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Abstract

Network neuroscience has broadly conceptualized the functions of the brain as com-

plex communication within and between large-scale neural networks. Nevertheless,

whether and how the gut microbiota influence functional network connectivity that

in turn impact human behaviors has yet to be determined. We collected fecal samples

from 157 healthy young adults and used 16S sequencing to assess gut microbial

diversity and enterotypes. Large-scale inter- and intranetwork functional connectivity

was measured using a combination of resting-state functional MRI data and indepen-

dent component analysis. Sleep quality and core executive functions were also evalu-

ated. Then, we tested for potential associations between gut microbiota, functional

network connectivity and behaviors. We found significant associations of gut micro-

bial diversity with internetwork functional connectivity between the executive con-

trol, default mode and sensorimotor systems, and intranetwork connectivity of the

executive control system. Moreover, some internetwork functional connectivity

mediated the relations of microbial diversity with sleep quality, working memory, and

attention. In addition, there was a significant effect of enterotypes on intranetwork

connectivity of the executive control system, which could mediate the link between

enterotypes and executive function. Our findings not only may expand existing bio-

logical knowledge of the gut microbiota-brain-behavior relationships from the per-

spective of large-scale functional network organization, but also may ultimately

inform a translational conceptualization of how to improve sleep quality and execu-

tive functions through the regulation of gut microbiota.
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1 | INTRODUCTION

The term microbiota–gut–brain axis refers to the bidirectional conduit

that communicates the brain and the gut microbiota (Cryan

et al., 2019). Gut–brain interactions have received increasing attention

in recent years, such that numerous findings suggest a fundamental

influence of the gut microbiota on brain development and function

(Dinan & Cryan, 2017). It is generally assumed that the gut microbiota

can affect and be reciprocally affected by many behavioral factors,

including social function, cognition, emotion, stress, and food intake

(Johnson & Foster, 2018; Sherwin, Bordenstein, Quinn, Dinan, &

Cryan, 2019; Vuong, Yano, Fung, & Hsiao, 2017). Alterations in gut

microbiota have been associated with a wide range of brain disorders,

such as Alzheimer's disease, depression, and autism (Cryan, O'Riordan,

Sandhu, Peterson, & Dinan, 2020; Van Ameringen et al., 2019).

Mounting preclinical evidence has implicated that there are many

pathways of potential communication between the gut microbiota

and the brain, such as autonomic nervous system (Fulling, Dinan, &

Cryan, 2019), enteric nervous system (Furness, 2012), immune system

and neuroimmunity (Fung, Olson, & Hsiao, 2017), enteroendocrine

signaling, neurotransmitters (Agus, Planchais, & Sokol, 2018; Dodd

et al., 2017; Strandwitz et al., 2019), branched chain amino acids,

short-chain fatty acids (Dalile, Van Oudenhove, Vervliet, &

Verbeke, 2019), spinal mechanisms, and hypothalamic–pituitary–

adrenal axis. However, the exact mechanism of such interaction in

humans is still largely unclear. A full explanation of this important

issue may provide scientific basis for the potential usefulness of the

microbiota–gut–brain axis as biological markers for accurate diagnosis

and effective treatment of brain disorders.

Advances in neuroimaging and microbiome sequencing tech-

niques have made it increasingly feasible to probe the interactions

between the brain, gut, and microbiome in healthy and clinical

populations (De Santis, Moratal, & Canals, 2019; Liu, Peng, Zhang,

Wang, & Luo, 2019; Mayer et al., 2019). For example, using functional

magnetic resonance imaging (fMRI), Curtis et al. (2019) demonstrated

that insular functional connectivity was associated with microbiome

diversity and structure in healthy young participants. A previous study

in infants showed that gut microbial diversity was linked to functional

connectivity of multiple brain regions (Gao et al., 2019). Tillisch

et al. (2017) found that the gut microbial profiles were related to task-

based brain activity, gray matter metric as well as white matter fiber

density in healthy women. Moreover, some longitudinal studies have

demonstrated significant influence of probiotic administration on

resting-state functional connectivity and task-related brain activity in

healthy young subjects (Bagga et al., 2018, 2019; Tillisch et al., 2013).

For patients with irritable bowel syndrome (IBS), probiotic administra-

tion reduced depression and increased quality of life, and these

improvements were accompanied by changes in brain activation pat-

terns (Pinto-Sanchez et al., 2017). In addition, Labus et al. found links

of gut microbes with resting-state functional connectivity and regional

brain volumes in patients with IBS (Labus et al., 2017; Labus

et al., 2019). A recent study revealed an inner relationship between

gut microbiota alterations, systemic inflammation, default mode

network (DMN) dysfunction and cognitive impairment in patients with

end-stage renal disease (Y. F. Wang et al., 2019). There is also evi-

dence for the impact of obesity on potential interactions among gut

microbiota composition, brain microstructure, and cognition

(Fernandez-Real et al., 2015).

It is well established that the brain is a complex system consisting

of multiple functional networks subserving different functions

(Damoiseaux et al., 2006; De Luca, Beckmann, De Stefano, Mat-

thews, & Smith, 2006; Power et al., 2011). Each functional network is

composed of several brain regions with similar patterns of blood-oxy-

gen-level-dependent (BOLD) signal change over the course of resting-

state fMRI, whereas different networks show distinct patterns. Inde-

pendent component analysis (ICA) of resting-state fMRI data repre-

sents a useful data-driven method that can identify and extract these

different functional networks, and further investigate inter- and intra-

network functional connectivity (Calhoun, Adali, Pearlson, &

Pekar, 2001; van de Ven, Formisano, Prvulovic, Roeder, &

Linden, 2004). This approach has been broadly applied to the domain

of neuroscience and has enjoyed significant success in unraveling the

large-scale functional organization in normal and abnormal brains

(Barkhof, Haller, & Rombouts, 2014; Buckner & Vincent, 2007; Fox &

Raichle, 2007). However, little is known, so far, about the relationship

of the gut microbiome with functional connectivity between and

within large-scale functional networks.

In the current work, we collected fecal samples from a large

and homogeneous sample of healthy young adults and used 16S

rRNA gene amplicon sequencing to assess gut microbial diversity

and enterotypes (Arumugam et al., 2011; Claesson, Clooney, &

O'Toole, 2017). Large-scale inter- and intranetwork functional con-

nectivity was computed using a combination of resting-state fMRI

data and ICA approach. In addition, Pittsburgh Sleep Quality Index

(PSQI) and a set of neuropsychological experimental paradigms

(i.e., 3-back, digit span, and Go/No-Go tasks) were employed to

assess sleep quality (Buysse, Reynolds 3rd, Monk, Berman, &

Kupfer, 1989) and core executive functions including working

memory (Owen, McMillan, Laird, & Bullmore, 2005), attention

(Groth-Marnat & Baker, 2003), and behavioral inhibition (Kaufman,

Ross, Stein, & Garavan, 2003). The focus was set on these behav-

iors due to their close associations with the gut microbiota

(Arnoriaga-Rodriguez et al., 2020; Cenit, Nuevo, Codoner-Franch,

Dinan, & Sanz, 2017; Grosicki, Riemann, Flatt, Valentino, &

Lustgarten, 2020).

By a combined analysis of these data, our objectives in this inves-

tigation were three-fold. First, we attempted to assess the relationship

between the gut microbiota and the brain by testing the associations

of inter- and intranetwork functional connectivity with gut microbial

diversity and enterotypes. Second, we aimed to investigate the poten-

tial associations of gut microbiota-linked functional connectivity with

sleep quality and executive functions. Finally, we sought to establish

the meditative role of these identified functional connectivity markers

in accounting for the relations between gut microbiota and behaviors.

A systematic flowchart of the study design is shown in Figure 1. We

hypothesized that the gut microbiota would be associated with
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functional network connectivity, which would mediate the relations

between gut microbiota and behaviors.

2 | MATERIALS AND METHODS

2.1 | Participants

A total of 157 healthy young adults were recruited by advertisement.

All participants met the inclusion criteria of Chinese Han, right hand-

edness, and within a restricted age range of 18–30 years, which corre-

sponds to a period after the completion of major neurodevelopment

and before the onset of neurodegenerative changes. Exclusion criteria

included neuropsychiatric or severe somatic disorder, a history of

alcohol or drug abuse, regular smokers (i.e., total number of cigarettes

>20), current medication (e.g., antibiotics or sedative hypnotics) within

a month, pregnancy, MRI contraindications, and a family history of

psychiatric illness among first-degree relatives. The MINI-International

Neuropsychiatric Interview (M.I.N.I.) and Alcohol Use Disorders Iden-

tification Test (AUDIT) were used in the process of excluding partici-

pants. The participants' dietary habit information was collected using

the Dietary Nutrition and Health Questionnaires (DNHQ), which is a

self-report questionnaire including 50 items. The total scores range

from 50 to 200 points, with lower score reflecting better dietary

habits. The participants' physical exercise was evaluated using the

International Physical Activity Questionnaires (IPAQ) (short self-

administrated format), which is a 4-item self-reported measure of

physical activity in last 7 days. This study was approved by the ethics

committee of The First Affiliated Hospital of Anhui Medical Univer-

sity. Written informed consent was obtained from all participants

after they had been given a complete description of the study.

Detailed data of the participants are listed in Table 1.

2.2 | Sleep quality assessment

Self-reported sleep habits over a 1-month time span were assessed

with the PSQI (Buysse, Reynolds 3rd, Monk, Berman, & Kupfer, 1989).

This index is a self-rated questionnaire and consists of 17 items with

the majority using a 4-point Likert-type scale. The PSQI provides a

comprehensive assessment of sleep quality by generating seven com-

ponents: subjective sleep quality, sleep latency, sleep duration,

F IGURE 1 Flowchart of the study design. FC, functional connectivity; fMRI, functional magnetic resonance imaging; ICA, independent
component analysis; PSQI, Pittsburgh Sleep Quality Index
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habitual sleep efficiency, sleep disturbances, use of sleep medication,

and daytime dysfunction. By summing component scores, a total

score of PSQI is generated ranging from 0 to 21, with a lower score

indicating greater sleep quality and a score of higher than five signify-

ing the presence of significant sleep disturbance (Buysse et al., 1989).

2.3 | Cognition assessment

The letter 3-back task was conducted on a computer to assess work-

ing memory (Owen, McMillan, Laird, & Bullmore, 2005) using E-Prime

2.0 (http://www.pstnet.com/eprime.cfm). During the task, each par-

ticipant viewed a series of letters that were presented sequentially

and the presentation time of each letter stimulus was 200 ms with an

inter-stimulus interval of 1,800 ms. Participants were instructed to

press a button on the right with their middle fingers if the letter that

appeared on the screen was identical to the one presented three let-

ters earlier, and otherwise to press a button on the left with their

index fingers. The task consisted of 60 trials. Before the formal test,

participants were verbally instructed and had a practice test to ensure

that they understood the task. The accuracy and mean reaction time

of correct responses were used as the indices of working memory

performance.

We also adopted digit span tasks to evaluate attention (Groth-

Marnat & Baker, 2003). All participants completed a digit span for-

ward task followed by a digit span backward task. The former begins

with a series of two digits orally presented to each participant con-

tinuing to a maximum of 13 digits. Participants were asked to verbally

repeat the digits. There were two trials per digit series. All participants

began with the first digit series (i.e., two digits), if repeated correctly,

the participant continued to the next one, otherwise performed the

second trial at the same digit series. The task was discontinued when

the participant failed in the second trial. The span is defined as the

maximum number of digits repeated by the participant. The digit span

backward task followed the same procedure, except that participants

verbally repeated the digits in reverse order.

The Go/No-Go task was performed on a computer to assess the

ability of behavioral inhibition (Kaufman, Ross, Stein, &

Garavan, 2003) using E-Prime 2.0. During the task, the letter X or Y

was presented at a frequency of 1 Hz on the screen. In “Go” condi-

tions, the current letter is different from the previous one and partici-

pants should respond quickly by pressing the button within 900 ms. In

“No-Go” conditions (10% of all trials), the current letter is the same as

the previous one and participants cannot press the button; if one

presses the button, it would be counted as an error. The Go/No-Go

task consisted of a practice test and a formal test. There were 20 trials

(15 “Go” trials and 5 “No-Go” trials) in the practice test. If a partici-

pant responds correctly in three “No-Go” trials, he or she can shift to

the formal test; otherwise, the participant needs to restart the prac-

tice test. The formal test was divided into two groups with 210 trials

in each group and 30 s break between the two groups. It took about

12 min for the Go/No-Go task. The accuracy in “No-Go” conditions

(Acc_No-Go) as well as the accuracy and mean reaction time of cor-

rect responses in “Go” conditions (Acc_Go and RT_Go) were used as

the indices of task performance.

2.4 | Fecal samples collection and gut microbiota
analysis

Fecal samples were collected in sterilized tubes and stored immedi-

ately in a −80�C freezer within 1 day before or after MRI examination.

Microbial genome DNA was extracted from the fecal samples using a

QIAamp DNA Stool Mini Kit (Qiagen Inc., Hilden, Germany). To con-

struct the Polymerase Chain Reaction (PCR)-based 16S rDNA

amplicon library for sequencing, PCR enrichment of the V4

TABLE 1 Demographic, gut microbial, and behavioral
characteristics of the participants

Characteristics Mean ± SD Range

Gender (female/male) 77/80 —

Age (years) 22.32 ± 2.42 18–28

Education (years) 15.78 ± 1.92 12–20

BMI (kg/m2) 21.44 ± 3.20 15.42–36.99

DNHQ 101.94 ± 10.43 77–127

IPAQ 2,128.36 ± 1,553.39 66–10,444

Alpha diversity

Sobs 264.52 ± 60.21 122–398

Ace 307.51 ± 67.12 162.93–471.62

Chao 310.23 ± 69.24 158.43–477.07

Shannon 3.06 ± 0.52 1.61–3.97

Simpson 0.13 ± 0.09 0.03–0.51

Enterotypes (P/R/B) 51/37/69

Total score of PSQI 3.66 ± 2.00 0–11

3-back task performance

Accuracy 0.72 ± 0.16 0.15–0.98

Reaction time (ms) 768.87 ± 175.24 230.23–1,179.93

Digit span task

performance

Digit span forward 8.49 ± 1.29 5–13

Digit span backward 6.57 ± 1.54 3–10

Go/No-Go task

performance

Acc_No-Go 0.59 ± 0.19 0.05–1.00

Acc_Go 0.95 ± 0.10 0.47–1.00

RT_Go (ms) 432.83 ± 69.57 256.73–591.64

FD (mm) 0.12 ± 0.05 0.04–0.40

Abbreviations: Acc_No-Go, accuracy in “No-Go” conditions; Acc_Go,
accuracy in “Go” conditions; B, bacteroides; BMI, body mass index;

DNHQ, Dietary Nutrition and Health Questionnaires; FD, frame-wise

displacement; IPAQ, International Physical Activity Questionnaires; P,

prevotella; PSQI, Pittsburgh Sleep Quality Index; R, ruminococcaceae;

RT_Go, mean reaction time of correct responses in “Go” conditions; SD,
standard deviation.
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hypervariable region of 16S rDNA was performed with the forward

primer 515F (50-GTGCCAGCMGCCGCGGTAA-30) and reverse primer

806R (50-GGACTACHVGGGTWTCTAAT-30). The qualified amplicon

mixture was then sequenced on the MiSeq platform with the PE250

sequencing strategy. Before the 16S rDNA data analysis, raw reads

were filtered to remove adaptors and low-quality and ambiguous

bases, and then paired-end reads were added to tags by the Fast

Length Adjustment of Short reads program (FLASH, v1.2.11; Magoc &

Salzberg, 2011). The tags were clustered into operational taxonomic

units (OTUs) with a cutoff value of 97% using UPARSE software

(v9.1.13) (Edgar, 2013) and chimera sequences were compared with

the Gold database using UCHIME (v4.2.40) (Edgar, Haas, Clemente,

Quince, & Knight, 2011) to detect. Then, the representative sequence

from each OTU cluster was obtained. These OTU representative

sequences were taxonomically classified using Ribosomal Database

Project (RDP) Classifier (v.2.2) (Q. Wang, Garrity, Tiedje, & Cole, 2007)

with a minimum confidence threshold of 0.8, and the training data-

base was the Greengene Database (v201305) (DeSantis et al., 2006).

The USEARCH_global (Edgar, 2010) was used to compare all tags back

to OTU to get the OTU abundance statistics table of each sample.

Alpha diversity was assessed using the species richness indices

(Sobs, Ace and Chao) and species diversity indices (Shannon and

Simpson that reflect both species richness and species evenness;

Keylock, 2005; Faith, 1992), which were calculated by MOTHUR

(v1.31.2) (Schloss et al., 2009) and QIIME (v1.8.0) (Caporaso

et al., 2010) at the OTU level. Of note, there were significant correla-

tions between these alpha diversity indices (Table S1). Sample entero-

typing was performed based on OTU-derived genus abundance

matrix as described in the original publication (Arumugam

et al., 2011). Specifically, samples were clustered using Jensen–

Shannon distance and partitioning around medoid (PAM) clustering.

Calinski–Harabasz (CH) index was used to assess optimal number of

clusters. The silhouette validation technique was utilized to assess the

robustness of clusters.

2.5 | MRI data acquisition

MRI scans were obtained using a 3.0-Tesla MR system (Discovery

MR750w, General Electric, Milwaukee, WI) with a 24-channel head

coil. Earplugs were used to reduce scanner noise, and tight but com-

fortable foam padding was used to minimize head motion. High-

resolution 3D T1-weighted structural images were acquired by

employing a brain volume (BRAVO) sequence with the following

parameters: repetition time (TR) = 8.5 ms; echo time (TE) = 3.2 ms;

inversion time (TI) = 450 ms; flip angle (FA) = 12�; field of view

(FOV) = 256 mm × 256 mm; matrix size = 256 × 256; slice

thickness = 1 mm, no gap; 188 sagittal slices; and acquisition

time = 296 s. Resting-state BOLD fMRI data were acquired using a

gradient-echo single-shot echo planar imaging (GRE-SS-EPI) sequence

with the following parameters: TR = 2,000 ms; TE = 30 ms; FA = 90�;

FOV = 220 mm × 220 mm; matrix size = 64 × 64; slice

thickness = 3 mm, slice gap = 1 mm; 35 interleaved axial slices;

185 volumes; and acquisition time = 370 s. Before the scanning, all

subjects were instructed to keep their eyes closed, relax, move as little

as possible, think of nothing in particular, and not fall asleep during

the scans. During and after the scanning, we asked subjects whether

they had fallen asleep to confirm that none of them had done so. All

MR images were visually inspected to ensure that only images with-

out visible artifacts were included in subsequent analyses.

2.6 | fMRI data preprocessing

Resting-state BOLD data were preprocessed using Statistical Para-

metric Mapping software (SPM12, http://www.fil.ion.ucl.ac.uk/spm)

and Data Processing & Analysis for Brain Imaging (DPABI, http://

rfmri.org/dpabi; Yan, Wang, Zuo, & Zang, 2016). The first 10 volumes

for each participant were discarded to allow the signal to reach equi-

librium and the participants to adapt to the scanning noise. The

remaining volumes were corrected for the acquisition time delay

between slices. Then, realignment was performed to correct the

motion between time points. Head motion parameters were com-

puted by estimating the translation in each direction and the angular

rotation on each axis for each volume. All participants' BOLD data

were within the defined motion thresholds (i.e., translational or rota-

tional motion parameters less than 2 mm or 2�). We also calculated

frame-wise displacement (FD), which indexes the volume-to-volume

changes in head position. In the normalization step, individual struc-

tural images were firstly co-registered with the mean functional

image; then the transformed structural images were segmented and

normalized to the Montreal Neurological Institute (MNI) space using a

high-level nonlinear warping algorithm, that is, the diffeomorphic ana-

tomical registration through the exponentiated Lie algebra (DARTEL)

technique (Ashburner, 2007). Finally, each filtered functional volume

was spatially normalized to MNI space using the deformation parame-

ters estimated during the above step and resampled into a 3-mm

cubic voxel. After spatial normalization, all data sets were smoothed

with a Gaussian kernel of 6 × 6 × 6 mm3 full-width at half maximum.

2.7 | Independent component analysis

ICA was conducted to parcellate the preprocessed fMRI data with the

GIFT toolbox (mialab.mrn.org/software/gift/) and the number of inde-

pendent components (N = 26) was estimated automatically by the

software using the minimum description length criteria. Spatial ICA

decomposes the participant data into linear mixtures of spatially inde-

pendent components that exhibit a unique time course profile. This

was achieved by using two data reduction steps. First, principal com-

ponent analysis was applied to reduce the subject-specific data into

39 principle components. Next, reduced data of all subjects were

concatenated across time and decomposed into 26 independent com-

ponents using the infomax algorithm. To ensure estimation stability,

the infomax algorithm was repeated 20 times in ICASSO (http://

research.ics.tkk.fi/ica/icasso/), and the most central run was selected
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and analyzed further. Finally, participant specific spatial maps and time

courses were obtained using the GICA back reconstruction approach.

We identified as functional networks several independent com-

ponents that had peak activations in gray matter, showed low spatial

overlap with known vascular, ventricular, motion, and susceptibility

artifacts, and exhibited primarily low frequency power. This selection

procedure resulted in 14 functional networks out of the 26 indepen-

dent components obtained (Figure 2): anterior and posterior default

mode networks (aDMN and pDMN), executive control network

(ECN), left and right frontoparietal networks (lFPN and rFPN), salience

network (SN), dorsal and ventral attention networks (DAN and VAN),

dorsal and ventral sensorimotor networks (dSMN and vSMN), audi-

tory network (AN), medial, lateral, and posterior visual networks

(mVN, lVN, and pVN).

Before internetwork functional connectivity calculation, the fol-

lowing additional postprocessing steps were performed on the time

courses of selected functional networks: (1) detrending linear, qua-

dratic, and cubic trends; (2) despiking detected outliers; and (3) low-

pass filtering with a cut-off frequency of 0.15 Hz. Then, internetwork

functional connectivity was estimated as the Pearson correlation coef-

ficients between pairs of time courses of the functional networks,

resulting in a symmetric 14 × 14 correlation matrix for each subject.

Finally, correlations were transformed to z-scores using Fisher's trans-

formation to improve the normality. Intranetwork connectivity was

examined via the spatial maps, indexing the contribution of the time

course to each voxel comprising a given component.

2.8 | Statistical analysis

The statistical descriptive analyses of demographic, gut microbial, and

behavioral data were conducted using the SPSS 23.0 software pack-

age (SPSS, Chicago, IL). We adopted a multi-stage approach to analyze

the data of gut microbiota (alpha diversity and enterotypes), neuroim-

aging (inter- and intranetwork functional connectivity), and behaviors

(sleep quality and executive functions). First, we tested for the gut

microbiota-brain associations by performing partial correlation ana-

lyses between alpha diversity and functional connectivity with age,

sex, and FD as nuisance covariates, followed by performance of group

comparisons in functional connectivity across enterotypes using one-

way analysis of variance (ANOVA). For internetwork functional analy-

sis, multiple comparisons were corrected by false discovery rate (FDR)

with a corrected significance level of p <.05. For intranetwork func-

tional analysis, all participants' spatial maps for each functional

F IGURE 2 Spatial maps of 14 selected functional networks. aDMN, anterior default mode network; AN, auditory network; dSMN, dorsal
sensorimotor network; DAN, dorsal attention network; ECN, executive control network; L, left; lFPN, left frontoparietal network; lVN, lateral
visual network; mVN, medial visual network; pDMN, posterior default mode network; pVN, posterior visual network; R, right; rFPN, right
frontoparietal network; SN, salience network; VAN, ventral attention network; vSMN, ventral sensorimotor network
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network were initially entered into a random-effect one-sample t-test.

Brain regions were considered to be within each network if they met

a height threshold of p <.05 corrected for multiple comparisons using

a family-wise error (FWE) and an extent threshold of 100 voxels.

Next, we performed the above-described analyses (correlations

followed by group comparisons) in a voxel-wise manner within each

network. Multiple comparisons were corrected using the cluster-level

FWE method, resulting in a cluster defining threshold of p = 0.001

and a corrected cluster significance of p <.05. Second, for inter- and

intranetwork functional connectivity showing correlations with alpha

diversity or differences across enterotypes, we further examined their

associations with behavioral variables using partial correlations

adjusting for age, sex and FD. Finally, to further test whether the rela-

tionship between gut microbiota and behaviors was mediated by

functional connectivity, mediation analysis was performed using the

PROCESS macro (http://www.processmacro.org/). In the mediation

models, all paths were reported as unstandardized ordinary least

squares regression coefficients, namely, total effect of X on

Y (c) = indirect effect of X on Y through M (a × b) + direct effect of

X on Y (c0). The significance analysis was based on 10,000 bootstrap

realizations and a significant indirect effect is indicated when the

bootstrap 95% confidence interval (CI) does not include zero. Here,

only variables that demonstrated a significant association with others

were considered independent (gut microbiota), dependent (behaviors),

or mediating (functional connectivity) variables in the mediation analy-

sis. Age, sex, and FD were considered nuisance variables.

2.9 | Sensitivity analysis

To test the possible effect of body mass index (BMI) on our results,

we included BMI as an additional nuisance covariate in the analyses

of gut microbiota-brain associations. To examine the possibility that

our main results were not influenced by dietary habit and physical

exercise, we also included DNHQ and IPAQ scores as additional nui-

sance covariates in the analyses.

3 | RESULTS

3.1 | Associations between microbial diversity,
functional connectivity, and behaviors

Pairwise correlation patterns between functional networks are illus-

trated in Figure 3a. Both positive and negative internetwork func-

tional connectivity were observed. Correlation analyses revealed

significant correlations between Simpson index and internetwork

functional connectivity (p <.05, FDR corrected; Figure 3b). Specifically,

Simpson index was positively correlated with functional connectivity

between pDMN and rFPN (t = 2.47, p = .0145), between pDMN and

AN (t = 2.68, p = .0082), between rPFN and DAN (t = 3.50, p = .0006),

between rPFN and dSMN (t = 2.69, p = .0081), between rPFN and

mVN (t = 3.08, p = .0024), and between rPFN and lVN (t = 2.90,

p = .0044), as well as negatively correlated with connectivity between

F IGURE 3 (a) Internetwork functional connectivity matrix. Pairwise correlations between functional networks were averaged across subjects.

Hot colors represent positive functional connectivity and cool colors represent negative functional connectivity. (b) Associations between
Simpson index and internetwork functional connectivity. Line thickness denotes magnitude of the correlation coefficients between Simpson
index and internetwork functional connectivity, with hot and cool colors representing positive and negative correlations, respectively. aDMN,
anterior default mode network; AN, auditory network; DAN, dorsal attention network; dSMN, dorsal sensorimotor network; ECN, executive
control network; lFPN, left frontoparietal network; lVN, lateral visual network; mVN, medial visual network; pDMN, posterior default mode
network; pVN, posterior visual network; rFPN, right frontoparietal network; SN, salience network; VAN, ventral attention network; vSMN, ventral
sensorimotor network
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aDMN and lFPN (t = −2.57, p = .0111), between ECN and lVN

(t = −2.46, p = .0150), between lFPN and rFPN (t = −2.75, p = .0067),

between DAN and pVN (t = −2.98, p = .0033), and between dSMN

and pVN (t = −2.65, p = .0089). However, there were no significant

correlations between internetwork functional connectivity and other

microbial diversity indices.

With regard to sleep quality, total score of PSQI was found to be

positively correlated with pDMN-AN connectivity (pr = .188, p = .020;

Figure 4a) and negatively correlated with lFPN-rFPN connectivity

(pr = −.181, p = .024; Figure 4b). Further mediation analyses revealed

that pDMN-AN (indirect effect = 1.0161, standard error

[SE] = 0.5654, 95% CI: 0.2068, 2.6003) and lFPN-rFPN (indirect

effect = 1.0103, SE = 0.6048, 95% CI: 0.1653, 2.9731) connectivity

mediated the relationship between Simpson index and total score

of PSQI (Figure 5a,b). In term of working memory, there was a sig-

nificant negative correlation between rFPN-mVN connectivity and

3-back reaction time (pr = −.171, p = .034) (Figure 4c). Likewise,

rFPN-mVN connectivity mediated the relationship between

Simpson index and 3-back reaction time (indirect effect = −86.5227,

SE = 49.2462, 95% CI: −225.4941, −17.6657; Figure 5c). With

respect to attention, we found a significant positive correlation

between DAN-pVN connectivity and digit span forward (pr = .162,

p = .045; Figure 4d). Further mediation analysis showed that DAN-

pVN connectivity mediated the relationship between Simpson

index and digit span forward (indirect effect = −0.6029,

SE = 0.3796, 95% CI: −1.6530, −0.0498; Figure 5d).

Voxel-wise intranetwork functional connectivity analyses dem-

onstrated significant positive correlations between Ace index and

intranetwork connectivity in the bilateral lateral prefrontal cortex

(LPFC) (left: cluster size = 47 voxels, peak MNI coordinate x/y/

z = −45/48/0, peak t = 5.02; right: cluster size = 45 voxels, peak

MNI coordinate x/y/z = 51/27/27, peak t = 5.28) of the ECN

(Figure 6a), between Chao index and intranetwork connectivity in

the bilateral LPFC (left: cluster size = 37 voxels, peak MNI coordi-

nate x/y/z = −45/48/0, peak t = 4.70; right: cluster size = 34 voxels,

peak MNI coordinate x/y/z = 54/27/27, peak t = 4.85) of the ECN

(Figure 6b) and between Sobs index and intranetwork connectivity

in the bilateral LPFC (left: cluster size = 35 voxels, peak MNI coordi-

nate x/y/z = −45/48/0, peak t = 4.85; right: cluster size = 35 voxels,

peak MNI coordinate x/y/z = 54/27/27, peak t = 4.79) of the ECN

(Figure 6c), as well as a significant negative correlation between

Shannon index and intranetwork connectivity in the right angular

gyrus (AG) (cluster size = 30 voxels, peak MNI coordinate x/y/

z = 36/−63/39, peak t = −4.26) of the rFPN (Figure 6d; p <.05,

F IGURE 4 Correlations between
internetwork functional connectivity and
behaviors. AN, auditory network; DAN,
dorsal attention network; lFPN, left
frontoparietal network; mVN, medial
visual network; pDMN, posterior default
mode network; PSQI, Pittsburgh Sleep
Quality Index; pVN, posterior visual
network; rFPN, right frontoparietal
network
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cluster-level FWE corrected). However, there were no significant

correlations between intranetwork functional connectivity and

behavioral variables.

3.2 | Associations between enterotypes, functional
connectivity, and behaviors

All samples were clustered into three well-matched enterotypes

(Figure 7a and Table 2). Prevotella, Ruminococcaceae, and Bacteroides

genera were considered as enterotype identifiers (P-, R-, and B-

enterotypes) as they showed the largest variation in abundance, coin-

ciding with prior studies (Arumugam et al., 2011; Falony et al., 2016;

Vieira-Silva et al., 2016).

One-way ANOVA revealed significant differences in intranetwork

connectivity in the left orbitofrontal cortex (OFC; cluster size = 26

voxels, peak MNI coordinate x/y/z = −33/39/−9, peak F = 9.58) of

the lFPN across three enterotypes (Figure 7b; p <.05, cluster-level

FWE corrected). The post hoc pairwise comparisons demonstrated

that participants with P- and R-enterotypes showed increased intra-

network connectivity in the left OFC of the lFPN compared to those

with B-enterotype (Figure 7c). Correlation analysis with behaviors

brought forward an observation of a significant positive correlation

between RT_Go and intranetwork connectivity in the left OFC

(pr = .163, p = .044) (Figure 7d). Further mediation analysis showed

that intranetwork connectivity in the left OFC mediated the relation-

ship between enterotypes and RT_Go (indirect effect = −5.6488,

SE = 2.8203, 95% CI: −12.4103, −0.9175; Figure 7e). However, no

significant differences in internetwork functional connectivity were

observed across three enterotypes.

3.3 | Sensitivity analysis

After additionally adjusting for BMI, our main results were pre-

served, that is, the correlations between alpha diversity and func-

tional connectivity (Table S2) and the differences in intranetwork

connectivity across enterotypes (F = 12.501, p <.001) remained

unchanged. Likewise, by including DNHQ and IPAQ scores as addi-

tional nuisances, the correlations between alpha diversity and func-

tional connectivity (Table S3) and the differences in intranetwork

connectivity across enterotypes (F = 12.137, p <.001) remained

unaltered, suggesting that dietary habit and physical exercise did

not influence our results.

F IGURE 5 Gut microbial diversity-internetwork functional connectivity-behaviors associations. (a) and (b) The mediation analyses between
Simpson index (X) and total score of PSQI (Y), with pDMN-AN and lFPN-rFPN connectivity as the mediators (M). (c) The mediation analysis
between Simpson index (X) and 3-back reaction time (Y), with rFPN-mVN connectivity as the mediator. (d) The mediation analysis between
Simpson index (X) and digit span forward (Y), with DAN-pVN connectivity as the mediator. Path coefficients with p values (*p <.05 and **p <.01,
respectively). AN, auditory network; DAN, dorsal attention network; lFPN, left frontoparietal network; mVN, medial visual network; pDMN,
posterior default mode network; PSQI, Pittsburgh Sleep Quality Index; pVN, posterior visual network; rFPN, right frontoparietal network
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4 | DISCUSSION

The present study opens new perspectives by being the first to assess

the relationship among gut microbiome, large-scale functional net-

work connectivity and behaviors in a large sample of healthy young

adults. We found significant associations of gut microbial diversity

with internetwork functional connectivity between the executive con-

trol (ECN, lFPN, rFPN, and DAN), default mode (aDMN and pDMN),

and sensorimotor (dSMN, AN, mVN, lVN, and pVN) systems, indicat-

ing widespread but nonspecific influences of microbial diversity on

functional connectivity between large-scale functional networks.

Moreover, sleep quality, working memory and attention were related

to some of the microbial diversity-sensitive internetwork connectivity,

which could serve as mediators of the associations between microbial

diversity and these behaviors. In addition, gut microbial diversity

showed correlations with intranetwork functional connectivity of the

ECN and rFPN. Our data also demonstrated that compared to B-, P-,

and R-enterotypes exhibited increased intranetwork connectivity of

the lFPN, which could mediate the association between enterotypes

and executive function. These findings suggest a pronounced and spe-

cific effect of enterotypes on functional connectivity within the exec-

utive control system.

There have been prior efforts to examine the associations

between gut microbiome and brain imaging measures in healthy and

clinical conditions. Among them, only two resting-state fMRI studies

attempted to uncover the relationship between gut microbiome and

functional connectivity of large-scale brain networks. Reports of Gao

et al. (2019) showed that gut microbial diversity was associated with

functional connectivity of some canonical resting-state functional net-

works in healthy infants. In that study, the construction of functional

networks was based on a hypothesis-driven seed-based approach,

which lacks a global and independent view because the seed regions

F IGURE 6 Correlations between gut microbial diversity and intranetwork functional connectivity. AG, angular gyrus; ECN, executive control
network; L, left; LPFC, lateral prefrontal cortex; R, right; rFPN, right frontoparietal network
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must be specified a priori. This may introduce potential selection

biases that might have influenced the results. This problem can be

partially overcome by the data-driven ICA approach, which auto-

matically separates the signals of the whole brain into statistically

independent components, resulting in spatially nonoverlapping

functional networks (Damoiseaux et al., 2006; van de Ven

et al., 2004). By means of the ICA approach, Wang et al. identified a

link between gut microbiota and DMN topological measures in

patients with end-stage renal disease (Y. F. Wang et al., 2019).

However, the investigators focused solely on DMN and place no

emphasis on other functional networks. Thus, there is still a paucity

of research investigating the effects of gut microbiota on different

large-scale functional networks in an unbiased fashion. In addition,

converging evidence has established the relations between gut

microbiota and multiple human behaviors including sleep quality,

working memory, and attention (Arnoriaga-Rodriguez et al., 2020;

Cenit, Nuevo, Codoner-Franch, Dinan, & Sanz, 2017; Grosicki, Rie-

mann, Flatt, Valentino, & Lustgarten, 2020). In the current study,

with the availability of fecal samples, resting-state fMRI and a set

of sleep and cognitive assessments comes the ability to further

F IGURE 7 Associations between enterotypes, functional connectivity and behaviors. (a) All samples were clustered into three enterotypes.
(b) Intranetwork functional connectivity in the left OFC of the lFPN differed across enterotypes. (c) The violin plot shows the distribution and
between-enterotype differences in intranetwork connectivity. (d) The scatter plot shows the correlation between intranetwork functional
connectivity and RT-Go. (e) The mediation analysis between enterotypes (X) and RT-Go (Y), with intranetwork connectivity in the left OFC as the
mediator. Path coefficients with p values (*p <.05 and **p <.01, respectively). B, bacteroides; L, left; lFPN, left frontoparietal network; OFC,
orbitofrontal cortex; P, prevotella; PC, principal component; R, right; R, ruminococcaceae; RT-Go, mean reaction time of correct responses in “Go”
conditions

TABLE 2 Demographic
characteristics of the participants with
three enterotypes

Characteristics P-enterotype R-enterotype B-enterotype Statistics p value

Number of subjects 51 37 69

Gender (female/male) 24/27 21/16 32/37 χ2 = 1.16 .561a

Age (years) 22.55 ± 2.39 21.78 ± 2.27 22.45 ± 2.49 F = 1.24 .291b

Education (years) 15.96 ± 1.93 15.54 ± 1.86 15.78 ± 1.96 F = 0.51 .602b

BMI (kg/m2) 21.76 ± 3.95 21.25 ± 2.47 21.30 ± 2.93 F = 0.39 .680b

FD (mm) 0.13 ± 0.07 0.12 ± 0.04 0.12 ± 0.04 F = 1.22 .299b

Note: All values are expressed as mean ± standard deviation.

Abbreviations: B, bacteroides; BMI, body mass index; FD, frame-wise displacement; P, prevotella; R,

ruminococcaceae.
aThe p value was obtained by Pearson Chi-square test.
bThe p value was obtained by one-way ANOVA.
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disentangle the gut microbiota-functional network connectivity-

behavior relationships in young adulthood.

The executive control system, anchored mainly in the prefrontal

and lateral parietal regions, is thought to be involved in a variety of

cognitive-control processes related to goal-directed behaviors (Cole &

Schneider, 2007; Xin & Lei, 2015), via complex interactions between

its core components (intranetwork connectivity) and with other sys-

tems (internetwork connectivity). The observed strong effects of gut

microbial diversity and enterotypes on inter- and intranetwork con-

nectivity of the executive control system (ECN, lFPN, rFPN, and DAN)

highlight its prominent involvement in the microbiota-gut-brain axis.

Meanwhile, our data showed that functional connectivity of the

default mode (aDMN and pDMN) and sensorimotor (dSMN, AN,

mVN, lVN, and pVN) systems was also preferentially affected by the

microbial diversity. The default mode system, primarily comprising

medial prefrontal and medial parietal cortices, is implicated in a range

of internally directed cognition such as emotional processing and self-

referential mental activity (Buckner, Andrews-Hanna, &

Schacter, 2008; Raichle, 2015). The sensorimotor system consists of

widely distributed auditory, visual and sensorimotor cortices, which

are engaged in sensory and motor processes. Our findings stand in

accordance with previous studies that reported links between gut

microbiota and resting-state functional connectivity of the two sys-

tems (Curtis et al., 2019; Gao et al., 2019; Y. F. Wang et al., 2019).

The mediation analyses further revealed that functional connec-

tivity of some large-scale brain networks mediated the relations of gut

microbiota with sleep quality, working memory, and attention. It is

noteworthy that working memory and attention are core executive

functions that may be influenced by sleep (Diamond, 2013),

suggesting an intimate link between these behaviors. The current

findings not only may add important context to the growing literature

on the effects of gut microbiome on human behaviors by yielding

insights into the potential neurobiological mechanisms underlying

such effects, but also may be of high clinical relevance by exposing

the gut microbiota as a promising target for treating and preventing

brain disorders characterized by deficits in sleep or executive

functions.

There are several limitations that should be mentioned. First,

given that our study sample was selected from a group of educated

subjects with a limited age range of 18–30 years, these findings might

not be representative of the general population. Further research in

participants with broader age and educational ranges may be

warranted to validate our preliminary findings. The second limitation

is the cross-sectional nature of the design. Longitudinal work will be

required to determine causal links between the gut microbiome and

the brain. Third, although we identified meaningful functional net-

works from a range of ICA-derived components according to a strict

selection procedure, there are possible biases that might have

influenced our interpretation. For example, some nontypical but phys-

iologically relevant functional networks might have not been consid-

ered. Finally, we focused on gut microbial diversity and enterotypes

because they are the most frequently used global parameters to char-

acterize gut microbial community profiles. Other indices (e.g., relative

abundance of the bacteria) derived from 16S analysis should be calcu-

lated to further examine the gut microbiota-brain relationship in the

future.

In conclusion, the results of this study provide first empirical evi-

dence that the gut microbiota can modulate large-scale inter- and

intranetwork functional connectivity (especially the executive control

system) in young adulthood. Moreover, some functional network con-

nectivity may act as mediators of the effects of gut microbiota on

sleep and executive functions. These findings might expand existing

biological knowledge concerning the gut microbiota-brain-behavior

relationships from the perspective of large-scale functional network

organization. More generally, they may ultimately inform a transla-

tional conceptualization of how to improve sleep quality and execu-

tive functions through the regulation of gut microbiota.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on

request from the corresponding author. The data are not publicly

available due to privacy or ethical restrictions.

ORCID

Jiajia Zhu https://orcid.org/0000-0001-7343-6241

Yongqiang Yu https://orcid.org/0000-0001-8977-2215

REFERENCES

Agus, A., Planchais, J., & Sokol, H. (2018). Gut microbiota regulation of

tryptophan metabolism in health and disease. Cell Host & Microbe, 23

(6), 716–724. https://doi.org/10.1016/j.chom.2018.05.003

Arnoriaga-Rodriguez, M., Mayneris-Perxachs, J., Burokas, A., Contreras-

Rodriguez, O., Blasco, G., Coll, C., … Fernandez-Real, J. M. (2020).

Obesity impairs short-term and working memory through gut micro-

bial metabolism of aromatic amino acids. Cell Metabolism, 32(4),

548–560 e547. https://doi.org/10.1016/j.cmet.2020.09.002

Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R.,

… Bork, P. (2011). Enterotypes of the human gut microbiome. Nature,

473(7346), 174–180. https://doi.org/10.1038/nature09944
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm.

NeuroImage, 38(1), 95–113. https://doi.org/10.1016/j.neuroimage.

2007.07.007

Bagga, D., Aigner, C. S., Reichert, J. L., Cecchetto, C., Fischmeister, F. P. S.,

Holzer, P., … Schopf, V. (2019). Influence of 4-week multi-strain probi-

otic administration on resting-state functional connectivity in healthy

volunteers. European Journal of Nutrition, 58(5), 1821–1827. https://
doi.org/10.1007/s00394-018-1732-z

Bagga, D., Reichert, J. L., Koschutnig, K., Aigner, C. S., Holzer, P.,

Koskinen, K., … Schöpf, V. (2018). Probiotics drive gut microbiome

triggering emotional brain signatures. Gut Microbes, 9(6), 486–496.
https://doi.org/10.1080/19490976.2018.1460015

Barkhof, F., Haller, S., & Rombouts, S. A. (2014). Resting-state functional

MR imaging: A new window to the brain. Radiology, 272(1), 29–49.
https://doi.org/10.1148/radiol.14132388

Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's

default network: Anatomy, function, and relevance to disease. Annals

of the new York Academy of Sciences, 1124, 1–38. https://doi.org/10.
1196/annals.1440.011

Buckner, R. L., & Vincent, J. L. (2007). Unrest at rest: Default activity and

spontaneous network correlations. NeuroImage, 37(4), 1091–1096;
discussion 1097–1099. https://doi.org/10.1016/j.neuroimage.2007.

01.010

CAI ET AL. 3099

https://orcid.org/0000-0001-7343-6241
https://orcid.org/0000-0001-7343-6241
https://orcid.org/0000-0001-8977-2215
https://orcid.org/0000-0001-8977-2215
https://doi.org/10.1016/j.chom.2018.05.003
https://doi.org/10.1016/j.cmet.2020.09.002
https://doi.org/10.1038/nature09944
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1007/s00394-018-1732-z
https://doi.org/10.1007/s00394-018-1732-z
https://doi.org/10.1080/19490976.2018.1460015
https://doi.org/10.1148/radiol.14132388
https://doi.org/10.1196/annals.1440.011
https://doi.org/10.1196/annals.1440.011
https://doi.org/10.1016/j.neuroimage.2007.01.010
https://doi.org/10.1016/j.neuroimage.2007.01.010


Buysse, D. J., Reynolds, C. F., 3rd, Monk, T. H., Berman, S. R., &

Kupfer, D. J. (1989). The Pittsburgh sleep quality index: A new instru-

ment for psychiatric practice and research. Psychiatry Research, 28(2),

193–213. https://doi.org/10.1016/0165-1781(89)90047-4
Keylock, C. J. (2005). Simpson diversity and the Shannon–Wiener index as

special cases of a generalized entropy. Oikos, 109(1), 203–207.
Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A method

for making group inferences from functional MRI data using indepen-

dent component analysis. Human Brain Mapping, 14(3), 140–151.
https://doi.org/10.1002/hbm.1048

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D.,

Costello, E. K., … Knight, R. (2010). QIIME allows analysis of high-

throughput community sequencing data. Nature Methods, 7(5),

335–336. https://doi.org/10.1038/nmeth.f.303

Cenit, M. C., Nuevo, I. C., Codoner-Franch, P., Dinan, T. G., & Sanz, Y.

(2017). Gut microbiota and attention deficit hyperactivity disorder:

New perspectives for a challenging condition. European Child & Adoles-

cent Psychiatry, 26(9), 1081–1092. https://doi.org/10.1007/s00787-
017-0969-z

Claesson, M. J., Clooney, A. G., & O'Toole, P. W. (2017). A clinician's guide

to microbiome analysis. Nature Reviews Gastroenterology & Hepatology,

14(10), 585–595. https://doi.org/10.1038/nrgastro.2017.97
Cole, M. W., & Schneider, W. (2007). The cognitive control network: Inte-

grated cortical regions with dissociable functions. NeuroImage, 37(1),

343–360. https://doi.org/10.1016/j.neuroimage.2007.03.071

Cryan, J. F., O'Riordan, K. J., Cowan, C. S. M., Sandhu, K. V.,

Bastiaanssen, T. F. S., Boehme, M., … Dinan, T. G. (2019). The

microbiota-gut-brain Axis. Physiological Reviews, 99(4), 1877–2013.
https://doi.org/10.1152/physrev.00018.2018

Cryan, J. F., O'Riordan, K. J., Sandhu, K., Peterson, V., & Dinan, T. G.

(2020). The gut microbiome in neurological disorders. Lancet Neurol-

ogy, 19(2), 179–194. https://doi.org/10.1016/S1474-4422(19)

30356-4

Curtis, K., Stewart, C. J., Robinson, M., Molfese, D. L., Gosnell, S. N.,

Kosten, T. R., … Salas, R. (2019). Insular resting state functional con-

nectivity is associated with gut microbiota diversity. The European

Journal of Neuroscience, 50(3), 2446–2452. https://doi.org/10.1111/
ejn.14305

Dalile, B., Van Oudenhove, L., Vervliet, B., & Verbeke, K. (2019). The role

of short-chain fatty acids in microbiota-gut-brain communication.

Nature Reviews. Gastroenterology & Hepatology, 16(8), 461–478.
https://doi.org/10.1038/s41575-019-0157-3

Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J.,

Smith, S. M., & Beckmann, C. F. (2006). Consistent resting-state net-

works across healthy subjects. Proceedings of the National Academy of

Sciences of the United States of America, 103(37), 13848–13853.
https://doi.org/10.1073/pnas.0601417103

De Luca, M., Beckmann, C. F., De Stefano, N., Matthews, P. M., &

Smith, S. M. (2006). fMRI resting state networks define distinct modes

of long-distance interactions in the human brain. Neuroimage, 29(4),

1359–1367. https://doi.org/10.1016/j.neuroimage.2005.08.035

De Santis, S., Moratal, D., & Canals, S. (2019). Radiomicrobiomics: Advanc-

ing along the gut-brain Axis through big data analysis. Neuroscience,

403, 145–149. https://doi.org/10.1016/j.neuroscience.2017.11.055
DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L.,

Keller, K., … Andersen, G. L. (2006). Greengenes, a chimera-checked

16S rRNA gene database and workbench compatible with ARB.

Applied and Environmental Microbiology, 72(7), 5069–5072. https://doi.
org/10.1128/AEM.03006-05

Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64,

135–168. https://doi.org/10.1146/annurev-psych-113011-143750
Dinan, T. G., & Cryan, J. F. (2017). Gut instincts: Microbiota as a key regu-

lator of brain development, ageing and neurodegeneration. The Journal

of Physiology, 595(2), 489–503. https://doi.org/10.1113/JP273106

Dodd, D., Spitzer, M. H., Van Treuren, W., Merrill, B. D., Hryckowian, A. J.,

Higginbottom, S. K., … Sonnenburg, J. L. (2017). A gut bacterial path-

way metabolizes aromatic amino acids into nine circulating metabo-

lites. Nature, 551(7682), 648–652. https://doi.org/10.1038/

nature24661

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than

BLAST. Bioinformatics, 26(19), 2460–2461. https://doi.org/10.1093/
bioinformatics/btq461

Edgar, R. C. (2013). UPARSE: Highly accurate OTU sequences from micro-

bial amplicon reads. Nature Methods, 10(10), 996–998. https://doi.

org/10.1038/nmeth.2604

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011).

UCHIME improves sensitivity and speed of chimera detection. Bioin-

formatics, 27(16), 2194–2200. https://doi.org/10.1093/

bioinformatics/btr381

Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity.

Biological Conservation, 61(1), 1–10.
Falony, G., Joossens, M., Vieira-Silva, S., Wang, J., Darzi, Y., Faust, K., …

Raes, J. (2016). Population-level analysis of gut microbiome variation. Sci-

ence, 352(6285), 560–564. https://doi.org/10.1126/science.aad3503
Fernandez-Real, J. M., Serino, M., Blasco, G., Puig, J., Daunis-i-Estadella, J.,

Ricart, W., … Portero-Otin, M. (2015). Gut microbiota interacts with

brain microstructure and function. The Journal of Clinical Endocrinology

and Metabolism, 100(12), 4505–4513. https://doi.org/10.1210/jc.

2015-3076

Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity

observed with functional magnetic resonance imaging. Nature Reviews.

Neuroscience, 8(9), 700–711. https://doi.org/10.1038/nrn2201
Fulling, C., Dinan, T. G., & Cryan, J. F. (2019). Gut microbe to brain signal-

ing: What happens in Vagus. Neuron, 101(6), 998–1002. https://doi.
org/10.1016/j.neuron.2019.02.008

Fung, T. C., Olson, C. A., & Hsiao, E. Y. (2017). Interactions between the

microbiota, immune and nervous systems in health and disease. Nature

Neuroscience, 20(2), 145–155. https://doi.org/10.1038/nn.4476
Furness, J. B. (2012). The enteric nervous system and neuro-

gastroenterology. Nature Reviews. Gastroenterology & Hepatology, 9(5),

286–294. https://doi.org/10.1038/nrgastro.2012.32
Gao, W., Salzwedel, A. P., Carlson, A. L., Xia, K., Azcarate-Peril, M. A.,

Styner, M. A., … Knickmeyer, R. C. (2019). Gut microbiome and brain

functional connectivity in infants—A preliminary study focusing on the

amygdala. Psychopharmacology, 236(5), 1641–1651. https://doi.org/

10.1007/s00213-018-5161-8

Grosicki, G. J., Riemann, B. L., Flatt, A. A., Valentino, T., & Lustgarten, M. S.

(2020). Self-reported sleep quality is associated with gut microbiome

composition in young, healthy individuals: A pilot study. Sleep Medi-

cine, 73, 76–81. https://doi.org/10.1016/j.sleep.2020.04.013
Groth-Marnat, G., & Baker, S. (2003). Digit span as a measure of everyday

attention: A study of ecological validity. Perceptual and Motor Skills, 97

(3 Pt 2), 1209–1218. https://doi.org/10.2466/pms.2003.97.3f.1209

Johnson, K. V., & Foster, K. R. (2018). Why does the microbiome affect

behaviour? Nature Reviews. Microbiology, 16(10), 647–655. https://doi.
org/10.1038/s41579-018-0014-3

Kaufman, J. N., Ross, T. J., Stein, E. A., & Garavan, H. (2003). Cingulate

hypoactivity in cocaine users during a GO-NOGO task as revealed by

event-related functional magnetic resonance imaging. The Journal of

Neuroscience, 23(21), 7839–7843.
Labus, J. S., Hollister, E. B., Jacobs, J., Kirbach, K., Oezguen, N., Gupta, A.,

… Mayer, E. A. (2017). Differences in gut microbial composition corre-

late with regional brain volumes in irritable bowel syndrome. Micro-

biome, 5(1), 49. https://doi.org/10.1186/s40168-017-0260-z

Labus, J. S., Osadchiy, V., Hsiao, E. Y., Tap, J., Derrien, M., Gupta, A., …
Mayer, E. A. (2019). Evidence for an association of gut microbial clos-

tridia with brain functional connectivity and gastrointestinal sensori-

motor function in patients with irritable bowel syndrome, based on

3100 CAI ET AL.

https://doi.org/10.1016/0165-1781(89)90047-4
https://doi.org/10.1002/hbm.1048
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1007/s00787-017-0969-z
https://doi.org/10.1007/s00787-017-0969-z
https://doi.org/10.1038/nrgastro.2017.97
https://doi.org/10.1016/j.neuroimage.2007.03.071
https://doi.org/10.1152/physrev.00018.2018
https://doi.org/10.1016/S1474-4422(19)30356-4
https://doi.org/10.1016/S1474-4422(19)30356-4
https://doi.org/10.1111/ejn.14305
https://doi.org/10.1111/ejn.14305
https://doi.org/10.1038/s41575-019-0157-3
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1016/j.neuroimage.2005.08.035
https://doi.org/10.1016/j.neuroscience.2017.11.055
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1146/annurev-psych-113011-143750
https://doi.org/10.1113/JP273106
https://doi.org/10.1038/nature24661
https://doi.org/10.1038/nature24661
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1038/nmeth.2604
https://doi.org/10.1038/nmeth.2604
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1126/science.aad3503
https://doi.org/10.1210/jc.2015-3076
https://doi.org/10.1210/jc.2015-3076
https://doi.org/10.1038/nrn2201
https://doi.org/10.1016/j.neuron.2019.02.008
https://doi.org/10.1016/j.neuron.2019.02.008
https://doi.org/10.1038/nn.4476
https://doi.org/10.1038/nrgastro.2012.32
https://doi.org/10.1007/s00213-018-5161-8
https://doi.org/10.1007/s00213-018-5161-8
https://doi.org/10.1016/j.sleep.2020.04.013
https://doi.org/10.2466/pms.2003.97.3f.1209
https://doi.org/10.1038/s41579-018-0014-3
https://doi.org/10.1038/s41579-018-0014-3
https://doi.org/10.1186/s40168-017-0260-z


tripartite network analysis. Microbiome, 7(1), 45. https://doi.org/10.

1186/s40168-019-0656-z

Liu, P., Peng, G., Zhang, N., Wang, B., & Luo, B. (2019). Crosstalk between

the gut microbiota and the brain: An update on neuroimaging findings.

Frontiers in Neurology, 10, 883. https://doi.org/10.3389/fneur.2019.

00883

Magoc, T., & Salzberg, S. L. (2011). FLASH: Fast length adjustment of short

reads to improve genome assemblies. Bioinformatics, 27(21),

2957–2963. https://doi.org/10.1093/bioinformatics/btr507

Mayer, E. A., Labus, J., Aziz, Q., Tracey, I., Kilpatrick, L., Elsenbruch, S., …
Borsook, D. (2019). Role of brain imaging in disorders of brain–gut
interaction: A Rome working team report. Gut, 68(9), 1701–1715.
https://doi.org/10.1136/gutjnl-2019-318308

Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back

working memory paradigm: A meta-analysis of normative functional

neuroimaging studies. Human Brain Mapping, 25(1), 46–59. https://
doi.org/10.1002/hbm.20131

Pinto-Sanchez, M. I., Hall, G. B., Ghajar, K., Nardelli, A., Bolino, C.,

Lau, J. T., … Bercik, P. (2017). Probiotic Bifidobacterium longum

NCC3001 reduces depression scores and alters brain activity: A pilot

study in patients with irritable bowel syndrome. Gastroenterology, 153

(2), 448–459 e448. https://doi.org/10.1053/j.gastro.2017.05.003

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A.,

Church, J. A., … Petersen, S. E. (2011). Functional network organization

of the human brain. Neuron, 72(4), 665–678. https://doi.org/10.1016/
j.neuron.2011.09.006

Raichle, M. E. (2015). The brain's default mode network. Annual Review of

Neuroscience, 38, 433–447. https://doi.org/10.1146/annurev-neuro-
071013-014030

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M.,

Hollister, E. B., … Weber, C. F. (2009). Introducing mothur: Open-

source, platform-independent, community-supported software for

describing and comparing microbial communities. Applied and Environ-

mental Microbiology, 75(23), 7537–7541. https://doi.org/10.1128/

AEM.01541-09

Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G., & Cryan, J. F.

(2019). Microbiota and the social brain. Science, 366(6465), eaar2016.

https://doi.org/10.1126/science.aar2016

Strandwitz, P., Kim, K. H., Terekhova, D., Liu, J. K., Sharma, A., Levering, J.,

… Lewis, K. (2019). GABA-modulating bacteria of the human gut

microbiota. Nature Microbiology, 4(3), 396–403. https://doi.org/10.

1038/s41564-018-0307-3

Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., …
Mayer, E. A. (2013). Consumption of fermented milk product with pro-

biotic modulates brain activity. Gastroenterology, 144(7), 1394–1401.
https://doi.org/10.1053/j.gastro.2013.02.043

Tillisch, K., Mayer, E. A., Gupta, A., Gill, Z., Brazeilles, R., Le Neve, B., …
Labus, J. S. (2017). Brain structure and response to emotional stimuli

as related to gut microbial profiles in healthy women. Psychosomatic

Medicine, 79(8), 905–913. https://doi.org/10.1097/PSY.

0000000000000493

Van Ameringen, M., Turna, J., Patterson, B., Pipe, A., Mao, R. Q.,

Anglin, R., & Surette, M. G. (2019). The gut microbiome in psychiatry:

A primer for clinicians. Depression and Anxiety, 36(11), 1004–1025.
https://doi.org/10.1002/da.22936

van de Ven, V. G., Formisano, E., Prvulovic, D., Roeder, C. H., &

Linden, D. E. (2004). Functional connectivity as revealed by spatial

independent component analysis of fMRI measurements during rest.

Human Brain Mapping, 22(3), 165–178. https://doi.org/10.1002/hbm.

20022

Vieira-Silva, S., Falony, G., Darzi, Y., Lima-Mendez, G., Garcia Yunta, R.,

Okuda, S., … Raes, J. (2016). Species-function relationships shape eco-

logical properties of the human gut microbiome. Nature Microbiology, 1

(8), 16088. https://doi.org/10.1038/nmicrobiol.2016.88

Vuong, H. E., Yano, J. M., Fung, T. C., & Hsiao, E. Y. (2017). The micro-

biome and host behavior. Annual Review of Neuroscience, 40, 21–49.
https://doi.org/10.1146/annurev-neuro-072116-031347

Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naive Bayesian

classifier for rapid assignment of rRNA sequences into the new bacte-

rial taxonomy. Applied and Environmental Microbiology, 73(16),

5261–5267. https://doi.org/10.1128/AEM.00062-07

Wang, Y. F., Zheng, L. J., Liu, Y., Ye, Y. B., Luo, S., Lu, G. M., … Zhang, L. J.

(2019). The gut microbiota-inflammation-brain axis in end-stage renal

disease: Perspectives from default mode network. Theranostics, 9(26),

8171–8181. https://doi.org/10.7150/thno.35387
Xin, F., & Lei, X. (2015). Competition between frontoparietal control and

default networks supports social working memory and empathy. Social

Cognitive and Affective Neuroscience, 10(8), 1144–1152. https://doi.
org/10.1093/scan/nsu160

Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data

processing & analysis for (resting-state) brain imaging. Neu-

roinformatics, 14(3), 339–351. https://doi.org/10.1007/s12021-016-
9299-4

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Cai H, Wang C, Qian Y, et al. Large-

scale functional network connectivity mediate the associations

of gut microbiota with sleep quality and executive functions.

Hum Brain Mapp. 2021;42:3088–3101. https://doi.org/10.

1002/hbm.25419

CAI ET AL. 3101

https://doi.org/10.1186/s40168-019-0656-z
https://doi.org/10.1186/s40168-019-0656-z
https://doi.org/10.3389/fneur.2019.00883
https://doi.org/10.3389/fneur.2019.00883
https://doi.org/10.1093/bioinformatics/btr507
https://doi.org/10.1136/gutjnl-2019-318308
https://doi.org/10.1002/hbm.20131
https://doi.org/10.1002/hbm.20131
https://doi.org/10.1053/j.gastro.2017.05.003
https://doi.org/10.1016/j.neuron.2011.09.006
https://doi.org/10.1016/j.neuron.2011.09.006
https://doi.org/10.1146/annurev-neuro-071013-014030
https://doi.org/10.1146/annurev-neuro-071013-014030
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1126/science.aar2016
https://doi.org/10.1038/s41564-018-0307-3
https://doi.org/10.1038/s41564-018-0307-3
https://doi.org/10.1053/j.gastro.2013.02.043
https://doi.org/10.1097/PSY.0000000000000493
https://doi.org/10.1097/PSY.0000000000000493
https://doi.org/10.1002/da.22936
https://doi.org/10.1002/hbm.20022
https://doi.org/10.1002/hbm.20022
https://doi.org/10.1038/nmicrobiol.2016.88
https://doi.org/10.1146/annurev-neuro-072116-031347
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.7150/thno.35387
https://doi.org/10.1093/scan/nsu160
https://doi.org/10.1093/scan/nsu160
https://doi.org/10.1007/s12021-016-9299-4
https://doi.org/10.1007/s12021-016-9299-4
https://doi.org/10.1002/hbm.25419
https://doi.org/10.1002/hbm.25419

	Large-scale functional network connectivity mediate the associations of gut microbiota with sleep quality and executive fun...
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Participants
	2.2  Sleep quality assessment
	2.3  Cognition assessment
	2.4  Fecal samples collection and gut microbiota analysis
	2.5  MRI data acquisition
	2.6  fMRI data preprocessing
	2.7  Independent component analysis
	2.8  Statistical analysis
	2.9  Sensitivity analysis

	3  RESULTS
	3.1  Associations between microbial diversity, functional connectivity, and behaviors
	3.2  Associations between enterotypes, functional connectivity, and behaviors
	3.3  Sensitivity analysis

	4  DISCUSSION
	  DATA AVAILABILITY STATEMENT

	REFERENCES


