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Abstract
Background  Appropriate sizing of the implantable collamer lens (ICL) and accurate prediction of the vault are crucial prior 
to surgery. However, sometimes, the vault value is higher or lower than predicted, necessitating reoperation. The present 
study aimed to develop neural networks for improving predictions of vault values following ICL implantation based on 
preoperative biometric data.
Methods  This retrospective study included 137 eyes of 74 patients with ICLs. Linear regression and neural network analy-
ses were used to examine the relationship between vault values at the 6-month follow-up and preoperative parameters (e.g., 
ICL characteristics and biometrics).
Results  Linear regression analysis revealed that vault values were correlated with five variables: ICL size, anterior chamber 
depth (ACD), angle-to-angle (ATA), white-to-white (WTW), and lens thickness (LT) (adjusted R2 = 0.411). Inclusion of 
more input variables was associated with better performance in the neural network analysis. The degree of fit when all 11 
variables were included in the neural network model was close to 1 (R2 = 0.98). R2 values for the quaternary neural network 
model enrolling four input variables (ICL size, ATA, ACD, and LT) reached 0.90.
Conclusions  A neural network equation including the ICL size and biometric parameters of the anterior segment (ATA, 
ACD, and LT) can be used to predict the postoperative vault, aiding in the selection of an appropriate ICL size and reducing 
the need for reoperation after surgery.

Key messages

Appropriate sizing of the implantable collamer lens (ICL) and accurate prediction of the vault are crucial prior 
to surgery. Previous studies have indicated that the ICL vault can be roughly modeled using linear regression 
(R2    0.41 in multiple regression analysis) of various preoperative biometric combinations.However, there is no 
standard formula for predicting the vault.

To our knowledge, this is the first study to demonstrate that a neural network model considering 11 biometric 
factors can be used for excellent modeling of the ICL vault, suggesting that the relationship between the ICL 
vault and biometric factors is nonlinear.   

Satisfactory prediction (R2=0.90) of the ICL vault values was achieved when the neural network model included
four specific biometric factors (ICL size, angle-to-angle, anterior chamber depth, and lens thickness), allowing for 
efficient and accurate vault prediction; thus, it enabled the appropriate selection of the ICL size and potentially 
reduced the likelihood of reoperation.   
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Background

The implantable collamer lens (ICL; STAAR Surgical, 
Nidau, Switzerland) is a type of phakic intraocular lens 
(IOL) used for the safe and effective correction of a wide 
range of refractive errors [1–4]. A safer ICL with a small 
central hole (V4c, KS-AquaPORT, STAAR Surgical AG) 
has recently been developed [5]. The distance between 
the center of the posterior artificial lens surface and the 
center of the anterior crystalline lens surface (hereafter 
referred to as the vault) plays an important role in the 
success of ICL surgery. Appropriate sizing of the ICL and 
accurate prediction of the vault are crucial prior to surgery. 
Lens sizing has traditionally been based on white-to white 
(WTW) and anterior chamber depth (ACD) measurements, 
as recommended by lens manufacturers. However, some-
times the vault value is higher or lower than predicted, 
necessitating reoperation.

Previous studies have indicated that the ICL vault can 
be roughly modeled using linear regression (R2 ≤ 0.41 
in multiple regression analysis) of various combinations 
of preoperative biometrics [6–10]. However, to the best 
of our knowledge, there is no standard formula for pre-
dicting the vault, and no studies to date have thoroughly 
investigated the performance of all individual preopera-
tive biometric factors and their combinations in predicting 
the ICL vault. Neural networks have enabled the mapping 
of complex nonlinear relationships in a variety of scien-
tific domains. The present study aimed to utilize neural 
networks to comprehensively analyze the relationship 
between the ICL vault and preoperative biometric data.

Methods

Design

In this retrospective study, we reviewed the data of 137 
eyes from 74 patients (sex, 16 men and 58 women) who 
underwent ICL implantation between May 2016 and May 
2018 at the Department of Ophthalmology at Peking Uni-
versity Third Hospital (China); these patients were con-
secutively enrolled. The investigation was performed in 
accordance with the tenets outlined in the Declaration of 
Helsinki. The study protocol was approved by the Medi-
cal Science Research Ethics Committee of Peking Uni-
versity Third Hospital, which waived the requirement 
for informed consent because of the nature of the study 
(approval number: IRB00006761-M2020240).

Preoperative ophthalmologic examinations included 
tests of visual acuity and manifest refraction, slit-lamp 

examination, ophthalmoscopic examination, IOL Master 
examination (Carl Zeiss, Meditec AG, Jena, Germany), 
applanation A-scan ultrasound (OcuScan®, Alcon Inc., 
Fort Worth, TX), ultrasound biomicroscopy (UBM) (Para-
digm Medical Industries, Salt Lake City, UT), and ante-
rior segment optical coherence tomography (AS-OCT) 
(Visante Model 1000, Carl Zeiss Meditec).

Patient data

The patients were included in the analysis if they met the fol-
lowing criteria: age, 21–45 years; ACD ≥ 2.80 mm; corneal 
endothelial cell count ≥ 2000 cells/mm2; stable refractive 
error ≥ 1 year; spectacle spherical power, –2.50 to –20.00 
D; cylindrical power < 5.00 D; clear crystalline lens; no 
keratoconus findings on Belin–Ambrosio Enhanced Ectasia 
Display in Pentacam (Oculus, Wetzlar, Germany); no previ-
ous history of ocular pathology, ocular surgery, glaucoma, 
lens dislocation, or a diagnosed autoimmune or a connective 
tissue disease.

Measurements

Preoperative angle-to-angle (ATA) distance, central corneal 
thickness, and ACD were determined via AS-OCT. The par-
ticipants were seated with the mandible placed on the jaw 
bracket, forehead close to the frontal band, and eyes star-
ing at the red light in front; the relevant parameters were 
measured under anterior chamber measurement mode with 
the QF value OK. Preoperative WTW distance was calcu-
lated as the average of the results obtained using calipers 
and IOL Master. The preoperative sulcus-to-sulcus (STS) 
distance was measured using UBM. UBM examinations 
were performed using an eyecup filled with methylcellulose 
solution after topical obucaine hydrochloride was instilled to 
anesthetize the cornea, while the participants were asked to 
fixate on a ceiling target and remain in the supine position. 
The examiner adjusted the probe perpendicular to the eyes, 
chose the UBM/STS pattern, and acquired the horizontal 
line images. All ATA, WTW, and STS measurements were 
horizontal. The ATA and WTW distances using calipers, 
WTW distance using IOL Master, and STS examinations 
were in a masked way without using cycloplegic drugs. 
Preoperative keratometry was performed using IOL Maser. 
The preoperative lens thickness (LT) was determined using 
A-scan ultrasonography. We performed A-scan examination 
after instilling topical obucaine hydrochloride to anesthetize 
the cornea, while the participants were seated and asked to 
fixate on a target in front. The examiner adjusted the probe 
perpendicular to the eyes, and all parameters were measured 
thrice. The average value of these measurements was calcu-
lated. The vault value was assessed 6 months postoperatively 
using AS-OCT.
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Surgical procedure

All surgeries were performed by one experienced surgeon 
(H.Q.). Following application of topical anesthesia, a 3-mm 
temporal clear corneal incision and a side hole were made, 
following which the anterior chamber was filled with a vis-
coelastic material (Hairont; Gallop Biological Products, 
Hangzhou, China). Then, V4c ICL was inserted through the 
corneal incision using an injector cartridge (STAAR Sur-
gical AG). The ICL was placed in the posterior chamber, 
and the viscoelastic material was completely removed and 
replaced with a balanced salt solution, following which a 
miotic agent was instilled. All ICLs were placed in the hori-
zontal posterior chamber.

Calculation of lens power and diameter

Lens power and size were determined using the STAAR 
website (https://​ocos.​staar​ag.​ch). The following preopera-
tive parameters were entered: keratometry results, central 
corneal thickness, ACD, WTW, and refraction.

Statistical and neural network analyses

Univariate linear regression and stepwise multiple regres-
sion analyses were performed to investigate the linear asso-
ciation between the vault value and preoperative variables 
(ICL size, ATA, ACD, LT, age, spherical equivalent [SE], 
WTW, STS, ICL optical power, and expected SE [ESE]). 
Statistical analysis was performed using SPSS for Win-
dows, version 20.0 (IBM Corp., Armonk, NY, USA). A p 
value < 0.05 was considered statistically significant.

A neural network consists of an input layer connected to 
an input variable, one or more hidden layers, and an output 
layer that produces an output variable [11, 12]. The input 
layer of the neural network contained 11 independent vari-
ables: ICL size, ATA, ACD, LT, age, SE, WTW, STS, ICL 
optical power, ESE, and sex. The output layer of the neural 
network included the vault value.

The optimal settings for the hidden layer neurons were 
obtained via continuous iteration [13]. In general, the 
training process begins at a hidden layer, which is located 
between the input and output layers and performs nonlin-
ear transformations of the inputs entered into the network, 
and the number of neurons increases until prediction error 
(PE) increases. Then, a second hidden layer is added to 
keep the number of parameters (weights plus deviations) 
approximately constant. The number of neurons per layer 
and the number of layers vary until good performance is 
achieved (i.e., p value < 0.05 and a minimum PE value). 
Given our small volume of data, we could perform mul-
tiple experiments to obtain different inputs that were 

suitable for different hidden layer network structures [14]. 
We selected two suitable hidden layer structures for each 
input. In the present study, our neural networks contained 
only one or two hidden layers.

Using this optimization process, the neural networks 
(NN) can be divided into the following five conditions:

NN1: one input, one hidden layer with five nodes or two 
hidden layers with three nodes, one output;
NN2: two inputs, one hidden layer with five nodes or 
two hidden layers with three nodes, one output;
NN3: three inputs, one hidden layer with seven nodes or 
two hidden layers with five nodes, one output;
NN4: four inputs, one hidden layer with seven nodes or 
two hidden layers with five nodes, one output;
NN5: 11 inputs, one hidden layer with eight nodes or 
two hidden layers with six nodes, one output

The resulting index is the R2 (fitting degree) value, 
which reflects the fitting degree of the regression line to 
the observed value. R2 values are calculated using the fol-
lowing formula:

In Eq. 1, n, yi, ŷi, and y refer to the number of regression 
points, measured value at point i , predicted value at point 
i , and mean value, respectively.

The range of R2 is [0,1]. Here, R2 is used to describe 
the degree of fit between the true and predicted values for 
the ICL vault. The fitted R2 value is obtained using Eq. 1. 
R2 values closer to 1 indicate a better degree of fit, indi-
cating that the predicted ICL vault value is closer to the 
actual ICL vault value. In both the regression and neural 
network models, our goal was to obtain the predicted vault 
value. Moreover, we calculated the R2 values to exam-
ine how well the predictions approximated the real vault 
value. The optimal goodness of fit (R2) of this experiment 
was obtained by comparing the regression model with the 
neural network model results.

The learning rate controls the training progress of the 
model in the iterative process [15]. Following experimen-
tal verification, we observed that better results can be 
obtained by setting the learning rate to 0.1. The sigmoid 
function was used uniformly for activation functions in all 
models [16–18]. The optimization algorithm is a math-
ematical model that uses the idea of iteration to approxi-
mate the optimal solution to the problem. We chose the 
Adam optimization algorithm for the present study [19].

The structure of the neural network is presented 
in Fig. 1. The learning process can be summarized as 

(1)R2
=

∑n

i=1

�

yi − y
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−

∑n
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follows: At the beginning of the learning process, the 
weights are set randomly, and a given set of inputs in the 
first layer is transmitted, following which the output data 
are generated. The neural network takes the loss func-
tion as the optimization objective to observe the optimal 
parameters. Each iteration of the neural network updates 
parameters based on loss function; thus, the faster the loss 
function changes, the larger the parameter update ampli-
tude. The loss function reflects the difference between the 
actual and expected output data concerning the network 
error (mean square error).

When the neural network is modeled, the optimal 
model with the best result would be saved, along with 
all the parameters in the optimal model. Any surgeon can 
obtain the same results with the same data and can use 
these existing best models to test the new data to estimate 
the predicted vault.

The open-source Python library TensorFlow (Google 
Corp., Mountain View, CA) was used in PyCharm 
2017.3.2 to design and train the neural network. Ten-
sorFlow is one of the most popularly used frameworks 
in deep learning [20]. Neural network structure, param-
eters, loss functions, and optimization algorithms can 
easily be defined using this library. All tests were run on 
laptops with the following specifications: Intel(R) Core 
(TM) i7-8550u CPU @1.80 GHz and 8 GB of RAM (Intel 
Corp., Santa Clara, CA).

Results

Descriptive statistics

In this study, we examined the data of 137 eyes from 74 
patients (sex, 16 men and 58 women). Patient demographics, 

Fig. 1   Detailed diagram of 
the neural network structure. 
The neural network consists 
of 11 nodes in one input layer, 
5 nodes in one hidden layer, 
and 1 node in one output layer. 
The parameters × 1– × 11, w, 
b, n, and y1 refer to the inputs, 
weight, deviation (i.e., a meas-
ure of the difference between 
the predictions of our model 
and the actual values), node in 
the hidden layer, and output, 
respectively. Full connection 
mode was adopted for the neural 
network. A sigmoid activation 
function was used for each layer

Table 1   Patient demographics, ICL characteristics, and biometric 
parameters of the anterior segment

SD, standard deviation; WTW​, white-to-white; ACD, anterior cham-
ber depth; ATA​, angle-to-angle; STS, sulcus-to-sulcus; LT, lens thick-
ness; ICL, implantable collamer lens

Factors Mean ± SD Min Max

Patients (eyes), n 74 (137)
Sex (male/female), n 16/58
Age (y) 32.61 ± 6.81 21 45
Spherical equivalent (D)  − 10.21 ± 4.34  − 25.00  − 2.25
Expected spherical equivalent 

(D)
 − 0.53 ± 0.54  − 4.22 0.44

WTW (mm) 11.75 ± 0.37 11.00 12.50
ACD (mm) 3.23 ± 0.23 2.84 3.82
ATA (mm) 11.73 ± 0.42 10.54 12.67
STS (mm) 11.59 ± 0.51 10.46 12.80
LT (mm) 3.88 ± 0.29 3.28 4.76
ICL size (mm) 12.79 ± 0.40 12.10 13.70
ICL optical power (D)  − 10.41 ± 3.75  − 18.00  − 2.50
Vault (μm) 619.93 ± 245.66 190 1,310
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ICL characteristics, and biometric parameters of the ante-
rior segment are presented in Table 1. The mean vault value 
6 months after ICL implantation was 619.93 ± 245.66 μm 
(range, 190–1310 μm).

Linear regression analysis

Univariate linear regression analysis was used to examine 
the linear relationship between each preoperative vari-
able and the vault value. Our analysis identified seven of 
these factors as significant (ICL size, adjusted R2 = 0.243, 
p < 0.001; ACD, adjusted R2 = 0.146, p < 0.001; LT, 
adjusted R2 = 0.054, p = 0.004; ATA, adjusted R2 = 0.045, 
p = 0.007; WTW, adjusted R2 = 0.038, p = 0.013; STS, 
adjusted R2 = 0.036, p = 0.018; age, adjusted R2 = 0.033, 
p = 0.019).

Multiple stepwise regression analysis was performed 
using the postoperative vault as an explained variable and 
all preoperative parameters (age, sex, SE, ESE, WTW, 
ACD, ATA, STS, LT, ICL size, and ICL optical power) as 
explanatory variables. The best-fitting model included the 
following independent factors: ICL size, ACD, ATA, WTW, 
and LT. The model can be described as follows: postop-
erative vault (μm) = 57.5 × ICL size (mm) + 175.5 × ACD 
( m m )  −  1 6 1 . 2  ×  ATA  ( m m )  −  2 0 3 . 7  ×  W T W 
(mm) − 190.4 × LT (mm) − 2279.6 (R2 = 0.434, adjusted 
R2 = 0.411) (Supplementary Information 1).

Neural network analysis

Figure 2 depicts the results of 11 univariate fitting mod-
els for the linear and neural network analyses. As shown 
in the figure, the neural network results are better than the 
linear results. Analysis of R2 values revealed that ICL size 
was the most important parameter. Despite the differences 
in order, the first four optimal parameters (ICL size, ATA, 
ACD, and LT) were the same for the neural network and 
linear analyses.

The results of the bivariate neural network analysis con-
tinued to improve for the first five combinations. ICL size 
was included in the five best combinations (Fig. 3a).

The results of the ternary neural network analysis contin-
ued to improve for the first five combinations (Fig. 3b). The 
best model (NN3, R2 = 0.84) contained three inputs (ICL 
size, ACD, ATA) and two hidden layers with five nodes, and 
had a sigmoid activation function.

Of the five outcomes for the quaternary neural network 
analysis, the second, third, and fourth results were similar 
(Fig. 3c). The parameters for the best combination were 
the same as those for the top four outcomes in the univari-
ate model: ICL size, ACD, ATA, and LT. The worst model 
exhibited an R2 value > 0.73 for a small number of network 
layers (one hidden layer), while the best model exhibited 
an R2 value of 0.90. The best neural network model (NN4) 
exhibited the following characteristics: four inputs (ICL size, 

Fig. 2   Results of linear and 
neural network fitting for one 
independent variable. The 
11 preoperative variables are 
displayed on the x-axis, while 
R2 values are displayed on 
the y-axis. Red and blue bars 
represent linear and neural net-
work fitting, respectively. ESE, 
expected spherical equivalent; 
WTW, white-to-white; ACD, 
anterior chamber depth; ATA, 
angle-to-angle; STS, sulcus-to-
sulcus; LT, lens thickness; ICLp, 
optical power of the implantable 
collamer lens; SE, spherical 
equivalent; ICLs, size of the 
implantable collamer lens
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ACD, ATA, and LT), two hidden layers with five nodes, a 
sigmoid activation function, and an R2 value of 0.90. Part 
of the calculation for the optimal network structure is sum-
marized in Supplementary Information 2.

As shown in Fig. 4, a greater number of input variables 
yielded a better result. When all 11 variables were included 
in the neural network model, R2 values were close to 1 
(R2 = 0.98 in the model with two hidden layers and six nodes 
in each layer). In contrast, the ternary and quaternary neu-
ral network and linear regression models yielded R2 values 
of > 0.8, > 0.9, and < 0.5, respectively.

Discussion

ICL implantation remains challenging because of difficul-
ties in determining the appropriate lens size and predicting 
the vault value. Recent studies utilizing regression analy-
ses have reported that the postoperative vault can only be 
explained in approximately 41.0% of cases [6–10]. In the 
present study, we performed linear regression and neural 
network analyses to examine the relationship between the 
preoperative biometric variables and the postoperative vault. 
To our knowledge, this is the first study to demonstrate that a 
neural network model considering 11 biometric factors can 
be used for excellent modeling of the ICL vault (R2 = 0.98 
in the model), suggesting that the relationship between the 
ICL vault and biometric factors is nonlinear. Indeed, no pre-
vious studies have achieved such a strong fit. Satisfactory 

prediction of the ICL vault values was achieved when the 
neural network model included four specific biometric fac-
tors (ICL size, ATA, ACD, and LT; R2 = 0.90 in the model), 
allowing for efficient and accurate vault prediction.

Our multiple regression analysis yielded a result close 
to the highest linear fitting value reported in previous vault 
prediction studies (adjusted R2 = 0.411) [6–10]. However, 
linear regression analysis explained no more than half of the 
vault prediction. Confounding factors other than horizontal 
compression should be considered, including vertical com-
pression by the iris, the dampening effect of ciliary sulcus 
structures, and the innate ICL lens vault [21, 22]. Indeed, 
clinical experience suggests that the ICL can be located at 
different positions in the posterior chamber, and the haptics 
may not be in the ciliary sulcus in most cases [23, 24]. These 
factors may not exhibit a simple linear correlation with the 
vault.

For our univariate network model, the top four R2 values 
were observed when ICL size, ACD, LT, and ATA were 
used. The same four variables yielded the best results in 
our linear regression analysis, and the main variable affect-
ing the vault was the ICL size in both models (R2 = 0.24, 
p < 0.001 in linear regression analysis and R2 = 0.32 in uni-
variate network analysis). The ICLs used in the present study 
(V4c ICL) are available in four sizes only: 12.1, 12.6, 13.2, 
and 13.7 mm. Our data indicated that the selected ICL size 
was the main factor influencing the postoperative vault.

For the ternary network model, the combination yielding 
the highest R2 value was that including the ICL size, ATA, 

Fig. 3   a Neural network fitting for two variables. X-axis: 2-vs-1: ICL 
size, STS; 2-vs-2: ICL size, WTW; 2-vs-3: ICL size, ACD; 2-vs-4: 
ICL size, LT; 2-vs-5: ICL size, ATA. R2 values are presented on the 
y-axis. Red and blue bars represent the model containing one hid-
den layer with five nodes and two hidden layers with three nodes in 
each layer, respectively. b Neural network fitting for three variables. 
X-axis: 3-vs-1: ICL size, ACD, WTW; 3-vs-2: ICL size, ATA, WTW; 
3-vs-3: ICL size, ACD, LT; 3-vs-4: ICL size, ATA, LT; 3-vs-5: ICL 
size, ATA, ACD. R2 values are presented on the y-axis. Red and blue 
bars represent the model with one hidden layer and seven nodes and 

the model with two hidden layers and five nodes in each layer, respec-
tively. c Neural network fitting for four variables. X-axis: 4-vs-1: ICL 
size, ATA, WTW, STS; 4-vs-2: ICL size, ACD, ATA, WTW; 4-vs-3: 
ICL size, ATA, LT, WTW; 4-vs-4: ICL size, ACD, LT, WTW; 4-vs-
5: ICL size, ACD, ATA, LT. R2 values are presented on the y-axis. 
Red and blue bars represent the model with one hidden layer and 
seven nodes and the model with two hidden layers and five nodes in 
each layer, respectively. WTW, white-to-white; ACD, anterior cham-
ber depth; ATA, angle-to-angle; STS, sulcus-to-sulcus; LT, lens thick-
ness; ICL, implantable collamer lens
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and ACD. For the quaternary network model, the combina-
tion yielding the highest R2 value was that including the ICL 
size, ATA, ACD, and LT. R2 values for the next three ranked 
neural network models were almost identical (Fig. 3c). These 
three models included WTW rather than ATA, ACD, or LT. 
These findings indicated that the ICL size is the main factor 
affecting the postoperative vault, with strong contributions 
from ATA, ACD, and LT and more peripheral contributions 
from WTW.

Among the horizontal measurements obtained (ATA, 
WTW, STS), only ATA was included in the best quater-
nary neural network model (R2 values of approximately 
0.90). Recent studies have highlighted the capability of AS-
OCT for accurately calculating the ICL size based on ATA 
measurements [6, 25]. In one such study, multiple linear 
regression analysis determined that the ICL size and ATA 
values were the most important determinants of the postop-
erative vault (adjusted R2 = 0.41) [6]. In our bivariate net-
work model, the combination yielding the highest R2 value 
also included the ICL size and ATA. Although ATA does 
not reflect the sulcus diameter, it may be more accurate and 
reliable than other biometric parameters measured in the 
horizontal dimension. This finding may be explained by the 
nature of AS-OCT, which enables automatic, non-contact 
measurement with high resolution and reproducibility.

In contrast to the traditional lens-sizing method, WTW 
was not included in the top quaternary neural network 

model. Given that WTW can be measured manually with 
calipers, there is a wide variation in the values obtained by 
different examiners [26]. WTW can also be acquired auto-
matically using anterior segment imaging equipment. None-
theless, the corneal limbus cannot be clearly visualized in 
a considerable number of cases, which may result in high 
variance and unsatisfactory reproducibility [26, 27].

In the present study, we observed no significant linear 
relationship between the horizontal STS distance and the 
vault value. Therefore, STS distance was removed from the 
list of explanatory variables in the multiple regression analy-
sis. STS distance was also absent from the neural network 
models yielding the highest R2 values. Although various 
lens-sizing formulas have been developed based on UBM 
measurements of STS [28, 29], these UBM-based formulas 
have not been widely adopted by surgeons because of the 
invasiveness and low reproducibility of UBM [30]. A meta-
analysis by Packer revealed that an STS-based formula was 
not superior to a WTW-based formula [31]. Additional fac-
tors may interfere with measurement, including the examiner 
error, ocular position, and anatomic variations in the ciliary 
sulcus.

Given that the current STAAR surgical calculator can-
not predict the postoperative vault, the results of this study 
may aid in the prediction of vault values. Without the use 
of an additional software [9], the three values (ATA, ACD, 
and LT) and the ICL size, which were determined using 

Fig. 4   Optimal model results. 
The abscissa reflects the optimal 
combination of parameters for 
models with different numbers 
of variables under different 
fitting methods, where 1 V-NN 
represents the use of a single 
variable (ICL size). 2 V-NN: 
ICL size, ATA; 3 V-NN: ICL 
size, ACD, ATA; 4 V-NN: 
ICL size, ACD, ATA, and LT; 
11 V-NN/11 V-Linear: age, sex, 
spherical equivalent, expected 
spherical equivalent, WTW, 
ACD, ATA, STS, LT, ICL size, 
ICL optical power. NN repre-
sents the neural network fitting 
model. R2 values are presented 
on the y-axis. WTW, white-to-
white; ACD, anterior chamber 
depth; ATA, angle-to-angle; 
STS, sulcus-to-sulcus; LT, lens 
thickness; ICL, implantable 
collamer lens
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the STAAR calculator, were used to predict the vault value. 
If the calculated vault value is not within the range of 
250–1000 µm [10], the user can enter another relevant size 
into the model. If the calculated vault value is too large or 
too small, the user could choose a larger lens size and place 
it in the vertical posterior chamber, as STS increases closer 
to the vertical axis rather than the horizontal meridian [32].

The present study had some limitations, including its 
small sample size and retrospective design. Therefore, we 
could only train rather than test the neural network. Future 
prospective clinical studies involving multiple centers are 
required to optimize the model and help develop an ICL size 
calculator based on NN. Long-term changes in central vault-
ing because of accommodation or chronologic changes in 
crystalline LT must also be considered [4]. Further research 
is required to determine which vault range is safe and ideal 
in the long term.

In conclusion, the present study demonstrated that NN 
incorporating preoperative biometric data can be used to 
predict the postoperative vault. The equation generated using 
neural network analysis allows for precise vault prediction, 
thus enabling appropriate selection of the ICL size.
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