
Research Article
Design of Embedded System for Multivariate
Classification of Finger and Thumb Movements Using EEG
Signals for Control of Upper Limb Prosthesis

Nasir Rashid , Javaid Iqbal , Amna Javed, Mohsin I. Tiwana, and Umar Shahbaz Khan

Department of Mechatronics Engineering, National University of Sciences & Technology, H-12, Islamabad, Pakistan

Correspondence should be addressed to Nasir Rashid; n.rashid@ceme.nust.edu.pk

Received 10 August 2017; Revised 21 January 2018; Accepted 13 February 2018; Published 20 May 2018

Academic Editor: Noman Naseer

Copyright © 2018 Nasir Rashid et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Brain Computer Interface (BCI) determines the intent of the user from a variety of electrophysiological signals. These signals,
Slow Cortical Potentials, are recorded from scalp, and cortical neuronal activity is recorded by implanted electrodes. This paper
is focused on design of an embedded system that is used to control the finger movements of an upper limb prosthesis using
Electroencephalogram (EEG) signals. This is a follow-up of our previous research which explored the best method to classify three
movements of fingers (thumb movement, index finger movement, and first movement). Two-stage logistic regression classifier
exhibited the highest classification accuracy while Power Spectral Density (PSD)was used as a feature of the filtered signal.The EEG
signal data set was recorded using a 14-channel electrode headset (a noninvasive BCI system) from right-handed, neurologically
intact volunteers. Mu (commonly known as alpha waves) and Beta Rhythms (8–30Hz) containing most of the movement data
were retained through filtering using “Arduino Uno” microcontroller followed by 2-stage logistic regression to obtain a mean
classification accuracy of 70%.

1. Introduction

A Brain Computer Interface (BCI) provides a communica-
tion system to control external device(s) inwhichmessages or
commands are sent to external world through brain signals.
These signals do not pass through the brain’s normal output
pathways of nerves and muscles. Rather, BCI provides an
alternate method to its user to interact with the world. For
example, Electroencephalogram (EEG) based BCI messages
are encoded in EEGactivity of brain. For peoplewith amputa-
tion or severe neuromuscular disability, whomay lack normal
output channels, BCIs prove to be useful for controlling
external devices [1]. The world of BCI is growing day by
day, with applications ranging from control of upper/lower
limb prosthesis and wheel chairs to control of multimedia
applications and smart phones for people suffering from
stroke [2, 3]. Table 1 shows some researches in which upper
limb prosthesis or cursor is controlled using motor imagery.

Movements of a prosthesis are commonly controlled through
manipulating the motion of rotary actuator (electric motor)
in a BCI system.

BCI system consists of input signals (electrophysiological
activity recorded from scalp of user), a signal processor
(filtering the signal for desired frequency and extracting
features for best representation of user intent), a translating
algorithmor classifier (that anticipates the human intent from
the selected feature), and finally a control algorithm that
controls the device attached to the system [1].

Mental activity, such as imagination of movement and
movement itself or decision making, results in excitation of
Neural Networks which cause changes in electrical potentials
that can be recorded by sensors [2].This electrical potential is
recorded using invasive (placement of sensor under the scalp
through surgery) or noninvasive (placement of sensors on the
scalp) sensors. The invasive method provides a higher signal
to noise ratio; however, it is cost-wise expensive and involves
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Table 1: Examples of research for prosthesis or cursor control using motor imagery.

Index Year Research Protocol Accuracy Device Control

1 2011

“Real-time control of
a prosthetic hand
using human

electrocorticography
signals” [4]

ECoG of three
movements of left
hand (grasping
motion, hand

opening motion,
scissor type motion)

69.2% Prosthesis
control

2 2008

“Control of an
electrical prosthesis
with an SSVEP-based

BCI” [5]

Steady-state visual
evoked potentials

Between 44%
and 88% of four

patients

Control of
two-axes

electrical hand
prosthesis

3 2012

“Target Selection with
Hybrid Feature for
BCI-Based 2-D

Cursor Control” [6]

Hybrid feature from
motor imagery and
the P300 potential.
Target selection by

focusing and
direction control by
left-right hand motor

imagery.

93.99%
Online control
of cursor on a
monitor screen

4 2013

“Quadcopter control
in three-dimensional

space using a
noninvasive motor
imagery-based
brain–computer
interface” [7]

Motor Imagery of left
or right hand

movement for 1D
cursor movement left

and right.
For 2D movement
move cursor up by
imagining squeezing
or curling both hands

and to move the
cursor down through
the use of a volitional

rest.

Between 69.1%
and 90.5% for 5

subjects

Quadcopter
control

5 2014

“Simultaneous Neural
Control of Simple
Reaching and

Grasping with the
Modular Prosthetic

Limb Using
Intracranial EEG” [8]

Intracranial elec-
troencephalographic
(iEEG) signals of
subject who made

reaching and grasping
movements to

identify task-selective
electrodes

Independently
executed overt
reach and grasp
movements for
(Subject 1,

Subject 2) were
(0.85, 0.81) and
(0.80, 0.96),
respectively,

during
simultaneous
execution they
were (0.83, 0.88)
and (0.58, 0.88),
respectively

Dexterous
robotic

prosthetic arm

6 2009

“Decoding human
motor activity from
EEG single trials for a

discrete
two-dimensional
cursor control” [9]

Four motor tasks
(sustain or cease to
move right or left

hand)

Average
accuracy of 85.5
± 4.65% with
physical motor
movement

2D cursor
movement

risk due to surgery. There is a variety of changes in electrical
potentials that can be extracted from real time recorded
EEG signals [10] which can be either evoked potentials or
induced potentials. This includes Event Related Potentials
(ERP), P300 Evoked Potentials [11], Slow Cortical Potentials,

Visual Evoked Potentials, andMu and Beta Rhythms over the
sensorimotor cortex [12].

In this research, noninvasive electrode equipment is used
for recording EEG signals form scalp.The EEG signal data set
was recorded using a 14-channel electrode headset (Emotiv
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Figure 1: Electrode placement [13].

headset) from right-handed, neurologically intact volunteers.
This research is a follow-up of our previous research in which
Mu and Beta Rhythms (8–30Hz) were used. Power Spectral
Density (PSD) was used for analysis of filtered data followed
by logistic regression for classification of finger movements
[13]. PSD describes the distribution of power of signal over
its frequency.The band power of Power Spectral Density [14]
of finger movements of one hand occurring over the motor
cortex is used as a feature to classify them. The Mu and Beta
Rhythms that occur over the motor cortex provide us with
information related to the movement [15, 16].

A variety of classification techniques are used in BCI
systems such as Neural Networks (NN), Support Vector
Machines (SVM), Discriminant Analysis, and Bayesian Clas-
sifiers. As an extension of our previous research logistic
regression is used as a classifier, and output of the classifier is
used for generating command signals to control upper limb
prosthesis [17–19].

Our previous research [13] compared different classifiers,
namely, Multilayer Perceptron, Linear Discriminant Analysis
(LDA), Quadratic Discriminant Analysis (QDA), and logistic
regression to achieve highest classification accuracy [20, 21].
Two-stage logistic regression gave the highest classification
accuracy of 74% for four finger movements (thumb, index
finger, index and middle finger combined, and fist). Weka
3.6.9 (data mining software with collection of machine
learning algorithms) and Matlab were used to process the
signals in earlier research.

In the current research our emphasis is on the use
of embedded system to process EEG data for generating
command signals for upper limb prosthesis. Arduino Uno
is used as the embedded system to filter signals (between 8
and 30Hz), extract features (PSD), and differentiate between

three finger movements. In this research, we are using three
targeted finger movements (thumb, index finger, and fist)
instead of four (as were in our previous research). The
reason to restrict ourselves to three movements only is that
embedded system is not able to distinguish between the
index finger movement and index-middle finger combined
movement.

2. Materials and Methods

2.1. Section I: Experimental Protocol and Data Acquisition.
The data was acquired from four subjects (one female and 3
male) who volunteered to undergo data recording protocol.
One of the male subjects (described as category I in Results)
has a habit of high involuntary eye blinking frequency. The
other three subjects are described as category II in Results.
The age of subjects is between 22 and 45 years. The pro-
cess of data acquisition from the subjects is approved by
the departmental ethical review board. The volunteers are
healthy with no known neurological disabilities.The data was
acquired using Emotiv headset at 128Hz sampling frequency.
Emotiv has 14 noninvasive electrodes placed according to
the international 10-20 system shown in Figure 1 [13]. The
data was acquired for four movements, i.e., thumb, fist, index
finger, and index-middle finger combined movements. The
movements are shown in Figure 2 [13]. Three out of these
acquired movements (thumb, index finger, and fist move-
ment) data were used for this research.

During data acquisition, the subjects were comfortably
sitting in a chair and were asked to perform the movements
shown on the computer screen. For each subject the acquired
data of one trial contained 10 seconds of data for each
movement, which makes 1280 samples per movement. The
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Figure 2: Fingermovements that were recorded. (a)Thumbmovement. (b) Fist movement. (c) Index fingermovement. (d) Two-finger (index
and middle) combined movement [13].
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Figure 3: Data acquisition protocol.

total samples in one recorded trial are 1280 × 4 = 5120.
There were a total of 60 recorded trials for each subject, out
of which 13 trials for each subject were rejected on the basis
of visual inspection. Rest of the 47 data trials for each subject
were used. For this research samples of only threemovements
(thumb, index finger, and fist) were used instead of four
movements. Thus, for this research 47 × 1280 × 3 = 180480
samples have been used for one subject. The data acquisition
protocol is shown in Figure 3.

2.2. Section II: Embedded System. The aim of this research
was to design an embedded system that can be used to
classify and control upper limb prosthesis finger movements
using acquired EEG signals. “Arduino Uno” is the embedded
system used to fulfill the aim of this research.The attributes of
embedded system (Arduino Uno) are given in Table 2.

The data was given as input to Arduino Uno, which
was programmed to process the input (filtering and classi-
fication). Basing upon the result of classification, generate a

signal that controls motors connected to upper limb pros-
thesis fingers. Stages of the system from data input to device
control are shown in Figure 4.

Data processing steps included digital filteringwith a high
pass and low pass filter to retain 8–30Hz of frequencies.
Filtration was followed by feature extraction (calculation of
band power fromPSDof the remaining frequencies) from the
data. The feature vector was then given as input to a logistic
regression classifier network for classification of three finger
movements. Based on the classification, a command signal is
generated and sent to a motor drive circuitry (H-Bridge in
this case) to actuate the respective motor to start the finger
movement of upper limb prosthesis.

This research was carried out using data already acquired
from the subjects. Data set of each trial consisted of 10
seconds of data of 14 channels at the sampling rate of 128Hz.
From each of the 47 trials, 250ms of data was extracted
and converted to text files. The data was saved offline on an
SD card in text file and given as input toArduinoUno.The SD
cardwas interfacedwith the controller using Serial Peripheral



BioMed Research International 5

Table 2: Attributes of embedded system.

Attribute Specification
(1) Memory 32 kB

(2) Debug ability
(i) In-System Programming by On-chip

Boot Program
(ii) True Read-While-Write Operation

(3) Reliability Data Retention: 20 years at 85∘C/100
years at 25∘C

(4) Throughput Up to 20MIPSThroughput at 20MHz

(5) Testability
(i) In-System Programming by On-chip

Boot Program
(ii) True Read-While-Write Operation

(6) Response
Speed Grade:

(i) 0–4MHz @ 1.8–5.5 V
(ii) 0–10MHz @ 2.7–5.5 V
(iii) 0–20MHz @ 4.5–5.5 V

SD Card 
containing data in 
form of text file

Arduino Uno
Data Processing

H-Bridge
Control of prosthesis 
according to logic 
given by Arduino

Upper Limb 
Prosthesis

Figure 4: Stages of system from data input to device control.

Table 3: Connection between SD card and Arduino.

SD card (Pin) Arduino Uno (Pin)
5V 5V
Ground Ground
CS Pin 10
MOSI Pin 11
MISO Pin 12
SCK Pin 13

Interface (SPI). SPI operates in full duplex mode with a
MasterOut Slave In Pin,Master In SlaveOut Pin, Serial Clock
Pin, and Chip Select Pin. The Arduino acted as Master, while
the SD card acted as Slave. The Arduino first enabled the SD
card through Chip Select. The clock was set at a baud rate of
9600. The Pin configuration of connection between SD card
and Arduino Uno is shown in Table 3.

As discussed earlier in this section, 250ms of data was
extracted from each trial, converted, and saved in text file.
During processing, first 250ms of data is read by the embed-
ded system, processed, and classified. Then, next 250ms of
data of next trial is read and processed and the loop continues
for classification until the data reaches its end.

2.3. Section III: Filtration Techniques. Filtering the data to
extract Mu and Beta band of frequencies (8–30Hz) is carried
out as this band contains maximum information related
to finger movements. To execute this through embedded
system, 250ms of EEG data was digitally filtered using a But-
terworth filter between 8 and 30Hz of order 2.The reason for

Table 4: High pass filter coefficients.

Vector Index 1 Index 2 Index 3
a 1 −1.4542 0.5741
b 0.7571 −1.5142 0.7571

Table 5: Low pass filter coefficients.

Vector Index 1 Index 2 Index 3
a 1 −0.1151 0.1739
b 0.2647 0.5294 0.2647

using Butterworth filter was its flat responsewith zero ripples.
The coefficients of the Butterworth filter were taken from
Matlab “butter” command and are shown in Tables 4 and 5.

Filtration was done using these coefficients in the filter
difference equation defined by [21]

a (1) ∗ y (n) = b (1) ∗ x (n) + b (2) ∗ x (n − 1) + b (3)

∗ x (n − 2) − a (2) ∗ y (n − 1) − a (3)

∗ y (n − 2) ,

(1)

where y is the output, x is the input, and n is the 𝑛th element
of the output.

Before passing the data through filter, it was padded.
Later, after the forward and reverse filtering, the data was
truncated back to its original number of samples. Filtration
was done in both forward and reverse direction.The data was
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first passed through high pass filter of order 2 and 8Hz cut-
off frequency and the resultant was passed through a low pass
filter of order 2 and 30Hz cut-off frequency.

2.4. Section IV: Feature Extraction. Power Spectral Density
of each channel of the filtered signal was calculated. Each
channel of filtered signal was divided into 4 windows of
62.5ms each. A hamming window was created. The formula
for hamming window is given in [22]

𝑤 (𝑛) = 0.54 − 0.46 ∗ cos (2𝜋𝑛)
𝑁 − 1
, (2)

where 𝑁 is the maximum number of points of the sampling
window.

The window function was then multiplied with the signal
to shape it into hamming window. Fast Fourier transform of
the windowed signal was then calculated. Formula for Fast
Fourier transform is given in [22]

𝑋𝑘 =
𝑁−1

∑
𝑛=0

𝑥𝑛𝑒
−𝑖2𝜋𝑘(𝑛/𝑁) 𝑘 = 0, . . . , 𝑁 − 1. (3)

The absolute value of the resultant is computed and
divided by the normalization factor of the window.

The normalization factor of the window is given by [22]

𝑈 = 1
𝐿

𝑁−1

∑
𝑛=0

|𝑤 (𝑛)|2 . (4)

This gives us the Power Spectral Density of the window,
which can be represented as in (5) [3]. After the PSD of
each window is calculated, the corresponding values of all
windows are added and averaged, leaving us with a vector of 8
constituents. Each value of this vector is then further divided
by 2𝜋 to scale the values.

𝑝𝑥𝑥 =
󵄨󵄨󵄨󵄨𝑋 (𝑓)
󵄨󵄨󵄨󵄨
2

Fs𝐿𝑈
, (5)

where Fs is sampling frequency, 𝐿 is length of segment, 𝑈 is
windownormalization constant given by (4), and𝑋(𝑓) is data
after FFT.

The power values are averaged to give the band power
of one channel of data. The process is repeated for all the
14 channels. In the end, we are left with a feature vector of
14 values, each representing the band power of 8–30Hz fre-
quency of the channel. Figure 5 shows the topography plots of
the raw data of randomly selected data samples of eachmove-
ment. It can be seen that in each plot the electrodes F3 and
FC5 contribute to rise in contours. These channels are basi-
cally located above the sensorimotor cortex.The contours due
to these two electrodes have been magnified to show the
difference in the topographies of the movements. The differ-
ence is also highlighted in the periodogram graphs that are
shown from Figures 6–8 on channels F3 and FC5 of different
movements. These graphs show the power concentration, in
the 8–30Hz band, of different movements.

2.5. Section V: Classification. As discussed earlier, our pre-
vious research had shown highest classification accuracy by
using linear regression classifier. Therefore, for this research
we used two-stage logistic regression classifier to calculate
classification accuracy for three finger movements. For the
logistic regression classifier, the probability of the first class
is given by [23]

𝑃 (𝐺 = 1) =
exp (𝐵𝑇 ∗ 𝐹)
(exp (𝐵𝑇 ∗ 𝐹) + 1)

, (6)

where 𝐹 is the feature vector and 𝐵𝑇 are the coefficients of
logistic regression.

The criterion for selection of class is [24, 25]

𝐺 (𝑥) = class 1 if Pr > 0.5

𝐺 (𝑥) = class 1 if Pr < 0.5.
(7)

In the two-stage model, the first classifier (referred to as
network I) distinguished between class 1, which is thumb
and finger movements, and class 2 which is fist movement.
In the 2nd stage a second classifier (referred to as network
II) distinguished between thumb and finger movement. The
classifier model is shown in Figure 9. Training of the classifier
was done using data set of all subjects (75% for training and
25% for testing) in “Weka” and coefficients of logistic regres-
sion were calculated for further use in classification using
the embedded system. 31 randomly chosen samples for each
movement were tested for classification in embedded system
keeping in mind the data handling capability [26].

2.6. Section VI: Device Control. Upper limb prosthesis used
for this research was developed in the department for carry-
ing out the experiments. Figure 10 shows a picture of upper
limb prosthesis.

Prosthesis contains two motors connected to two fingers
and placed at the palm. Finger joints are connected with
each other with the help of a flexible metal wire which is
connected with a motor. Motor rotation will cause winding
or unwinding of the flexible metal wire resulting in opening
or closing of fingers. Both motors were connected to motor
drive which was taking command signal from Arduino Uno.
The embedded system generated a control signal based on
the classification of fingermovements.This control signal was
sent to the motor drive circuitry to actuate the motor for
desired motion. One of the motors is attached to Output Pins
4 and 6 (for thumb movement) and the other is attached to
Output Pins 2 and 3 (for fingermovement).Motion ofmotors
according to classification is shown in Table 6.

3. Results

To train the two-stage logistic regression classifier data set of
all subjects (category I and category II) is used as discussed
in Section 2.5. 75% data is used for training and 25% data is
used for testing. “Weka” (datamining software) was used and
coefficients of logistic regression were calculated for further
use in embedded system.
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Table 6: Motion of motors according to classification.

Classification of finger
movement

State of motor attached to
Output Pins 4 and 6

State of motor attached to
Output Pins 2 and 3

Thumb movement On Off
Finger movement Off On
Fist movement On On

(a) Thumb movement (b) Finger movement

(c) Fist movement

Figure 5: Topography plots of movements. FC5 and F3 electrodes have been magnified to show the difference in the topographies of the
movements.
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Figure 6: Finger movement periodogram of channels F3 and FC5.
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Table 7: Network classification accuracy of a two-stage logistic classifier network.

Network number Classification accuracy
Network 1 (Class 1-Thumb + Index Finger and Class 2- Fist) 74%
Network 2 (Class 1-Thumb and Class 2- Index Finger) 76%
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Figure 7: Thumb movement periodogram of channels F3 and FC5.
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Figure 8: Fist movement periodogram of channels F3 and FC5.

Results of our research comprise two categories. In cate-
gory I (subject having a habit of high involuntary eye blinking
frequency), 31 randomly chosen data samples from each
movement were used for testing using embedded system.
In category II (subjects other than category I), 31 randomly
chosen data samples from each movement were used for
testing using embedded system.

Table 7 shows the classification accuracy of each stage
of classifier (network I and network II) using data set of all
subjects (category I and category II) as discussed in
Section 2.5.

Table 8 shows the confusion matrix of category I data set
tested over 31 randomly chosen samples for each movement

Table 8: Confusion matrix of category I data set.

Class
Class predicted by 2-stage logistic regression

classifier
Thumb Index Finger Fist

Thumb 13 12 6
Index Finger 8 16 7
Fist 8 9 14

and Table 9 shows the category II data set tested over 31
randomly chosen samples for each movement.

Table 10 shows the per class classification accuracy of
randomly chosen samples from category I and category II.
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Thumb Finger Fist

Logistic Regression 
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Thumb Finger

Network - 1 

Network - 2 

Figure 9: Two-stage logistic regression classifier used for the system.

Figure 10: Prosthesis controlled by the embedded system.

Table 9: Confusion matrix of category II data set.

Class
Class predicted by 2-stage logistic regression

classifier
Thumb Index finger Fist

Thumb 20 9 2
Index finger 4 24 3
Fist 5 5 21

Table 10: Per class accuracy.

Movement class Classification accuracy
of category I

Classification
accuracy of category

II
Thumb 42% 65%
Index finger 51% 77%
Fist 45% 68%

Percentage accuracies are calculated on the basis of confusion
matrices shown in Tables 8 and 9.

4. Discussion

The aim of this research was to investigate the design of an
embedded system for control of upper limb prosthesis as an
extension of our previous research. As evident from Table 1,
research using BCI system for control of prosthesis is focused
on spatially distant motor movements. Our focus in this
research was to control prosthesis with finger movements
which have less spatial distance as compared to earlier
researches.

Finger movements have the same origin in brain leading
to extremely small spatial difference between them. Our
endeavor was to pick up the small difference of brain activity
recorded in the form of electrical potential and classify it
with higher accuracy. It was seen from the topography plots
shown in Figure 5 that fingermovements have the sameorigin
in brain. The minor differences in the topographies were
highlighted when the data under electrodes F3 and FC5 was
interpolated and plotted in a magnified manner.

Band power of Power Spectral Density of Mu and Beta
Rhythms was chosen as feature vectors. PSD is used as a
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feature vector in 70% of the research which focuses on motor
controls. The periodogram of the movements was plotted
for the channels above sensorimotor cortex to visualize the
differences.

The development of the embedded systemwas focused on
to design a control for upper limb prosthesis that has small
size and light weight and is easy to carry onboard system
for prosthesis user. The acquired data was saved on SD card
rather than on the controller to depict a real time data pro-
cessing and classification. 70% mean classification accuracy
was achieved with 2-stage logistic regression classifier using
an Arduino Uno based embedded system. It should also
be noted that the index and middle finger combined move-
ment could not be classified with higher accuracies since
the spatial distance is very less. This accuracy needs to be
increased further for developing better control of prosthesis
and practical implementation.

The challenge is to create an onlinemodel that can process
and classify the real time data. However, implementation
of the model on patients requires a more robust system
suggested subsequently. A headset with greater number of
channels especially above the motor cortex is required for
recording more comprehensive signals. It is also recom-
mended to use an embedded system with higher computa-
tional speed which can process signals in real time.

It can also be seen from our results that eye blinking
during data acquisition induces ocular artefacts which result
in lower classification accuracies. For a better and higher clas-
sification accuracies a signal with higher signal to noise ratio
is required. Different techniques for removing ocular artefact
may be used for future work.

Overall the research shows that upper limb prosthesis
control can be achieved even with signals that are taken from
closely situated body part with an average accuracy of 70%
(calculated on the basis of classification accuracy of category
II randomly chosen samples as mentioned in Table 10).

5. Conclusion

The designed embedded system in this research is capable of
controlling the prosthesis based on the model developed
earlier. A two-stage classifier has been designed and imple-
mented over the embedded systems. The classifier is capable
of distinguishing between three movements of finger, thumb,
and fist. The mean classification accuracy of 70% is attained
by the developed system. Further work to improve the
classification accuracy using advanced embedded system can
be undertaken for enhanced prosthesis control.
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