33]. Social recognition in human is associated with the cortex and amygdala [34], and the

sociability and social recognition in rodents are involved in the mPFC [35]. Furthermore, the

NOR test in rodents is considered to reflect visual learning and memory in humans [36], and

multiple brain regions, such as hippocampus, insular cortex, perirhinal cortex, and mPFC are

associated with in the NOR test [37]. Thus, overexpression of miR-137 in the whole brain may

be responsible for deficits in sensory gating, sociability, social recognition, visual learning and

memory.

Table 1. The list of top 20 common pathways between the patients with schizophrenia with short DOI and miR-

137 Tg mice.

Pathway activation z-score

miR-137 Tg

mice

Patients with schizophrenia with short

DOI

Synaptogenesis Signaling Pathway -3.550 -3.474

Cardiac Hypertrophy Signaling -3.578 -3.042

Cardiac Hypertrophy Signaling (Enhanced) -3.889 -2.692

CXCR4 Signaling -2.828 -3.657

AMPK Signaling -3.000 -3.307

Gαq Signaling -3.130 -3.157

P2Y Purigenic Receptor Signaling Pathway -3.357 -2.858

Aldosterone Signaling in Epithelial Cells -3.051 -3.153

Ephrin Receptor Signaling -2.530 -3.656

Integrin Signaling -2.837 -3.333

CREB Signaling in Neurons -2.982 -3.128

IL-8 Signaling -2.828 -3.182

Signaling by Rho Family GTPases -2.400 -3.569

Role of NFAT in Cardiac Hypertrophy -3.000 -2.967

Neuropathic Pain Signaling In Dorsal Horn

Neurons

-2.668 -3.273

NF-κF Signaling -3.441 -2.449

Apelin Endothelial Signaling Pathway -3.000 -2.887

GNRH Signaling -2.121 -3.651

Adrenomedullin signaling pathway -3.130 -2.611

Rac Signaling -1.941 -3.772

https://doi.org/10.1371/journal.pone.0220389.t001
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Multiple studies indicate that genes predicted as miR-137 targets are enriched as the risk

genes of schizophrenia [9, 10, 12, 13, 38]. Interestingly, the down-regulated genes in the post-

mortem DLPFC of the patients with schizophrenia with short DOI were enriched among the

predicted genes for miR-137 (Fig 3A). Furthermore, predicted-altered pathways in the mPFC

obtained from the miR-137 Tg mice were partially overlapped with those seen in the postmor-

tem DLPFC of patients with short DOI (Fig 3B). Thus, down-regulated miR-137 pathways

may be associated with the emergence and pathophysiology of schizophrenia. On the other

hands, transcriptomes of patients with schizophrenia with intermediate and long DOI showed

the less overlap with those of miR-137 Tg mice. Schizophrenia is a disease that the relative pre-

dominance of symptom presentation changes disease progression [39–41], and antipsychotic

drugs are known to alter the expression of many diverse genes [42], thus, the transcriptomes of

patients with schizophrenia who had a long-term illness may not have the less overlap with

those of miR-137 Tg mice.

Since the human DLPFC and the rodent mPFC are involved in executive functions and

working memory [43], transcriptional changes in the mPFC of the miR-137 Tg mice would

cause deficits of cognitive function. Interestingly, we found that synaptogenesis signaling path-

way, inflammatory-related signaling and inter-cellular-related signaling were highly ranked in

the commonly changed pathways between the mPFC in the miR-137 Tg mice and those of the

postmortem DLPFC in patients with schizophrenia with short DOI (Table 1). Abnormalities

in these three pathways were reported to be involved in deficits of cognitive function in schizo-

phrenia [44–46]. It would be worth testing to explore which pathway is implicated in the defi-

cits of cognitive function in the miR-137 Tg mice.

As mentioned above, we confirmed the psychiatric disorders-associated behavioral deficits

and the overlap of predicted-altered pathways between patients with schizophrenia with short

DOI and miR-137 Tg mice. Although miR-137 was slightly expressed in the cerebella of the

WT mice, the cerebella of the miR-137 Tg mice showed overexpression of miR-137 (Fig 1B).

This is because the Thy-1 promoter works in the neuronal cells in the whole brain [22]. In

humans, miR-137 is expressed in the whole brain including in the mPFC, striatum, thalamus,

and hippocampus, but it is not expressed in the cerebellum [11]. We need to examine the

effects of overexpression of miR-137 in the cerebellum later.

Here, we demonstrated that the overexpression of miR-137 in the whole brain induces the

several phenotypes that are relevant to aspects of psychiatric disorders, such as schizophrenia at

the behavioral and molecular levels. Although the increased miR-137 in our model is opposite

direction to the observed effect of the risk allele in the study with human postmortem brain

[11], our results provide new insight into the mechanistic understanding of miR-137 function

in the emergence and pathophysiology of schizophrenia. Furthermore, the miR-137 Tg mice

appear to be a useful tool for researching the pathophysiology of psychiatric disorders.
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