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Background: Preoperative lymph node (LN) status is important for the treatment of bladder cancer (BCa).
However, a proportion of patients are at high risk for inaccurate clinical nodal staging by current methods.
Here, we report an accurate magnetic resonance imaging (MRI)-based radiomics signature for the individual
preoperative prediction of LN metastasis in BCa.
Methods: In total, 103 eligible BCa patientswere divided into a training set (n=69) and a validation set (n=34).
And 718 radiomics features were extracted from the cancerous volumes of interest (VOIs) on T2-weighted MRI
images. A radiomics signaturewas constructed using the least absolute shrinkage and selection operator (LASSO)
algorithm in the training set, whose performancewas assessed and then validated in the validation set. Stratified
analyses were also performed. Based on the multivariable logistic regression analysis, a radiomics nomogram
was developed incorporating the radiomics signature and selected clinical predictors. Discrimination, calibration
and clinical usefulness of the nomogram were assessed.
Findings: Consisting of 9 selected features, the radiomics signature showed a favorable discriminatory ability in
the training setwith an AUC of 0.9005,whichwas confirmed in the validation setwith an AUC of 0.8447. Encour-
agingly, the radiomics signature also showed good discrimination in the MRI-reported LN negative (cN0) sub-
group (AUC, 0.8406). The nomogram, consisting of the radiomics signature and the MRI-reported LN status,
showed good calibration and discrimination in the training and validation sets (AUC, 0.9118 and 0.8902, respec-
tively). The decision curve analysis indicated that the nomogram was clinically useful.
Interpretation: The MRI-based radiomics nomogram has the potential to be used as a non-invasive tool for indi-
vidualized preoperative prediction of LNmetastasis in BCa. External validation is further required prior to clinical
implementation.
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Research in Context

Preoperative lymph node (LN) status is important for the treatment
of bladder cancer (BCa). However, a proportion of patients are at
high risk for inaccurate clinical nodal staging by current methods.
Radiomics, the high-throughput extraction of immense volumes of
quantitative image features from standard-of-care medical imag-
ing that can be excavated and applied within disease detection,
diagnosis, prognostic evaluation, and prediction of the treatment
response, has drawn increased attention in cancer research in
recent years. We have reported a radiomics study recently, which
developed a CT-based radiomics nomogram with favorable dis-
crimination and calibration for the preoperative prediction of LN
metastasis in patients with BCa. Since a proportion of BCa
patients are diagnosed clinically via MRI, whether the radiomics
features extracted fromMRI images can be used for LNmetastasis
prediction in BCa patients is an interesting problem that warrants
investigation. However, there has been no study that has deter-
mined whether a radiomics signature extracted from MRI images
would be capable to preoperatively predict LN metastasis in BCa
to date. In this study, we developed and validated an MRI-based
radiomics signature for preoperatively predicting LN metastasis
in BCa patients, which showed good discrimination in the training
and validation sets. Encouragingly, it also performed well in the
MRI-reported LN-negative (cN0) subgroup. Our signature demon-
strates that radiomics features extracted from MRI images can
be used for LN metastasis prediction in BCa patients. The nomo-
gram, incorporating the radiomics signature and MRI-reported LN
status, showed favorable discrimination and calibration, providing
a non-invasive preoperative prediction tool to identify BCa pa-
tients with a high risk of LN metastasis, which may aid in clinical
decision-making.
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1. Introduction

Bladder cancer (BCa) is the ninth most common cancer and ranks
thirteenth as a cause of cancer-related death worldwide [1]. Lymph
nodes (LNs) are a common site of metastatic spread in patients with
BCa, as approximately 25–30% of BCa patients who undergo radical
cystectomy (RC) and pelvic lymph node dissection (PLND) harbor LN
metastases [2–8]. LN metastasis is a negative prognostic factor in BCa
patients [9–11]. Thus, accurate prediction of LN metastasis in patients
with BCa can improve medical decision-making. Magnetic resonance
imaging (MRI) and computed tomography (CT) are recommended for
preoperative nodal staging in BCa patients in clinical practice. Both
MRI and CT detect malignant LN mainly based on their size. However,
normal-sized orminimally enlarged LNs assume a considerable propor-
tion of malignant LNs of BCa patients. Such diagnosis pattern leads to
understaging patients with small nodal metastases. Therefore, the sen-
sitivity of CT or MRI for detecting malignant LNs is relatively low
(31–45%), which has consequently led to a proportion of patients
being understaged [12–15].

Radiomics, the high-throughput extraction of immense volumes of
quantitative image features from standard-of-care medical imaging
that can be excavated and applied within disease detection, diagnosis,
prognostic evaluation, and prediction of the treatment response, has
drawn increased attention in cancer research in recent years [16, 17].
Radiomics-based signatures have been developed for precision diagno-
sis and treatment, which may serve as a novel and powerful tool in
modern precision medicine [16]. An MRI-based radiomics study has
demonstrated that radiomics features extracted from MRI images can
be used to distinguish tumor grade in BCa [18]. However, to our knowl-
edge, there has been no study that has determinedwhether a radiomics
signature extracted from MRI images would be capable to preopera-
tively predict LN metastasis in BCa to date. Recently, we reported a
CT-based radiomics study, which developed a radiomics nomogram
with favorable discrimination and calibration for the preoperative pre-
diction of LN metastasis in patients with BCa [19]. Since a proportion
of BCa patients are diagnosed clinically via MRI, whether the radiomics
features extracted from MRI images can be used for LN metastasis pre-
diction in BCa patients is an interesting problem that warrants
investigation.

Therefore, the aim of this study was to construct and validate an
MRI-based radiomics signature for the preoperative prediction of LN
metastasis in patients with BCa. Moreover, we developed an inclusive
nomogram that incorporated the radiomics signature and clinical risk
factors for providing an individual, preoperative assessment of the risk
of LN metastasis in BCa patients.

2. Materials and Methods

2.1. Patients

Ethical approval was obtained from the institutional review board
for this retrospective analysis. A total of 103 consecutive BCa patients
treated between August 2010 and April 2018 were enrolled in this
study according to the specified inclusion and exclusion criteria. Inclu-
sion criteria consisted of the following: (a) BCa patients with patholog-
ically confirmed urothelial carcinoma; (b) laparoscopic RC and
extended PLND performed; and (c) standard pelvic MRI performed
b20 days before surgery. Exclusion criteria included the following:
(a) neoadjuvant chemotherapy or preoperative radiotherapy per-
formed; (b) other tumor diseases occurring at the same period; and
(c) have imaging artifacts in the MRI images. The patient recruitment
pathway is presented in Supplementary Fig. S1. All enrolled patients
were divided into two independent data sets: 69 patients treated
between August 2010 and July 2016 were assigned to the training set,
whereas 34 patients treated between August 2016 and April 2018
were assigned to the validation set.

Baseline clinical data (age and sex) and pathologic N stage were
derived from the medical records. MRI data, including the size of the
largest tumor, the number of tumors, T stage and LN status, were re-
corded by two radiologists with 15 (Yong Li) and 10 years (Zhuo Wu)
of experience in pelvic MRI interpretation after reviewing all of the
MRI scans. Any disagreement was resolved by a consultation. Note
that those patients with pelvic LN N 8 mm or abdominal LN N 10 mm
in themaximal short-axis diameter onMRI scanswere regarded as clin-
ically LN-positive (cN1-3) [20]. Tumor pathologic staging was per-
formed on the basis of the UICC 7th edition TNM staging system [21].

2.2. Imaging Acquisition, Volumes-of-Interest Segmentation and Radiomic
Feature Extraction

Fig. 1 shows the radiomics workflow. All patients underwent pelvic
MRI with a 3.0 T MR scanner (Intera Achieva, Philips Medical Systems,
Best, the Netherlands). On T2-weighted (T2-w) MR images, urine has
a high signal intensity, which allows the bladder tumor margins to be
delineated more accurately. Thus, axial T2-w Digital Imaging and Com-
munications in Medicine (DICOM) images were retrieved for radiomics
feature extraction. The T2-w image acquisition parameters were as fol-
lows: repetition/echo time, 3500-4200/100–120 msec; slice thickness,
4 mm; and spacing, 0.5 mm. Regions of interest (ROIs) of bladder tu-
mors were segmented slice-by-slice using the publicly available 3D
Slicer software version 4.7.0. Then, the corresponding ROIswere stacked
up to construct volumes of interest (VOIs) of the bladder tumor. More
information about the segmentation procedure is shown in the Supple-
mentary Methods. A large set of quantitative radiomics features were
extracted using the PyRadiomics platform implanted in the 3D Slicer
software [22]. The features could be divided into four categories:



Fig. 1. Radiomics workflow. Firstly, axial T2-w DICOM images are retrieved for radiomics feature extraction. Then, ROIs of bladder tumors are segmented and the corresponding ROIs are
stacked up to construct VOI of the bladder tumor. Finally, four categories of radiomics features are extracted from within the defined VOI, including first-order statistics features, shape-
based features, textural features, and wavelet features.
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(a) first-order statistics features, (b) shape-based features, (c) statistics-
based textural features, and (d) wavelet features. The Supplementary
Methods and Supplementary Table S2 present more detailed informa-
tion about the radiomics features and their extraction reproducibility.

2.3. Feature Selection and Radiomics Signature Construction

The least absolute shrinkage and selection operator (LASSO) logistic
regression algorithm, a suitable method for the regression of high-
dimensional data, was used to select themost significant predictive fea-
tures from among all the candidate features in the training set [23]. A
radiomics signature was constructed using the radiomics score, which
was calculated as a linear combination of selected features that were
weighted by their respective LASSO coefficients.

2.4. Performance of the Radiomics Signature

Thediscrimination of the radiomics signaturewas assessed using the
area under the curve (AUC) of the receiver operator characteristic (ROC)
in the training set. An optimism-corrected AUC was also calculated by
bootstrappingmethod (2000 bootstrap resamples). Then, the signature
was validated in the validation set. Moreover, discrimination of the sig-
nature in the MRI-reported LN-negative (cN0) subgroup was also eval-
uated using the AUC of the ROC in the combined training and validation



Table 1
Baseline characteristics of the patients.

Training set (n =
69)

Validation set (n =
34)

P
value
a

Sex
Male 58 (84.1%) 31 (91.2%) 0.493
Female 11 (15.9%) 3 (8.8%)

Age, years
b65 45 (65.2%) 20 (58.8%) 0.527
≥65 24 (34.8%) 14 (41.2%)

MRI-reported tumor size
≤3 cm 25 (36.2%) 10 (29.4%) 0.492
N3 cm 44 (63.8%) 24 (70.6%)

MRI-reported number of
tumors
Single 40 (58.0%) 14 (41.2%) 0.109
Multiple 29 (42.0%) 20 (58.8%)

MRI-reported T stage
cTa-cT2 31 (44.9%) 16 (47.1%) 0.838
cT3-cT4 38 (55.1%) 18 (52.9%)

MRI-reported LN status
cN1–3 11 (15.9%) 7 (20.6%) 0.559
cN0 58 (84.1%) 27 (79.4%)

Pathologic N stage
pN1–3 17 (24.6%) 12 (35.3%) 0.258
pN0 52 (75.4%) 22 (64.7%)

a P values were obtained from the univariate association analyses between the training
and validation set.
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set. The Mann–Whitney U test was used to assess the potential associa-
tion of the radiomics score with the LN status in both the training and
validation sets. In addition, stratified analyses were also performed in
various subgroups in the combined training and validation set.

2.5. Radiomics Nomogram Construction and Performance Assessment

Each candidate predictor including radiomics signature and the clin-
ical candidate predictors (i.e., age, sex, MRI-reported tumor size, MRI-
reported number of tumors, MRI-reported T stage and MRI-reported
LN status) was tested by using a univariate logistic regression algorithm
in the training set. Note that 65 years is widely used as a cutoff for
grouping bladder cancer patients in terms of age in clinical practice
and research [24, 25]. And 3 cm is used as a cutoff of tumor size for
tumor risk categorization according to EAU guidelines for bladder can-
cer, which is alsowidely used [26]. Therefore, we used these two cutoffs
to group BCa patients in terms of age and MRI-reported tumor size.
Variableswith P b 0.2 on univariate analysis were included in the subse-
quentmultivariate analysis. Amultivariate logistic regression algorithm
using backward step-wise selection and Akaike's Information Criterion
(AIC) was applied to select the significant predictors for prediction
model construction. We used the variance inflation factor (VIF) for the
collinearity diagnosis of the multivariate logistic regression. Then, a
radiomics nomogram was constructed based on the multivariate logis-
tic regression model incorporating the selected predictors.

The discrimination of the radiomics nomogram was assessed with
the AUC and the optimism-corrected AUC. The calibration of the
radiomics nomogram was assessed with a calibration curve, and the
goodness-of-fit of the nomogram was assessed with the Hosmer-
Lemeshow test [27].

2.6. Validation of the Radiomics Nomogram

The performance of the radiomics nomogram was validated in the
validation set. According to the formula constructed in the training
set, a radiomics score was calculated for each patient in the validation
set. Then the discrimination and the calibration of the nomogram
were assessed using AUC and a calibration curve, and the Hosmer-
Lemeshow test were performed. Moreover, ROC analyses were used to
compare the discriminatory efficacy of the nomogram to those of the
radiomics signature and the selected clinical predictor alone in the com-
bined training and validation set.

2.7. Clinical Usefulness of the Radiomics Nomogram

Decision curve analysis (DCA) was performed to determine the clin-
ical usefulness of the nomogramby calculating the net benefits at differ-
ent threshold probabilities in the combined training and validation set
[28].

2.8. Statistical Analysis

All statistical analyseswere implemented using R statistical software
version 3.4.2. LASSO logistic regression was performed using the
“glmnet” package. The ROC curves were plotted using the “pROC” pack-
age. Logistic regression, nomogram construction and calibration plots
were performed with the “rms” package. The Hosmer-Lemeshow test
was done with the “vcdExtra” package. DCA was performed with the
function “dca.R". A two-sided P value b0.05 was considered significant.

3. Results

3.1. Patient Clinical Characteristics

Patient characteristics are presented in Table 1 and Supplementary
Table S1. Among all 103 BCa patients, 29 (28.2%) developed LN
metastasis in this study. According to the subjective MRI-reported LN
status, 55.2% (16/29) of the pN1-3 patients were understaged (reported
to be cN0), while 6.8% (5/74) of the pN0 patients were overstaged
(reported to be cN1-3). No significant difference was found between
the training set and the validation set regarding the clinical characteris-
tics (Table 1).

3.2. Feature Selection and Radiomics Signature Construction

In total, 718 radiomics features were extracted from each VOI of the
bladder tumor on T2-w MR images. Among them, 9 features with non-
zero coefficients were selected using the LASSO logistic regression algo-
rithm (Fig. 2a and b). These selected features can be found in the
radiomics score calculation formula presented in the Supplementary
data.

3.3. Performance of the Radiomics Signature

The radiomics signature showed favorable discrimination with an
AUC of 0.9005 (95% CI, 0.8287 to 0.9722, Fig. 2c) in the training set,
and the optimism-corrected AUC of the radiomics signature was
0.8872 (95% CI, 0.7827 to 0.9496). This was validated in the validation
set with an AUC of 0.8447 (95% CI, 0.6937 to 0.9957, Fig. 2d). The
radiomics scores in pN1–3 patients were generally higher than those
in pN0 patients. TheMann–Whitney U test revealed a significant differ-
ence in the radiomics score between pN0 and pN1–3 patients in the
training set (median [interquartile range], −1.4085 [−1.8329 to
−1.0175] vs. -0.6220 [−0.9711 to −0.0746], respectively, P b 0.0001,
Fig. 2e), which was confirmed in the validation set (median [interquar-
tile range], −1.1629 [−1.8736 to −1.0013] vs. -0.6175 [−0.9556 to
−0.2663], respectively, P=0.0006, Fig. 2f). Significant association be-
tween the radiomics score and pathologic LN status was observed
when stratified analyses were performed (Supplementary Table S3).

In the combined training and validation set, 18.8% (16/85) cN0 pa-
tients were understaged. Therefore, it's important to investigate the dis-
criminatory efficacy of the radiomics signature in the cN0 subgroup.
Encouragingly, the radiomics signature also showed good discrimina-
tion in the cN0 subgroup (AUC 0.8406, 95% CI, 0.7279 to 0.9533,
Fig. 3a). In addition, an optimal radiomics score cutoff value of −1.086



Fig. 2. Texture feature selection using LASSO logistic regression and the performance of the radiomics signature. (a) Selection of the tuning parameter (λ). The LASSO logistic regression
model was usedwith penalty parameter tuning that was conducted by 10-fold cross-validation based onminimum criteria. The binomial deviancewas plotted versus log (λ). The dotted
vertical lines were plotted at the optimal λ values based on theminimum criteria and 1 standard error of theminimum criteria. The optimal λ value of 0.0553with log (λ)=−2.895was
selected. (b) LASSO coefficient profiles of the 718 radiomics features. The dotted vertical line was plotted at the λ value of 0.0553, resulting in 9 nonzero coefficients. Plots (c) and
(d) present the ROC curves of the radiomics signature in the training and validation sets, respectively. Plots (e) and (f) present the boxplots of the radiomics score in the training and
validation sets, respectively.
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was defined based on themaximumYouden index in the cN0 subgroup.
The waterfall plot for distribution of radiomics score and LN status of
individual patients is presented in Fig. 3b, which clearly reveals that
almost all patients with LN metastasis (93.8%, 15/16) would avoid
being understaged by using the cutoff value of the radiomics signature.

3.4. Radiomics Nomogram Construction and Performance Assessment

Four variables, including the radiomics signature, MRI-reported
tumor size, MRI-reported T stage and MRI-reported LN status, were
found to be significant at a level of P b 0.2 based on the univariate logis-
tic regression algorithm (Table 2). Among them, two predictors,
including the radiomics signature andMRI-reported LN status, were se-
lected using the multivariate logistic regression algorithm. After multi-
variable adjustment by clinical variables, the radiomics score (per 0.2
increase) remained a strong independent predictor for LN metastasis
prediction (OR 2.049, 95% CI, 1.453 to 3.335, P b 0.001). As for the collin-
earity diagnosis, the VIFs of the four candidate predictors ranged from
1.0639 to 1.2097, demonstrating that there was no collinearity. Then,
a radiomics nomogram incorporating these two predictors was con-
structed based on the multivariate logistic regression model (Fig. 4a).

The radiomics nomogram yielded an AUC of 0.9118 (95% CI, 0.8433
to 0.9802, Fig. 4b) and an optimism-corrected AUC of 0.8951 (95% CI,
0.7987–0.9553), which indicated that the nomogram had favorable



Fig. 3. The predictive performance of the radiomics signature in the cN0 subgroup. (a) ROC curve of the radiomics signature in the cN0 subgroup. (b) Waterfall plot for distribution of
radiomics score and pathologically LN status of individual patients. The cutoff value of the radiomics score was−1.086.
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discrimination. The calibration curve of the nomogram is presented in
Fig. 4d. The Hosmer-Lemeshow test yielded a nonsignificant P value of
0.5315, which indicated good calibration power.

3.5. Validation of the Radiomics Nomogram

Good discrimination (Fig. 4c) and good calibration (Fig. 4e) were
also observed in the validation set. The AUC of the nomogram was
0.8902 (95% CI, 0.7437 to 1.0000). And the Hosmer-Lemeshow test
also yielded a nonsignificant P value of 0.1999. Moreover, in the com-
bined training and validation set, the radiomics nomogram achieved
better discriminatory efficiency, with the greatest AUC of 0.9007 (95%
CI, 0.8299 to 0.9715), compared to either the radiomics signature
(AUC 0.8788, 95% CI, 0.8052 to 0.9525) or the MRI-reported LN status
alone (AUC 0.6904, 95% CI, 0.5939 to 0.7869, Fig. 5a). Similar findings
of model comparisons were also observed in both the training and val-
idation sets (Supplementary Fig. S2).

3.6. Clinical Usefulness of the Radiomics Nomogram

In the DCA, the nomogram offered a net benefit over the “treat-all”
or “treat-none” strategy at a threshold probability N3.50% (Fig. 5b),
which indicated that the nomogram was clinically useful. For example,
with a threshold probability of 40%, use of the radiomics nomogram
could provide an added net benefit of 0.1427 compared to the “treat-
all” or “treat-none” strategy. Moreover, when DCA performed in both
the training and validation sets, similar findings were also observed
(Supplementary Fig. S3).

4. Discussion

In the present study, we developed and validated an MRI-based
radiomics nomogram incorporating the radiomics signature and the
Table 2
Univariate logistic regression analysis of the radiomics score and clinical candidate predic-
tors in the training set.

Variable OR (95% CI) P⁎

The radiomics score (per 0.2 increase) 2.118 (1.509–3.450) b

0.001⁎

Sex (male vs. female) 0.637 (0.090–2.835) 0.590
Age, years (b65 vs. ≥65) 1.030 (0.311–3.187) 0.959
MRI-reported tumor size (≤3 cm vs. N3 cm) 3.422

(0.972–16.157)
0.077⁎

MRI-reported number of tumors (single vs.
multiple)

0.486 (0.138–1.515) 0.230

MRI-reported T stage (cTa-cT2 vs. cT3-cT4) 2.600 (0.832–9.187) 0.113⁎

MRI-reported LN status (cN0 vs. cN1-3) 8.400
(2.142–37.626)

0.003⁎

⁎ P b 0.2.
MRI-reported LN status for individualized preoperative prediction of
LN metastasis in BCa, which showed favorable discrimination and cali-
bration. Our study demonstrates that radiomics features extracted
from MRI images can be used for LN metastasis prediction in BCa
patients and provide a non-invasive preoperative prediction tool to
identify BCa patients with a high risk of LN metastasis.

LN metastasis in patients with BCa indicates a negative prognosis,
with pN1-3 patients showing a significantly lower five-year overall sur-
vival rate compared to pN0 patients [5, 9–11]. Thus, preoperative nodal
staging is crucial for BCa treatment decision-making. However, the
accuracy of the current preoperative nodal stagingmethod is unsatisfac-
tory, with a considerable portion of patients who are understaged or
overstaged.

Bilateral PLND combined with RC is considered the standard of care
for patients with muscle-invasive bladder cancer (MIBC). Clearly, PLND
should be considered an essential part of RC,while the extent of PLND in
RC remains a subject of controversy. Previous LN metastasis mapping
studies have indicated that a proportion of LN-positive patients have
malignant LNs exceeding the region of the standard PLND template
[29, 30]. Although no level 1 evidence is available supporting improved
outcomes with extended PLND at present, it is reasonable to speculate
that a larger PLND template should be performed because it may pro-
vide better regional control and more accurate nodal staging [31]. A
well-written systematic review also indicated that BCa patients might
benefit from extended PLND comparedwith lesser degrees of dissection
[32]. However, extended PLND has not been widely or regularly
adopted in current clinical practice, in particular for cN0 patients, be-
cause of the higher operative difficulty and the potential increase in
perioperative complications.

Neoadjuvant chemotherapy has shown overall survival benefits for
BCa patients in individual phase 3 trials and in meta-analyses [33–35].
Even so, a high percentage of patients will not benefit from this
approach because of the unsatisfactory response rate. Currently, it
is quite difficult to identify those patients who will benefit from neoad-
juvant chemotherapy. Therefore, neoadjuvant chemotherapy is
performed relatively rarely in clinical practice despite its recommenda-
tion by the current guidelines [36, 37]. However, BCa patients with LN
metastases are likely to benefit from neoadjuvant chemotherapy be-
cause neoadjuvant chemotherapy is conducted to eradicate
micrometastatic disease and even malignant LN lesions [38].

Considering the above findings, if clinicians can preoperatively iden-
tify patients at high risk of LN metastasis, then such patients might rep-
resent an appropriate group for extended PLND and neoadjuvant
chemotherapy. Therefore, it is important to develop accurate predictive
tools for the preoperative prediction of LN metastasis in BCa patients.

The field of radiomics has developed rapidly in recent years.
Radiomics-based tools have been developed to improve diagnostic,
prognostic, and predictive accuracy mainly in cancer disease [17]. Re-
cently, we have developed a CT-based radiomics nomogram for the



Fig. 4. The MRI-based radiomics nomogram for LN metastasis prediction in patients with BCa. (a) Radiomics nomogram developed for the prediction of LN metastasis. Plots (b) and
(c) show the ROC curves of the radiomics nomogram in the training and validation sets, respectively. Plots (d) and (e) present the calibration curves of the nomogram in the training
and validation sets, respectively. The calibration curve illustrates the calibration of the nomogram in terms of the agreement between the predicted risk of LN metastasis and the
observed outcomes of LN metastasis. The 45° solid grey line represents a perfect prediction, and the dotted red line represents the predictive performance of the nomogram. The
dotted line has a closer fit to the solid line, which indicates better predictive accuracy of the nomogram.
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preoperative prediction of LN metastasis in patients with BCa [19].
However, in current clinical practices, a proportion of BCa patients are
diagnosed clinically usingMRI, which is also recommended for preoper-
ative nodal staging in BCa patients. Thus, it is worth discussing whether
radiomics features extracted fromMRI images canbe used for LNmetas-
tasis prediction in BCa patients. If possible, anMRI-based radiomics pre-
diction tool should be developed to improve the predictive accuracy of
LN metastasis.

Thus, in this study, we attempted to select the most significant pre-
dictive features from the radiomics features extracted fromMRI images
and then to develop an MRI-based radiomics signature. The radiomics
signature developed in this study showed good discrimination with
AUCs of 0.9005 (95% CI, 0.8287 to 0.9722) in the training set and
0.8447 (95% CI, 0.6937 to 0.9957) in the validation set. Encouragingly,
the radiomics signature also showed good discrimination in the cN0
subgroup with an AUC of 0.8406 (95% CI, 0.7279 to 0.9533). Tomogra-
phy imaging, such as CT and MRI, tends to underestimate the risk of
LNmetastasis in BCa patients since its sensitivity at detectingmalignant
LNs is relatively low. Consequently, some patients with BCa diagnosed
as cN0 actually harbor LN metastases. Therefore, the precise identifica-
tion of which cN0 patients will experience LNmetastasis is a formidable
challenge. Notably,when categorized into low- andhigh-risk groups ac-
cording to the optimal radiomics score cutoff value (−1.086) derived
from the radiomics signature, the high-risk group (radiomics score N

−1.086) showed a greater probability of LN metastasis than the low-
risk group, identifying 93.8% (15/16) pN1–3 patients from cN0 patients.
Finally, to provide an easy-to-use tool for clinicians, we developed a
radiomics nomogram incorporating the radiomics signature and MRI-
reported LN status, which showed favorable calibration and discrimina-
tion. The performance of the presentMRI-based radiomics nomogram is
similar to that of our prior CT-based radiomics nomogram in their re-
spective training set (AUC [95% CI], 0.9118 [0.8433 to 0.9802] vs.
0.9262 [0.8657 to 0.9868], respectively) and validation set (AUC [95%
CI], 0.8902 [0.7437 to 1.0000] vs. 0.8986 [0.7613 to 0.9901],



Fig. 5.Model comparisons and clinical usefulness of the radiomics nomogram. (a) ROC curve analyses of themodels to compare the predictive performance in all 103 patients. (b) DCA for
the nomogram. The net benefit was plotted versus the threshold probability. The red line represents the radiomics nomogram. The blue and black lines represent the hypothesis that all
patients and no patients had LN metastases, respectively. The decision curve demonstrates that if the threshold probability is N3.50%, using the radiomics nomogram for LN metastases
prediction adds more benefit than treating either all or no patients.
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respectively) [19].To our knowledge, a model based only on clinical fac-
tors and three genomic classifiers for LN metastasis prediction in BCa
patients have been reported, including our recent reported genomic-
clinicopathologic nomogram [39–42]. However, this is the first attempt
to develop anMRI-based radiomics nomogram for the preoperative pre-
diction of LN metastasis in BCa patients, and this study has several
strengths. First, compared to the prior clinical model based only on clin-
ical factors [39], using high-dimensional features in the present study
can provide more detailed information about bladder tumor lesion,
which contributes to a more accurate prediction model. Second, as
regard to the construction of genomic classifier, it may be influenced
by thequality of tissue samples related to long storage timeor poor stor-
age condition in terms of retrospective design, while the images used
for radiomics signature development never degrade since they are
stored digitally, thus making the radiomics signature more reliable.
Moreover, VOIs (3-dimensional) of bladder tumors were extracted
from image slices for radiomics feature extraction rather than the ROIs
(2-dimensional) of the bladder tumors, whichmore effectively revealed
the heterogeneity of the entire lesion [43], while only a very small por-
tion of tumor tissue is obtained from the entire lesionwhen using geno-
mic classifier. Third, the presented MRI-based radiomics nomogram
consists of only two items, both of which are available from routine
MRI analysis. Thus, our nomogram may serve as a non-invasive tool
for the preoperative prediction of LN metastasis in BCa.

Despite its strengths, our study is not devoid of limitations. First, ex-
ternal validation in a larger cohort is needed to confirm the performance
of our radiomics nomogram. Second, the ROC analysis for the cN0 sub-
group was performed in the combined training and validation set,
which might have potential overestimation of the performance of the
radiomics signature. The performance of the radiomics model in the
cN0 subgroup and the optimal radiomics score cutoff value require fur-
ther assessment and validation in a larger cohort. Third, the presented
nomogramdoes not includedata on genomic classifiers. Although geno-
mic classifiers are promising predictive tools, they still require valida-
tion [40, 41]. Thus, further studies are warranted to address this issue.

In conclusion, our study demonstrates the feasibility of applying
radiomics features extracted from MRI images for preoperative predic-
tion of LN metastasis in patients with BCa. The presented radiomics
nomogram has the potential to be used as a non-invasive tool for indi-
vidualized preoperative prediction of LN metastasis in BCa with favor-
able predictive accuracy, especially for cN0 patients. Further external
validation is warranted to determine the performance of the nomogram
before implementing it in clinical practice.
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