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Background. The purpose of this study was the evaluation of the potential and mechanism of phenytoin to promote differentiation
of human dental pulp stem cells (hDPSC) into odontoblasts/osteoblasts. Methods. Fourth-generation human hDPSC originating
from healthy pulp of third molars was cultured in control as well as phenytoin-containing media (PHT) for 14 days. qPCR was
applied to detect the expression of DSPP, DMP1, and ALP genes. Western blot analysis was used to confirm the findings. One-way
analysis of variance (ANOVA) was used for statistical analysis (p < 0:05). Information about phenytoin was assessed from
PubChem database, while targets of phenytoin were assessed from six databases. Drug targets were extracted based on the
differentially expressed genes (klogFCk ≥ 1, p < 0:05) in the experimental group (50mg/L PHT, 14 days). GO BP and KEGG
pathway enrichment analysis on the obtained drug targets was performed and the target protein functional network diagram
was constructed. Results. A concentration below 200mg/L PHT had no obvious toxicity to hDPSC. The expression of DSPP,
DMP1, and ALP genes in the 50mg/L PHT concentration group increased significantly. The WB experiment showed that the
protein content of BMP4, Smad1/5/9, and p-Smad1/5 was significantly increased in 50mg/L PHT in comparison with the NC
group (the group without treatment of PHT) at 14 days. Conclusion. Phenytoin has the ability of promoting the differentiation
of hDPSC into odontoblasts and osteoblasts. BMP4/Smad pathway, inducing odontogenic/osteogenic differentiation of hDPSC,
appears a main process in this context.

1. Introduction

Human dental pulp stem cells (hDPSC) are characterized to
be highly clonogenic, having both multidifferentiation as
well as neurovascular properties; thereby, hDPSC are the
main actors in pulp homeostasis and regeneration [1]. Con-
sidering their functional abilities, hDPSC are examined to be
a potential stem cell-based therapy for regeneration of the
dental pulp and for peripheral nerve injury [2]. Generally,
hDPSC are of neural crest origin; therefore, these cells have
a large capacity to differentiate in a variety of tissues and a
high plasticity, predisposing them for respective regenerative
therapy approaches in- and outside of the oral cavity [3].

The understanding of hDPSC is difficult and complex. On
the one hand, the pulpal inflammatory microenvironment
interrelates with their proliferation and differentiation abili-
ties [4]. On the other hand, the cellular senescence of hDPSC
is crucial for their understanding and clinical implications,
making increased knowledge on the molecular processes
related to senescence in hDPSC needed [5].

A topic of particular interest is the differentiation of
hDPSC into the direction of odontogenesis/osteogenesis.
hDPSC have the potential to differentiate in both, bone and
dental tissues, what has been demonstrated more than twenty
years ago [6]. It is known that hDPSC can differentiate in
odontoblast-like cells after induction of mineralization, what
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was confirmed in vitro [7, 8]. Thereby, different approaches
were applied to promote the odontogenic differentiation of
hDPSC. Endothelin-1, which is secreted by endothelial cells,
was found to induce odontoblastic differentiation of hDPSC
[9]. Similarly, nitric oxide was found to promote odontogenic
differentiation in hDPSC [10]. Additionally, different mate-
rials used in clinical context, i.e., mineral trioxide aggregate
(MTA), Biodentine and Emdogain were found to affect
hDPSC differentiation in vitro [11].

Another approach for induction of differentiation is the
use of phenytoin, an antiseizure drug acting at the voltage-
gated sodium channel; phenytoin can induce several obscure
mechanisms in different diseases, including breast cancer or
optic neuritis [12]. Clinically, phenytoin has been repeatedly
described related to its induction of gingival overgrowth
[13]. However, it has also been examined with regard to
osteogenic potential of hDPSC. A study by Asgharian-
Rezaee et al. found phenytoin to show an osteogenic activity,
inducing osteogenic differentiation of hDPSC [14]. Accord-
ingly, phenytoin could also be a promising inductor for the
differentiation of hDPSC into the direction of odontogen-
esis/osteogenesis. Up until now, it has not been reported
whether phenytoin has the potential to induce the differenti-
ation of hDPSC into odontoblasts/osteoblasts. Therefore,
this current study aimed in the evaluation of the potential
and mechanisms of phenytoin to promote the differentiation
hDPSC into odontoblasts/osteoblasts by a two-step
approach. Thereby, cell culture experiments were combined
with a bioinformatics analysis to identify drug targets and
related pathways.

2. Materials and Methods

2.1. Sample Collection. The pulp samples of healthy human
third molars were obtained from three systemically healthy
subjects (18-25 years of age), from the dentistry clinic of
Heping Hospital Affiliated of Changzhi Medical College,
Changzhi, China. The protocol was approved by the ethics
committee, Changzhi Medical College (no: RT2021028),
and the study was performed in accordance with the ethical
standards of the Declaration of Helsinki. All donors signed
informed consent.

2.2. Cells and Preparation. Caries-free third molars from
these healthy patients were collected immediately following
the extraction and were used to isolate hDPSCs. Dental pulp
was isolated under sterile conditions and rinsed with PBS,
after which they were minced using a ophthalmological scis-
sors, and pulp aliquots were transferred into 6-well plates
containing general medium (GM) composed of α-MEM

containing 10% FBS and 1% penicillin-streptomycin (Gibco,
USA). Cells were cultured in a 37°C with 5% CO2 incubator,
with media being changed every other day until cells reached
confluence, at which time cells were passaged. Cells were
used for experimentation following 3-5 passages.

2.3. Alizarin Red and Oil Red O Staining. For osteogenic and
adipogenic induction, third-passage hDPSCs were cultured
in osteogenic and adipogenic differentiation media (Cyagen,
USA), respectively. Next, cells were washed twice with
phosphate-buffered saline (PBS) and fixed with 4% parafor-
maldehyde for 1 h. After fixation, cells were stained with
Alizarin Red or Oil Red O for 30min. Cells were observed
and imaged by an inverted phase-contrast microscope
(Olympus, Japan).

2.4. Colony Formation Assay. hDPSCs were seeded into 6-
well dishes at a density of 500 cells/well. For the next 14
days, culture media was replaced every 3~ 4 days until visi-
ble colonies had developed. The colonies were washed with
1×PBS, fixed with 4% paraformaldehyde and stained with
0.5% crystal violet. Colonies containing more than 50 cells
were counted under a light microscope.

2.5. Flow Cytometry. After isolation and culture, the third-
generation stem cells were collected and analyzed by flow
cytometry using BD FACSMelody (BD Biosciences, San
Diego, USA). Flowjo_v10 software was used to analyze the
data. Thereby, FITC anti-CD90 (cat 328107), PE anti-
CD105 (cat 800503), APC anti-CD73 (cat 344005), PerCP/
Cy5.5 anti-CD34 (cat 343521), and APC/FireTM750 anti-
CD45 (cat 368517) antibody (BioLegend, USA) stains were
assessed for third-generation hDPSC.

2.6. Cell Proliferation Analysis. Cell viability was determined
using Cell Counting Kit-8 (CCK-8, Dojindo, Japan). Briefly,
hDPSCs were plated onto 96-well plates with 3000 cells/well.
Cell proliferation capacity was evaluated at 1, 2, 3, 4, and 5
days by detecting the absorbance at 450nm using a plate
reader.

2.7. Alkaline Phosphatase Staining. After differentiation, cul-
tured cells were stained by ALP staining kit (Solarbio,
China) as per manufacturer’s protocol. Briefly, the media
were carefully removed from the cultured cell wells. Cells
were fixed with 4% paraformaldehyde for 30min at room
temperature. Then, 500μl of wash buffer was gently added
and carefully removed using a pipette. 250μl of ALP staining
reagent solution was carefully added to completely cover the
cells in each well of a 24-well plate. Cells were incubated for
30min at 37°C before washed gently with 500μl of wash

Table 1: Information on phenytoin in the PubChem database.

Phenytoin sodium
PubChem CID 657302 1775

Molecular
formula

C15H11N2NaO2 C15H12N2O2

Canonical
SMILES

C1=CC=C(C=C1)C2(C(=O)[N-
]C(=O)N2)C3 =CC=CC=C3.[Na+]

C1 =CC=C(C=C1)C2(C(=O)NC(=O)N2)C3 =CC=CC=C3
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buffer for 3 times. 300μl of wash buffer was added, and
stained cells were imaged using a light microscope.

2.8. Quantitative Polymerase Chain Reaction. In quantitative
PCR (q-PCR) analysis, three experiments were imple-
mented. First, total RNA was obtained using TRIzol Reagent
(Introgen, CA, USA) and then reversely transcribed into
cDNA using RevertAid First Strand cDNA Synthesis Kit
(Thermo Fisher, IL, USA). qPCR was performed using SYBR
Green PCR Master Mix (Applied Biosystems, Foster City,
CA, USA) based on the 2-△△Ct method. GAPDH was inter-
nal control.

2.9. Western Blot Analysis. Cell lysates prepared with RIPA
lysis buffer (Thermo Fisher Scientific) were incubated on
ice for 30min, subjected to SDS-PAGE assay, and then
transferred to nitrocellulose membranes. Western blot anal-
ysis was conducted as described previously. Briefly, cell
lysates were separated on 10% SDS-PAGE gels, transferred
to 0.45μm pore-size PVDF membranes, blocked with 5%
BSA, and then incubated with a panel of antibodies, includ-
ing those against hDSPP, hDMP1, GAPDH, hBMP4,

Smad1/5/9, and p-smad1/5. The membranes were then
incubated with HRP-conjugated secondary antibodies
(1 : 5000) at room temperature for 1 hour then visualized
using an ECL staining kit (Applygen, China). Anti-glyceral-
dehyde-3-phosphate dehydrogenase (GAPDH) antibody
acted as a loading control.

2.10. RNA-Sequencing. Regarding the first step of RNA
quantification and qualification, RNA integrity was assessed
using the RNA Nano 6000 Assay Kit of the Bioanalyzer 2100
system (Agilent Technologies, CA, USA). For the second
step of library preparation for transcriptome sequencing,
total RNA was used as input material for the RNA sample
preparations. Briefly, mRNA was purified from total RNA
using poly-T oligo-attached magnetic beads. Fragmentation
was carried out using divalent cations under elevated tem-
perature in first-strand synthesis reaction buffer (5X). First
-strand cDNA was synthesized using random hexamer
primer and M-MuLV Reverse Transcriptase (RNase H-).
Second strand cDNA synthesis was subsequently performed
using DNA Polymerase I and RNase H. Remaining over-
hangs were converted into blunt ends via exonuclease/
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Induction of osteogenesis/odontogeneiss
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Functional enrichment analysis (GO and KEGG)
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Protein-protein interaction (PPI) network

Figure 1: The flowchart of the current research.
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polymerase activities. After adenylation of 3′ ends of DNA
fragments, adaptor with hairpin loop structure was ligated
to prepare for hybridization. In order to select cDNA frag-
ments of preferentially 370〜420 bp in length, the library
fragments were purified with AMPure XP system (Beckman
Coulter, Beverly, USA). Then, PCR was performed with
Phusion High-Fidelity DNA polymerase, Universal PCR
primers, and Index (X) Primer. At last, PCR products were
purified (AMPure XP system), and library quality was
assessed on the Agilent Bioanalyzer 2100 system. Afterward,
clustering and sequencing were carried out. The clustering of
the index-coded samples was performed on a cBot Cluster

Generation System using TruSeq PE Cluster Kit v3-cBot-
HS (Illumia) according to the manufacturer^ instructions.
After cluster generation, the library preparations were
sequenced on an Illumina Novaseq platform and 150 bp
paired-end reads were generated.

2.11. Differential Expression Analysis Based on the RNA-Seq
Results. Differential expression analysis of two conditions/
groups (two biological replicates per condition) was per-
formed using the DESeq2 R package (1.20.0). DESeq2 pro-
vides statistical routines fbr determining differential
expression in digital gene expression data using a model
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DPSC-blank
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Figure 2: Stem cell identification results. (a) Flow cytometry was used to detect the molecular markers of the third generation of hDPSCs,
and the positive expression rates of CD45 were 0.34%, the positive expression rates of CD34 were 0.4%, the positive expression rates of CD90
were 99.7%, the positive expression rates of CD105 were 98.1%, and the positive expression rates of CD73 were 99.7%. (b) Third-passage
hDPSCs were stained with Alizarin Red 28 days after osteogenic induction, and the results showed that a large number of mineralized
nodules were formed. (c) Third-passage hDPSCs were stained with Oil Red O 21 days after the induction of adipogenesis, and the results
showed lipid droplets forming. (d) The colony formation experiment results show the cells were cultured for 14 days, and the
clonogenesis rate was 5-15 cells/1000 cells (number of cells ≥ 50).
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Figure 3: CCK-8 experiment results and the expression of odontogenic/osteogenic genes and proteins at different drug concentrations on 14
days. hDPSCs were cultured in general medium containing different concentrations of PHT for 14 days. Proteins and mRNAs were collected
on day 14 after induction for Western blot and qRT-PCR. (a) CCK-8 cytotoxicity experiment showed the concentration below 200mg/L
PHT had no obvious toxicity to hDPSC. (b) CCK-8 cell proliferation experiment showed that the inhibitory effect of hDPSC
proliferation increased with the higher PHT concentration. (c)–(e) show the expression of DSPP, DMP1, and ALP genes at different
drug concentrations on 14 days, and related genes were elevated in the 50mg/L and 100mg/L PHT concentration. (f, g) Western Blot
experiment showed the protein expression levels of DSPP and DMP1 were significantly upregulated in the 50mg/L PHT concentration.
(h) ALP staining showed an increase in the 50mg/L PHT group on 14 days.
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Figure 4: Continued.
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based on the negative binomial distribution. The resulting p
values were adjusted using the Benjamini and Hochberg’s
approach for controlling the false discovery rate. Genes with
an adjusted p value < 0.05 found by DESeq2 were assigned as
differentially expressed.

2.12. GO and KEGG Enrichment Analysis of Differentially
Expressed Genes (DEGs). Gene Ontology (GO) enrichment
analysis of differentially expressed genes was implemented
by the clusterProfiler R package, in which gene length bias
was corrected. GO terms with corrected p value less than

DNA replication

Cell cycle

Steroid biosynthesis

Malaria

Fanconi anemia pathway

HTLV-I infection

Breast cancer

Gastric cancer

Cytokine-cytokine receptor interaction

Pathways in cancer

Axon guidance

Drug metabolism-cytochrome P450

Complement and coagulation cascades

Mismatch repair

Systemic lupus erythematosus

PI3K-Akt signaling pathway

Wnt signaling pathway

Terpenoid backbone biosynthesis

Basal cell carcinoma

ECM-receptor interaction
D

es
cr

ip
tio

n

0.03 0.06 0.09
GeneRatio

Count
20
40
60

Padj

0.00

0.25

0.50

0.75

1.00

(c)

Figure 4: The DEGs dysregulated between PHT and NC group. (a) The volcano plot showing the expression pattern of DEGs in PHT and
NC group. (b) The GO functional terms enriched by the DEGs expressed between PHT and NC group. (c) The KEGG signaling pathway
enriched by the DEGs expressed between PHT and NC group.
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0.05 were considered significantly enriched by DEGs. KEGG
is a database resource fbr understanding high-level functions
and utilities of the biological system, such as the cell, the
organism, and the ecosystem, from molecular-level informa-
tion, especially large-scale molecular datasets generated by
genome sequencing and other high-throughput experimen-
tal technologies (http://www.genome.jp/kegg/). We used
clusterProfiler R package to test the statistical enrichment
of differential expression genes in KEGG pathways. In addi-
tion, PPI analysis of DEGs was carried out based on the
known and predicted Protein-Protein Interactions of the
STRING database.

2.13. Phenytoin Drug Target Prediction. Information about
phenytoin was assessed from PubChem database (Table 1).
The targets of phenytoin were predicted based on six data-
bases: SwissTargetPrediction, STITCH, Drugbank, TTD,
PharmMapper, and CTD.

2.14. Screening of Drug Targets. In order to analyze the role
of phenytoin sodium in hDPSC odontogenic/osteogenic dif-
ferentiation, drug targets were extracted. This was based on
the differentially expressed genes (klogFCk ≥ 1, p < 0:05) in
the experimental group (50mg/L PHT, 14 days). The differ-
entially expressed genes obtained from the gene expression
profile and the phenytoin drug targets were crossed, and
the obtained genes were the drug targets of phenytoin affect-
ing hDPSC odontogenic/osteogenic differentiation.

2.15. The Functional Analysis of the Drug Target. The clus-
terProfiler of R program was used to perform GO BP and
KEGG pathway enrichment analysis on the obtained drug
targets. Enrichment functions with a p < 0:05 were signifi-
cant. In addition, we used Cytoscape plug-ins ClueGO and
CluePedia to analyze the drug targets of phenytoin influenc-
ing hDPSC odontogenic/osteogenic by GO biological pro-
cess analysis and used Cytoscape as the target protein
functional network diagram. In the case of using data with-
out a hierarchical structure (KEGG, BioCarta), its level was
specified as -1. The Kappa coefficient was used for consis-
tency testing and to measure classification accuracy. The cal-
culation of Kappa coefficient was based on a confusion
matrix. In the ClueGO plug-in, the Kappa coefficient shows
the relationship between GO terms based on overlapping
genes. The higher the Kappa coefficient, the stronger the
correlation between GO terms.

2.16. Phenytoin in the Drug-Target-Protein-Interaction
Network. Based on BIOGRID (Biological General Repository

for Interaction Datasets), HPRD (Human Protein Reference
Database), DIP (Database of Interacting Proteins), MINT
(Molecular INTeraction database), PINA (Protein Interac-
tion Network Analysis), InnateDB (a knowledge resource
for Innate immunity interactions & pathways), and Instruct
(3D protein interactome networks with structural resolu-
tion), drug-target-protein-interaction relationship pairs
were extracted. Cytoscape software was used to construct a
PPI network.

2.17. Molecular Docking of Phenytoin and Dentin
Differentiation Target Proteins. The software tools related
to AutoDock were downloaded from http://mgltools
.scripps.edu/downloads and http://vina.scripps.edu/
download.html, respectively. The AutoDock molecular
docking of the obtained drug target of phenytoin that affects
hDPSC odontogenic/osteogenic differentiation and phenyt-
oin was carried out. Afterward, the software Chem3D was
applied to optimize the structure of the small molecule
ligand. Then, the software AutoDockTool was used to con-
vert the saved file to pdbqt format.

The data from UniProt regarding the protein receptors
of the drug target of phenytoin affecting hDPSC odonto-
genic/osteogenic differentiation were downloaded. Then,
the software pymol (https://pymol.org/2/) was used to delete
the water molecules and small molecule ligands in the pro-
tein receptor. Moreover, the software AutoDockTool was
applied to process the preserved protein receptors. The
pdbqt format files of small molecule ligands and protein
receptors were obtained, respectively. Furthermore, grid
parameter GPF files were obtained. Using Vina and these
three files, AutoDock molecular docking was performed.

2.18. Data Analysis. For analysis, GraphPad Prism (version
8.0; USA) was used. The data were expressed as the average
of three independent experiments. One-way analysis of var-
iance (ANOVA) was used to compare the average of the out-
come variables of each categorical variable group. p < 0:05
was considered statistically significant.

3. Results

3.1. Study Design of the Current Research. As shown in
Figure 1, the present research combined many techniques:
molecular biology experiments, RNA-sequencing analysis,
as well as network pharmacology and molecular docking.
First, DPSCs were isolated from pulp tissue and further cul-
tured. Second, a series of molecular biological experiments
(e.g., qPCR assay, western blotting, and ALP staining) were
carried out in order to identify the optimum concentration
of PHT. Third, RNA-sequencing assay was performed to
identify the differentially expressed genes (DEGs) when
comparing the PHT-treated DPSC group and PHT-
untreated DPSC group. Based on these DEGs, the func-
tional enrichment analysis was performed, and protein-
protein interaction (PPI) network was constructed. Fourth,
network pharmacology analysis was performed to identify
the PHT target genes. Fifth, a Venn diagram was con-
structed by overlapping DEGs obtained by RNA-seq and

Table 2: Phenytoin drug target prediction.

Database Drug_targets

CTD 429

DrugBank 33

pharmMapper 269

STITCH 10

SwissTargetPrediction 120

TTD 1
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PHT target genes obtained by network pharmacology
analysis, in order to identify the PHT target DEGs. Finally,
BMP4 was selected among the PHT target DEGs to be
investigated, and a specific BMP4/Smad signaling axis
was identified to be involved in the PHT-induced osteo-
geneic/odontogenic differentiation.

3.2. Cell Culture Results. The flow cytometer showed that the
cell surface markers used were negative for CD45/CD34 and

positive for CD90, CD105, and CD73 (Figure 2(a)). The
results showed that the detected cells were stem cells. 21 days
after induction of adipogenesis, the hDPSC became
adipocyte-like cells (Figure 2(c)); and the cells were stained
with red lipid droplets indicating the multidifferentiation
potential of hDPSC and to prove their dryness. 28 days after
osteogenic induction, mineralized nodules were seen in the
cells (Figure 2(b)). The colony formation experiment
showed that cells had a strong ability to proliferate and form
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Figure 5: The overlapping genes between the DEGs and PHT target genes and these overlapping genes’ enriched biological processes and
KEGG pathways. (a) Venn diagram showing the overlapping genes between DEGs and PHT target genes. (b) The significantly enriched
biological processes of the PHT target genes. (c) The significantly enriched signaling pathways of the PHT target genes. (d) The
significantly enriched biological processes enriched by the upregulated PHT target DEGs. (e) The significantly enriched KEGG pathways
enriched by the upregulated PHT target DEGs. (f) The significantly enriched biological processes enriched by the down-regulated PHT
target DEGs. (g) The significantly enriched KEGG pathways enriched by the downregulated PHT target DEGs.
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colonies, which indirectly proves the existence of stem cells
(Figure 2(d)).

CCK-8 cytotoxicity experiment showed that the 500mg/
L PHT concentration group had obvious cytotoxicity at 6 h,
and the concentration below 200mg/L PHT had no obvious
toxicity to hDPSC (Figure 3(a)). The CCK-8 cell prolifera-
tion experiment showed that the inhibitory effect of hDPSC
proliferation increased with the higher PHT concentration
(Figure 3(b)). The expression of DSPP, DMP1, and ALP
genes at different drug concentrations (20mg/L, 50mg/L,
100mg/L, and 200mg/L) at 14 days, and related gene
expression in the 50mg/L and 100mg/L PHT concentration
groups increased significantly (Figures 3(c)–3(e)). Western
blot showed that DSPP and DMP1 were significantly
increased in comparison with NC group at 50mg/L PHT
at 14 days (Figures 3(f) and 3(g)). ALP staining was signifi-
cantly darker in 50mg/L PHT compared with NC group
(Figure 3(h)).

3.3. hDPSC Differentially Expressed Genes for Odontoblastic/
Osteoblastic Differentiation. Differentially expressed genes
are displayed in a volcano map (Figure 4(a)). Genes differen-
tially expressed in hDPSC odontogenic/osteogenic differen-
tiation were mainly involved in biological processes such as
nuclear division and chromosome segregation
(Figure 4(b)). Among the biological pathways, the differen-
tially expressed genes of hDPSC odontogenic/osteogenic dif-
ferentiation mainly regulated biological pathways such as
DNA replication and cell cycle (Figure 4(c)).

3.4. Phenytoin Drug Target Prediction. By querying the data-
base and converting the protein name to the gene name, the
phenytoin drug target data were finally obtained and shown
in Table 2. Taking the union of the drug targets obtained
from the abovementioned databases, and after deduplica-
tion, a total of 740 phenytoin-related drug targets were pre-
dicted. Clusterprofilter was used to perform functional
analysis of drug targets, and the results showed that phenyt-
oin is mainly involved in biological processes such as cellular
response to xenobiotic stimulus, response to lipopolysaccha-
ride and peptidyl-serine phosphorylation (Figure 5(b)).
Thereby, phenytoin was involved in different biological
pathways, mainly regulating lipid and atherosclerosis,
MAPK signaling pathway, PI3K-Akt signaling pathway,
and AGE-RAGE signaling pathway (Figure 5(c)).

3.5. The Drug Target of Phenytoin Regulating hDPSC
Odontogenic/Osteogenic Differentiation. The intersection of
genes differentially expressed in hDPSC odontogenic/osteo-
genic differentiation and the drug targets of phenytoin were
extracted. Thereby, 78 drug targets of phenytoin affecting
dentin differentiation were obtained, of which 45 genes were
upregulated and 33 genes were downregulated (Figure 5(a)).
The 45 upregulated PHT target DEGs were mainly involved
in biological processes such as extracellular structure organi-
zation and skeletal system development (Figure 5(d)) and
regulated PI3K-AKt signaling pathway and TGF-beta signal-
ing pathway (Figure 5(e)). The 33 downregulated PHT tar-
get DEGs were mainly involved in biological processes

such as cellular response to reactive oxygen species
(Figure 5(f)) and regulated pathways such as cell cycle and
cellular senescence (Figure 5(g)). The heat map is showing
the expression pattern of the overlapping genes between
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the DEGs (differentially expressed genes) and PHT target
genes (Figure 6). In addition, GO biological processes partic-
ularly BPs related functional network analysis was per-
formed on 78 PHT target DEGs (Figure 7).

3.6. The Drug Target Interaction Network of Phenytoin
Regulating hDPSC Odontogenic/Osteogenic Differentiation.
A total of 5955 PPIs were obtained, which were drug targets
of phenytoin to regulate hDPSC odontogenic/osteogenic
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Figure 7: GO_BPs functional network analysis results showing the phenytoin affects the target of hDPSC ontogenetic/osteogenic
differentiation.
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differentiation from databases such as HPRD and used
Cytoscape software to construct a PPI network, which
included 3636 nodes and 5955 edges (Figure 8).

3.7. Molecular Docking of Related Odontogenic/Osteogenic
Differentiation Target Proteins. After inquiry, no protein
structure information of VCAN was obtained. Therefore,
the molecular docking of 11 informative proteins with phe-
nytoin was carried out (Table 3 and Figure 9). These 11 pro-

teins include BMP4, COL11A1, FGFR2, IGF2, MDK,
MMP2, PBX1, S1PR1, SCN5A, TGFB3, and TIMP1.

3.8. Experimental Validation of a Significant Gene-BMP4
and Identification of BMP4-Related Pathway. Western blot
showed that the protein content of BMP4, Smad1/5/9, and
p-Smad1/5 was significantly increased in comparison with
the NC group at 50mg/L PHT at 14 days, suggesting that
PHT may upregulate and activate pathway-related factors
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Figure 8: Phenytoin regulates the drug-target-interaction network of hDPSC ontogenesis/ontogenesis differentiation. The size of the nodes
in the figure is sorted by the degree of network topology. The larger the node, the greater the degree of the gene.

Table 3: Docking results of the active components of phenytoin with odontogenic/osteogenic genes.

Protein Ligand Affinity (kcal/Mol) Center_x Center_y Center_z
Size
x

Size
y

Size
z

BMP4

CID1775

-7.2 21.346 15.236 -7.845 19 19 19

COL11A1 -7.4 16.664 -1.218 -17.799 32 25 19

FGFR2 -8.7 25.333 -5.704 1.311 19 19 19

IGF2 -6.4 -1.713 19.078 11.731 19 19 19

MDK -6.1 -0.753 -2.399 14.09 19 19 19

MMP2 -6.8 1.572 -4.634 6.759 19 19 19

PBX1 -8.7 -0.72 24.956 7.494 34 25 29

S1PR1 -7.4 1.77 13.365 -10.656 26 19 27

SCN5A -6.6 -1.108 2.056 22.412 19 19 19

TGFB3 -6.7 -21.547 20.42 23.061 19 19 19

TIMP1 -8.2 146.459 -7.049 4.149 19 19 19
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promoting the differentiation of hDPSC towards odonto-
genic/osteogenic (Figure 10). Figure 10(a) shows that the
protein level of BMP4 was increased in PHT (50mg/L)
group than in the NC group. Figure 10(b) shows that the
protein level of Smad 1/5/9 was elevated in PHT (50mg/L)
group than in the NC group. Figure 10(c) shows that the
protein level of p-Smad 1/5 was significantly upregulated
in PHT (50mg/L) group than in the NC group.

4. Discussion

This current study showed that phenytoin at a suitable con-
centration can promote the differentiation of hDPSC into
odontoblasts/osteoblasts. Compared with the control group,
the related odontogenic/osteogenic indices of the 50mg/L
PHT group were significantly increased. The results of
RNA sequencing showed that phenytoin had a significant
effect on hDPSC. The intersection with the results of net-
work pharmacology analysis revealed 45 upregulated genes
and 33 downregulated genes. BMP4, which was highly
related to tooth development, was selected for experiment.
A one-step verification test found that the BMP4 protein
was significantly increased compared with the control group,
the related factors of the Smad pathway were significantly
increased, and the p-Smad1/5 protein level was significantly
increased compared with the control group. This suggests
that phenytoin can upregulate and activate BMP4/Smad
pathway to promote the differentiation of hDPSC into odon-
toblasts/osteoblasts.

This is the first study investigating the potential and
mechanism of phenytoin to promote the differentiation of
hDPSC into odontoblasts/osteoblasts. One previous study
examined phenytoin regarding its osteogenic activity and
showed that phenytoin achieved comparable findings as
dexamethasone in inducing osteogenic differentiation of
hDPSC [14]. Dexamethasone was described previously as a
potent substrate inducing osteogenic differentiation of
hDPSC [15]. A similar ability of phenytoin to induce osteo-
genic differentiation and therefore its potential in this con-
text was also confirmed in the current study.

Odontogenic differentiation of hDPSC is a field of high
clinical relevance, as it might be a key for understanding
and application of regenerative approaches in dentistry.
Thereby, inducing the differentiation of hDPSC into odonto-
blasts might be helpful in avoidance of progression of dental
hard tissue diseases and thus preserving vitality of the dental
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MDK MMP2 PBX1

SCN5A TGFB3 TIMP1

S1PR1

Figure 9: The three-dimensional molecular docking diagram of phenytoin with 11 proteins with information.
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Figure 10: BMP4/Smad pathway verification results. (a) The
protein level of BMP4 was increased in PHT (50mg/L) group
than in the NC group. (b) The protein level of Smad 1/5/9 was
elevated in PHT (50mg/L) group than in the NC group. (c) The
protein level of p-Smad 1/5 was significantly upregulated in PHT
(50mg/L) group than in the NC group.
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pulp [16, 17]. Newly regenerated dental hard tissue has also
the potential to repair dental damage [18]. Different studies
examined the odontogenic differentiation of hDPSC and
highlighted a variety of potentially related pathways, related
genes, and interacting proteins [19–23]. This current study
chooses phenytoin as focus of investigation to reveal a novel
approach to induce this differentiation in hDPSC. Phenytoin
has been shown to affect calcium homeostasis and/or bone
metabolism before [14, 24]. However, the effect of phenytoin
on the differentiation of hDPSC into odontoblasts has not
been studied, yet; thereby, the current study confirmed this
for the first time.

The BMP4/Smad pathway was revealed as potential key
process in the differentiation of hDPSC induced by phenyt-
oin. BMP4, i.e., bone morphogenic protein 4 is part of the
BMP superfamily, including proteins with various functions
in almost all aspects of bone, cartilage, and joint repair [25].
It is documented that BMP4 plays an important role during
tooth morphogenesis and tooth formation; thereby, BMP4
signaling has the ability to suppress tooth developmental
inhibitors and thus promoting tooth development [26].
Therefore, it is not conspicuous that BMP4 was also exam-
ined as an actor in odontogenic differentiation of hDPSC
[27, 28]. The ability of phenytoin to affect expression of
BMP4 has also been confirmed in animal model [29]. More-
over, literature suggests that BMP/Smad pathway is a mech-
anism of high relevance in osteogenic and ontogenetic
differentiation of hDPSC [30]. Another study based on
miRNA sequencing revealed TGFβ1/Smad signaling path-
way, where TGFβ1 is in the same family as BMP, to promote
odontogenic differentiation of hDPSC [21]. However, results
reporting BMP4/Smad pathway in hDPSC differentiation
are rare. Several other results support its role in osteo-
genic/odontogenic pathways. For example, overexpression
of BMP4/Smad signaling pathway was related to chondroma
of the skull [31]. Regardless, the finding of the current study
that phenytoin affects osteogenic and ontogenetic differenti-
ation of hDPSC due to BMP4/Smad pathway is novel and of
potential clinical relevance, but needs further validation.

For the understanding of processes and pathways, PPI
network analysis and evaluation of related pathways are of
high interest in understanding hDPSC differentiation, as it
helps to reveal the functions of identified proteins [32, 33].
Therefore, the current study applied comprehensive bioin-
formatics analysis. A previous differential expression and
enrichment analysis found phosphoinositide-3-kinase-pro-
tein kinase (PI3K), TGFβ, cell migration, cell differentiation,
stem cell development, ossification, and skeletal develop-
ment to be related to osteogenic and odontogenic differenti-
ation in hDPSC [23]. Similar pathways were also found in
deregulation of phenytoin-related hDPSC odontogenic/oste-
ogenic differentiation drug targets in the current study. Alto-
gether, recent results on pathways and processes related to
osteogenic and odontogenic differentiation of hDPSC are
various, heterogeneous, and complex; thereby, findings are
mostly related to the substrate of induction [15, 19–23, 34,
35], making further comparisons with literature difficult.
Based on the high clinical potential of hDPSC in regenera-
tive therapy of dental diseases [16, 17], this emerging field

of research is of high interest and the current study’s find-
ings provide several novel approaches regarding the use of
phenytoin in this context.

This is the first study examining the suitability of phe-
nytoin for differentiation of hDPSC into odontoblasts/osteo-
blasts. The study design was two-stepped, including cell
culture and bioinformatics. The applied methods were com-
prehensive and valid, strengthening the current study’s
results and related conclusions. However, this examination
was limited by its in vitro and bioinformatics design,
whereby the clinical validation and potential practical usage
of phenytoin need further validation. Especially the fact that
bioinformatics results were on transcriptomic level must be
considered as relevant factor. Further research is required
to validate the novel results of odontogenic differentiation
of hDPSC induced by phenytoin.

5. Conclusions

The data of this study show that phenytoin has the ability of
promoting the differentiation of hDPSC into odontoblasts
and osteoblasts. One major mechanism appears to be the
upregulation and activation of the related factors of BMP4/
Smad pathway, inducing odontogenic/osteogenic differenti-
ation of hDPSC.
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