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Abstract

Time-reversal symmetry breaking is a key feature of many classes of natural sounds, originating in the physics of sound
production. While attention has been paid to the response of the auditory system to ‘‘natural stimuli,’’ very few
psychophysical tests have been performed. We conduct psychophysical measurements of time-frequency acuity for stylized
representations of ‘‘natural’’-like notes (sharp attack, long decay) and the time-reversed versions of these notes (long attack,
sharp decay). Our results demonstrate significantly greater precision, arising from enhanced temporal acuity, for such
sounds over their time-reversed versions, without a corresponding decrease in frequency acuity. These data inveigh against
models of auditory processing that include tradeoffs between temporal and frequency acuity, at least in the range of notes
tested and suggest the existence of statistical priors for notes with a sharp-attack and a long-decay. We are additionally able
to calculate a minimal theoretical bound on the sophistication of the nonlinearities in auditory processing. We find that
among the best studied classes of nonlinear time-frequency representations, only matching pursuit, spectral derivatives,
and reassigned spectrograms are able to satisfy this criterion.
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Introduction

It has long been proposed that the human auditory system is in

some way ‘‘optimized’’ for natural sounds. Ecological theories of

perception suggest that hearing evolved to detect the sounds

necessary for survival and successful reproduction. Such sounds

fall into three groups: those of conspecifics, heterospecifics

(predators and prey of humans), and the elements. This principle

is seemingly obeyed in the case of the range of frequencies and

volumes that humans can hear. It has been suggested that the

auditory system had evolved to optimally encode natural sounds

[1]. Much recent work in this direction has involved examining the

output of neurons in an animal subjected to auditory signals both

with natural and unnatural statistics, in amplitude [2,3], spectrum

[4–6], and scale-invariance [7]. While these studies focus on the

higher order properties of natural sounds, such as the energy in

various spectral bands, comparatively little attention is paid to the

lower order properties of such sounds. Attias and Schreiner noted

that the frequency and amplitude spectra of a broad class of

sounds, ranging from wolf vocalizations to symphonic music,

occupy a limited region of parameter space [8]. Both con- and

hetero-specific sounds are nearly always time-reversal symmetry

broken, composed of elements with sharp attacks and long decays

[7]. Vocal production by animals [9] as well as the noises caused

by their movements, such as a tiger stepping on a twig, or a deer

rustling the branch of a tree, are time-reversal symmetry broken,

for reasons grounded in the physics of energy dissipation. This

effect may be not be obvious on spectrograms, as the onset of

many notes is so rapid, and the sustain and decay so elongated,

that the waveform appears to be a continuous block of sound.

However, from the perspective of quantifying the possible

envelopes of notes, such sounds correspond to a rather small

region of parameter space. One need look no further than the

utility and ubiquity of gammatones in scientific research and the

ADSR (attack-decay-sustain-release) description of notes in

synthesizers. The second row of Figure 1 demonstrates this

property for three different methods of sound production, a

clarinet, a piano, and a guitar.

The shape of a sharp attack followed by a long decay (or sustain-

release) reflects the physics of sound production for a broad class of

natural sounds - a class that includes many sounds likely to be

important for human survival in the wild. A burst of energy is

produced and decays due to viscous damping: a mallet hits a

drumhead (or an animal steps on a branch), a burst of air is forced

through a trumpet (or the syrinx of a bird), a string (or a branch) is

plucked and released [7]. Attempts to reconstruct the receptive

fields of auditory neurons using the reverse-correlation method

have found filters shaped like stylized versions of the above

examples [10]. This is the result we would expect on the grounds

of optimal-information transfer: statistical priors of a rapid-attack,

slow-decay form. The reverse-correlation method, however, has

only a limited ability to reconstruct auditory filters, even in the

case of simulated data [11]. Additionally, such spectral methods

are thrown into doubt by the existence of essential nonlinearities in

the cochlea [12,13] and the recent results that human auditory

perception is more precise than any linear (spectral) method can

account for [14].

Unlike other ‘‘higher-order’’ properties of natural sounds, such

as amplitude fluctuations and correlations within the spectrogram,
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the ability of the auditory system to respond to stylized time-

reversal symmetry broken notes versus unnatural ones can be

easily tested using standard psychophysical methods. Our previous

work had involved the creation of a protocol for measuring

simultaneous human time-frequency acuity. This methodology

can be adapted to test how both time and frequency acuity change

with variations in the envelope of the notes presented. Such a test

would be able to lend credence to the existence of time-reversal

symmetry broken statistical priors in the auditory system.

Time-reversal symmetry breaking has been found in the

response of cortical neurons to an animal’s own song, but not a

time-reversed version of it in species such as Marmosets [15] and

White-Crowned Sparrows [16]. Similar assays are frequently used

to determine selectivity for an animal’s own vocalizations versus

those of conspecifics [17]. These studies additionally shed light on

issues of temporal versus rate coding; in both cats and guinea pigs,

the information content of spike patterns in neurons has been

shown not to differ much between the ‘‘time-forwards’’ and ‘‘time-

reversed’’ versions of conspecific vocalizations, however, the

temporal spiking pattern differs strongly [18]. In one experiment,

ferrets were trained to distinguish between forward and reversed

versions of marmoset calls: spike data indicated a much greater

degree of synchrony in spike patterns for the ‘‘time-forward’’

version [19], suggesting perhaps enhanced temporal acuity to

‘‘time-forward’’ vocalizations.

Time-reversal symmetry broken statistical priors would help to

explain the utility of the numerous nonlinearities found in the

auditory system, which were previously shown to be essential to

the acuity of human hearing [14]. A difference in acuity between a

note and its time-reversed form would constrain mathematical

descriptions of auditory processing. Our goal was thus two-fold, to

see if the auditory system is primed to better process naturalistic,

time-reversal symmetry broken notes, and to use such psycho-

physical data to better understand the nonlinearities present in the

auditory system.

Methods

We used the same testing procedure as in [14] to test for

simultaneous time-frequency acuity. The relevant specifications of

equipment, training tasks, experimental parameters, and prelim-

inary data fitting for the extraction of physiological parameters

may be found therein. What follows is a brief overview of the

experimental procedure with emphasis on the adaptations of our

original protocol to investigate the effects of time reversal.

Human subjects
Our work was a continuation of a prior study [14], approved by

the IRB under Rockefeller University protocol MAG-0694,

approved initially for the period 2/1/2010–1/13/2011 and

renewed annually since. As in the previous work, we enrolled

highly-musically-trained subjects, due to their superior and stable

performance on simultaneous time-frequency tasks. Composers

and conductors especially were distinguished their better ability to

parse out distractions and maintain focus. Subjects were recruited

by means of IRB-approved fliers and word of mouth among New

York City conservatories. Written informed consent was taken

from all subjects. This study consisted of 12 subjects, many of

Figure 1. Wavepackets used in experiments and musical notes, at 440 Hz. Musical notes are shown for comparison with our test stimuli as
well as to demonstrate the waveforms of certain types of natural sounds. Note that each of the musical notes is time-reversal symmetry broken.
doi:10.1371/journal.pone.0065386.g001
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whom were students of composition or conducting [14]. Our

sample is clearly not representative of the population at large.

Preliminary testing had revealed that musicians, especially

composers and conductors, had consistent performance on our

psychophysical tasks. In order to fit a psychometric curve [see

below] and extract properly defined acuities with the minimum of

error, we desired subjects whose performance would not waver

over a full set of tests (approximately 90 minutes). While naive

subjects perform nearly as well in frequency or timing as musically

trained ones, their performance will start to falter after 5–

10 minutes of testing. Once they are asked to either ignore a

distractor note or measure time and frequency simultaneously [see

below], their performance became substantially worse. These

observations imply that musical training does not enhance acuity,

but rather aids subjects in performing consistently well in the

unnatural setting of psychophysical tasks. We additionally desired

results directly comparable with previous work involving the same

basic auditory task [see below].

Stimuli and Tasks
Three types of wavepackets were used: a Gaussian with a width

of 0.05 seconds, a ‘‘notelike’’ envelope that approximated a

musical note with a rapid increase proportional to tanh2 (t)
followed by a slower exponential decay, and a time-reversed

version of the second pulse, that is, a gradual attack followed by a

sharp decay, see Figure 1. The width of the Gaussian was used as

the time constant of the exponential in the ‘‘notelike’’ and ‘‘time-

reversed’’ pulses. We extracted the theoretical uncertainties in time

and frequency of each pulse by integration in MATLAB (Dt and

Df ); these are the analogous quantities to those extracted from the

fitted psychometric curve (dt and df ), see below. Testing was

performed at f0~440 Hz, as this was shown in earlier work [20]

to yield optimal performance on the uncertainty task. The flanking

note was separated from the center by a factor w~(
ffiffiffi
5
p

z1)=2, the

least harmonic interval, minimizing interference effects.

Tasks and testing sequence
We performed the auditory equivalent of a two-dimensional

Vernier task, in which a frame is given specifying a horizontal

(time) and a vertical (frequency) direction, and the test note is

misaligned from this frame. Four training tasks were given,

including basic frequency and time discrimination tasks with and

without a distractor note. Subjects performed 5 sets of 20 questions

each per task, with additional sets of 20 if necessary for

convergence of data, or to eliminate poor initial performance on

a task. All tasks adapted dynamically to the subject’s performance

according to the two down, one up paradigm. The difficulty of

each task (the amount the test note was misaligned from the

flanking notes), Dt and Df , was chosen from a Gaussian

distribution. As in our prior work, we adjusted the variance of

this distribution, increasing it by 10% after two correct responses

and decreasing it by 11% after an incorrect response. Simulations

showed these update rules to give the most even sampling of the

‘‘steep’’ region of the psychometric curve and yield rapid

convergence of parameters. We set up both subtasks as a 2AFC

(two alternative forced choice) asking whether the test note comes

before or after the high note, and is above or below the first note in

pitch, testing for time and frequency acuity simulteously. We fit a

psychometric function of form erfc((x-b)/a), implicitly assuming

that the probability of not noticing a difference was normal in the

difference. The parameter of this error function, a is directly

interpretable as a statistical ‘‘uncertainty’’ or standard deviation,

giving a well-defined measure of the limens of discrimination for

frequency and timing. These value are termed df and dt,
respectively, below.

Data Analysis
In theory, we should be able to use an F-test as the acuity values

we use are the second moments of the Gaussian PDFs for the

probability of a certain subject making an error on a certain task

(time or frequency). When we fit a psychometric curve, we fit the

CDF of this distribution. Our assumption, one that is standard in

psychophysics, is that this CDF can be modeled as an error

function, which is justified in depth in the supplement of [14]. As

the CDF is an error function, the PDF is Gaussian. The second

moment of a sample of random variables drawn from a Gaussian

distribution is easily shown to be x2. We could then compare the

ratio of acuities from the same subject on different tasks, which, if

the tasks were the same would yield an F -distribution. However,

our data consists of binary values, measured at time and frequency

points chosen by us, rather than time and frequency points chosen

from the PDF. Hence, the effective number of data points, which

determines the number of degrees of freedom of the relevant x2

and F distributions are not well defined. We thus chose to use a

nonparametric, bootstrap based test [see below].

Results

Psychophysical Measurements
Upon testing subjects with all three pulses, it was immediately

apparent that performance on the time-reversed task was notably

worse. While several subjects managed relatively similar perfor-

mance on the preliminary frequency and time discrimination

tasks, comparing the notelike (subscript N) and the time-reversed

pulses (subscript TR), no one managed better, or even similar

performance on the combined time-frequency discrimination task.

In Figure 2, we plot our data on a time-frequency plane with

logarithmic axes: red dots indicate results from notelike pulses;

green x’s, time-reversed. Note that the data from the time-reversed

pulses seem to cluster on the right-hand side of the plot. We

examined the vector of change in performance between the

notelike and the time-reversed notelike pulses (Figure 3, left-hand

side). Note the dramatically worse performance in timing,

frequency, or both. A compensatory improvement (e.g. an

improvement in timing acuity balancing a decay in frequency

acuity) occurred in timing acuity in only two subjects and of

relatively small multiplicative effect, whereas an improvement in

frequency discrimination was seen in four subjects.

We tested the significance of the change in frequency and

timing acuity, as well as the uncertainty products as a measure of

total acuity, using the bootstrap distribution of the acuity values.

We generated 1000 bootstraps for each task 5, notelike dataset.

We then fit these resampled datasets and extracted the parameter

of the fitted error function (the acuity values). Using this

distribution, we calculated at what quantile the performance on

the time-reversed notelike pulse would fall, allowing us to calculate

the probability that the subject’s acuity on the ‘‘time-reversed’’

notelike pulse was the same as on the ‘‘time-forward’’ version.

Unless otherwise noted, Pv0:05 indicates statistical significance

below.

For 11 of the 12 subjects we observed a fall in timing acuity

(dtTRwdtN ); 7 were significant (4 with Pv0:01), though all 11

were significant with Pv0:10. Two subjects had a significant

decrease in frequency acuity (dfTRvdfN ), whereas 5 had a

significant increase in acuity (dfTRwdfN ). We may thus conclude

that the strong change in timing acuity apparent in Figure 3 is real,

while the change in frequency acuity seems to be a combination of
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statistical fluctuations and a decrease for some subjects. Total

acuity was significantly worse for 5 subjects and approximately the

same for the other 7, albeit in 5 cases there was an insignificant

increase in total acuity.

As a methodological control, we combined our data with that of

our previous study [14] and examined the difference in

simultaneous time-frequency acuity between gaussian and notelike

pulses (Figure 3, right-hand side). In our previous work, we had

found nearly identical total acuity, as measured by the uncertainty

product, for both of these pulses, but with better timing-acuity in

the ‘‘notelike’’ ones. Out of 17 pairs of tests, 12 subjects showed

improved performance in timing and 8 in frequency. We applied

the same bootstrap-based test, comparing the ‘‘time-forward’’

notelike acuities with the bootstrap distribution of the Gaussian

data. We found a significant decrease in dt in 6 of 17 cases and a

decrease in 14 total of the 17. This improvement in timing acuity

was balanced by a decrease in frequency acuity (dfNwdfG ) in 7

cases and no change in the 10 others. The total acuity was

significantly improved in 2 cases; it remained unchanged in the

other 15, again qualitatively consistent with the results displayed in

Figure 3.

It is worth noting that these results should not be affected by our

use of musically trained subjects. As we remark above (and in the

supplement to [14]), musically trained subjects were chosen for the

consistency of their performance, not for their possibly enhanced

acuities. Consistent values for time and frequency acuities have

allowed us to precisely measure the difference in response to time-

forward and time-reversed notes, a measurement that would be

considerably more difficult in naive subjects.

Implications for Models of Auditory Processing
Many nonlinear time-frequency distributions may be viewed as

modifications of Fourier analysis. They are thus blind to the arrow

of time and obey a modified uncertainty relation, changing only

the constant on the right hand side of the canonical Fourier

Uncertainty Principle: DtDf §1=4p, where Df and Dt are the

standard deviations or ‘‘uncertainties’’ of the signal in frequency

and time, respectively [20]. For a further discussion of these

quantities and their psychophysical analogues see [14]. If we

naively assume that human hearing is limited by such a modified

bound, we may estimate where such a bound could lie from the

‘‘theoretical uncertainty’’ (the standard deviations) of the notes

presented, here *5:7 times the optimal value (a Gaussian) and the

performance of the best subject *50 better than the Fourier limit

and then extract the maximum such prefactor that could explain

our results, and the ‘‘order’’ of the minimum nonlinearity

necessary.

Figure 2. Results of Psychophysical Testing. We plot our data on a
standard time-frequency plane with dt on the x axis and df on the y
axis. The red circles are the results from the ‘‘time-forward’’ notelike
pulse, the green crosses are from the ‘‘time-reversed’’ version. The
uncertainty bound is the black diagonal; the axes are logarithmic. The
data from the ‘‘time-reversed’’ pulse are shifted notably to the right
(zdt) from the original ‘‘time-forward’’ notelike one.
doi:10.1371/journal.pone.0065386.g002

Figure 3. Difference in performance on different shaped notes. On the left is performance on the ‘‘time-reversed’’ pulse divided by
performance on the ‘‘time-forward’’ notelike pulse. On the right is performance on the ‘‘notelike’’ pulse divided by performance on the gaussian

pulse. The dotted red line indicates a perfect tradeoff in performance, i.e.
dt1

dt2

df1

df2

~1. On both figures, axes are logarithmic.
doi:10.1371/journal.pone.0065386.g003
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We may define a hierarchy of nonlinear time-frequency

distributions based on the order of their nonlinearity: the number

of the copies of the signal that are convolved in the transformation.

As there is no reason to believe a general closed form exists for

arbitrary pulses, we focus below on Gaussian wavepackets. For

mathematical simplicity, we work with the angular frequency,

v~2pf . All time-frequency representations may be written in

terms of Cohen’s class [20]:

C(t,v)~
1

4p2

ð ð ð
e{iht{itvzihu W(h,t)

|s�(u{
1

2
t)s(uz

1

2
t) dudtdh

ð1Þ

Here, t and v are our time and frequency variables in the final

representation, C; s is the original signal, t the running window in

time, centered at u, and h the frequency window. W is denoted the

kernel of the transformation. For all bilinear time-frequency

representations (Cohen’s Class), W is independent of s. The

simplest member of this class is the Wigner Distribution, for which

W~1. A signal-dependent kernel changes the order of the

distribution. One may recover the spectrogram by inserting a

window-dependent kernel and writing C(t,v) as a square. To

obtain properly-construed marginal distributions in time and

frequency and thus values for Dt and Df ,

ð
C(t,v)dt~DS�(v)D2 ð2Þ

ð
C(t,v)dv~DS(t)D2 ð3Þ

we must have W(0,t)~1 and w(h,0)~1. Hence, any time-

frequency representation whose kernel obeys the above conditions

must obey a modified uncertainty principle of the form

KDtDf §

1

4p
, with K some constant, dependent on both the

wavepacket shape and the enveloped frequencies.

To measure the increase in precision, we evaluate the Cohen’s

class integrals for gaussian-enveloped pure tones, s~e{t2=4s2

eivt,

both because of their optimality in the linear case and our data on

such packets. For W~1 (the Wigner Distribution), we have after

taking the Fourier transform of h and integrating out u,

C(t,v)~

ð
e{itve{t2=2s2{t2=8s2

dt ð4Þ

Without evaluating this integral, we may read off Dt~s and

Df ~
1

2p
Dv~

1

2p

1

4s
, a factor of two improvement over linearity.

Examining the general case more carefully, we see that the origin

of improved performance is due to the convolution of the signal

with itself. Without any prior information, W is not a function of u,

t, or v. The kernel is only able to affect the uncertainty in the

frequency domain by action on h. In the case of Gaussian

wavepackets, where enhanced precision arises from the largeness

of N in the Fourier transform of e{t2=Ns2
, the only kernel that

could improve upon the Wigner distribution would be of the form

et2=Ms2
with MvN. Such a kernel, by privileging large t’s over

small ones would be catastrophic in the case of multiple signal

components, amplifying the destructive interference of the Wigner

Distribtuion. The kernels used in time-frequency analysis tend to

be sharply peaked to decrease this interference. A paradigmatic

example is the Choi-Williams Kernel, e{ah2t2
which applies a

Gaussian window in both time and frequency to the signal

autocorrelation, thus reducing the enhanced precision in the

frequency domain from convolving the signal with itself.

We may apply the same logic to kernels that are explicitly

dependent on the signal itself. Each additional pair of the signal,

s�(u{
1

2
t)s(uz

1

2
t), will build higher order correlations into

C(t,v), increasing precision by a factor of 2. Any other terms will

be used to suppress interference (increasing resolution) and cannot

add to precision. Our best subject was able to beat the Uncertainty

Principle by a factor of *50, suggesting at a minimum, a 12th

order nonlinearity (6 factors of 2, each arising from a signal-

conjugate pair) is necessary to explain human auditory perception.

Such a bound rules out the traditional Cohen’s Class represen-

tations and throws into doubt the Hilbert-Huang method and

other PCA-based methods, which, involving a matrix-inversion,

can be estimated to be of greater than 3rd but less than 12th order

[21]. Our results thus suggest that only matching-pursuit, the

multi-tapered spectral derivatives [22,23] and the reassigned

spectrograms [24–28] can hope to capture the precision of the

auditory system.

Discussion

The significant increase in timing acuity unaccompanied by a

drop in the total acuity for a pulse with considerably larger

variances in timing and frequency indicates that either the

precision of human time-frequency perception operates in a realm

distant from the true uncertainty bound, or such a bound does not

exist for the auditory system. We may increase both the physical

standard deviations (uncertainties), Dt and Df of a note, shaping

the envelope to aid in temporal perception, and find improved

timing acuity without a decrease in simultaneous time-frequency

acuity. Examining Figure 3, in the right panel, we see data both

above and below the line df ~1=dt, which represents a perfect

tradeoff between time and frequency. In the right panel, we see

that the best performers fall almost exactly on this line, indicating a

perfect tradeoff between time and frequency acuity when going

from ‘‘notelike’’ to time-reversed pulses; every other subject is

above this line. The results of these subjects, who have statistically

significantly worse time-frequency acuity to ‘‘time-reversed’’ notes,

indicate degraded acuity to time-reversal symmetry broken notes

for one direction of the arrow of time (backwards in this case).

The indifference of the Fourier Transform, a naive, but

frequently default view of signals analysis, to the arrow of time is

not reproduced in perceptual acuity. A weaker version of time-

reversal symmetry might suggest that overall time-frequency acuity

for notes is the same in both the time-forward and time-reversed

cases, with increased temporal acuity in the ‘‘time-forwards’’

direction trading off with increased frequency acuity in the ‘‘time-

reversed’’ direction, corresponding to focussing on the better

defined feature of the first part of the note in time-frequency space.

While some subjects are able to manage this feat to a certain

extent, it is by no means uniform across subjects. Compensatory

improvements in frequency perception may not explain all of their

performance; in many subjects we have noticed an increase in

performance on the simultaneous time-frequency discrimination

task with exposure for the first 2–3 trials. It is likely this is the

origin of the improved timing perception of the one subject who

could distinguish notes in time better in the time-reversed case

than the original one. To properly disentangle which effects are
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due to repeated exposure and which are due to innate statistical

priors in the auditory system—those which are built from years of

exposure to time-reversal symmetry broken sounds and those

which are due to the constraints of auditory physiology—requires

further study and careful controls for task learning.

We are agnostic as to when the time (or frequency) of a note is

determined by the brain, be it prospectively (when it is first

noticed), or retrospectively (after post-processing in the CNS).

There is some evidence that the timing of a note is determined

after the note has finished, at least for musical notes [29]. Several

of our subjects would occasionally take up to 15 seconds to

respond after a stimulus on Task 5, suggesting a high degree of

post-processing, possibly in the form of ‘‘playing’’ the stimulus

back in their head. It is important to note, however, that our

mathematical results are unaffected by when time and frequency

measurements are made by the auditory system. Mathematically,

all that matters, is that the subject hears the stimulus once and is

asked to discriminate the notes in time and frequency.

We have demonstrated that human auditory perception is

enhanced for notes with a sharp attack followed by a long decay,

corresponding to the physics of production of a large and the

morphology of a large and ecologically relevant class of natural

sounds. We have used simple, direct psychophysical measurements

to test for the changes in simultaneous time-frequency acuity after

reversing the temporal direction of symmetry-broken pulses,

lending credence to the existence statistical priors for sharp attack,

long decay sounds. Such results add to the growing body of

evidence that human auditory processing is adapted for natural

sounds. Not only then is auditory processing inherently nonlinear,

these nonlinearities are seemingly used to improve perceptual

acuity to sounds that correspond to the physics of natural sound

production.

Our experimental results inspired a look at the hierarchy of

nonlinear time-frequency distributions and allowed the placement

of a lower bound on the degree of such a nonlinearity, ruling out

many of the simplest and most frequently used nonlinear time-

frequency representations, the bilinear ones of Cohen’s Class, as

well as suggesting that ones based on PCA, such as Hilbert-Huang

are not of high enough order to account for our data. Among

those that remain, matching pursuit, spectral derivatives and the

reassigned spectrograms, we hope that further psychophysical

measurements as well as considerations of the ability to implement

such algorithms in neural ‘‘hardware’’ may further narrow the

class of plausible methods of auditory processing. Lastly, our

observations about time-reversal symmetry breaking and the

temporal precision of the auditory system suggest further research

into this ecologically-relevant domain. The time at which a note is

deemed to occur is poorly understood; a ‘‘leading-edge’’ detector

model for temporal acuity could help explain these results.
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