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Abstract: Two-dimensional fuzzy entropy, dispersion entropy, and their multiscale exten-
sions (MFuzzyEn2D and MDispEn2D, respectively) have shown promising results for image classifi-
cations. However, these results rely on the selection of key parameters that may largely influence
the entropy values obtained. Yet, the optimal choice for these parameters has not been studied
thoroughly. We propose a study on the impact of these parameters in image classification. For this
purpose, the entropy-based algorithms are applied to a variety of images from different datasets,
each containing multiple image classes. Several parameter combinations are used to obtain the
entropy values. These entropy values are then applied to a range of machine learning classifiers
and the algorithm parameters are analyzed based on the classification results. By using specific
parameters, we show that both MFuzzyEn2D and MDispEn2D approach state-of-the-art in terms
of image classification for multiple image types. They lead to an average maximum accuracy of
more than 95% for all the datasets tested. Moreover, MFuzzyEn2D results in a better classification
performance than that extracted by MDispEn2D as a majority. Furthermore, the choice of classifier
does not have a significant impact on the classification of the extracted features by both entropy
algorithms. The results open new perspectives for these entropy-based measures in textural analysis.

Keywords: biomedical data; classifier; complexity; dispersion entropy; fuzzy entropy; entropy;
irregularity; image analysis; multiscale approach

1. Introduction

Information theory, relative entropy, and the Kullback–Leibler divergence are now
widely used concepts (see, e.g., References [1–3]). Entropy-based algorithms have en-
abled engineers and researchers to measure the uncertainty and irregularity of complex
systems and data [4–6]. The corresponding algorithms have become a key tool in many
application areas, particularly in the biomedical domain. Thus, one dimensional en-
tropy measures, e.g., sample entropy (SampEn1D) [7], permutation entropy (PerEn1D) [8],
fuzzy entropy (FuzzyEn1D) [9], and dispersion entropy (DispEn1D) [10], have been proven
effective at quantifying the irregularity of time series data. This success has led to the de-
velopment of bidimensional (2D) entropy measures for images (2D data): SampEn2D [11],
PermEn2D [12,13], FuzzyEn2D [14], and DispEn2D [15]. By being able to estimate the
predictability or uncertainty of spatial patterns within images, entropy methods can be
considered as effective feature extraction techniques. In recognizing that the repeatability
of pixel patterns is related to the texture properties of images, entropy techniques can be
employed in the analysis of textures within images, which in turn can be used to classify
images. Classification from texture analysis has important applications in a large variety
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of fields such as medical image analysis, remote sensing, content-based image retrieval,
object recognition, and many others (see, e.g., [16–20]).

The introduction of multiscale approaches to entropy measures arose from the need
to quantify complexity in systems and to overcome certain limitations of single-scale
approaches [21]. In the 2D multiscale approach, a coarse-graining procedure is applied
to an image over spatial scales and then the entropy value is calculated for each coarse-
grained version of the original image. The multiscale approach allows us to quantify the
complexity of an image, where the complexity is defined as a measure of irregularity over
several spatial scales.

Both FuzzyEn2D and DispEn2D (and their multiscale versions: MFuzzyEn2D and
MDispEn2D) use a set of tuneable parameters. In the case of fuzzy entropy, the parameters
are m (the template length or embedding dimension), r (the matching threshold), and n (the
fuzzy power). In the case of dispersion entropy, the parameters are m (the embedding
dimension) and c (the number of classes). Understanding the sensitivity and impact of these
parameters is an essential part in deploying these measures in biomedical applications.

An analysis of prior work in the area highlighted the fact that the majority of papers
using MFuzzyEn2D or MDispEn2D employed parameter values based on tests performed on
synthetic data. Additionally, no specific work has been carried out on the influence of these
parameter values on classification results; see, e.g., Reference [22]. The goal of our paper is
therefore two-fold: (i) to study the impact parameters have on FuzzyEn2D and DispEn2D
values obtained from different image types and, by this, on image classification results;
and (ii) to discern how different image types may lead to the selection of different sets of
parameters to attain the most accurate classification results. For this purpose, we used two
publicly available datasets: the Epistroma dataset [23] and the KTH-TIPS dataset [24]. To
carry out the task of image classification, the entropy algorithms were combined with a set
of commonly used machine learning classifiers. The use of multiple classifiers is significant
to the study as it allows us to determine the impact of the classifier on the classification
accuracy. From our review of the literature, we established that this work is the first to
study the impact of combinations of parameter values on several datasets. It is also the
first study on the influence of the parameter values with a classification approach.

The remainder of this paper is organized as follows: Section 2 presents the datasets
processed as well as the algorithms and classifiers used. The results of the study are
detailed and discussed in Section 3. Finally, the conclusion section at the end of the paper
provides a summary of the results obtained.

2. Materials and Methods
2.1. Datasets

The Epistroma dataset [23,25] was employed. This dataset consists of histological
images of colorectal cancer from 643 patients enrolled at the Helsinki University Central
Hospital, Helsinki, Finland, from 1989 to 1998. The tissue samples have been stained
with diaminobenzidine and hematoxylin, and were labeled into two classes: epithe-
lium (825 samples) and stroma (551 samples). The dimension of the images varies from
172 × 172 px to 2372 × 2372 px. Our goal in this study was to analyze the classification
capabilities and optimum parameter selection for FuzzyEn2D and DispEn2D (and their
multiscale versions) in extracting texture features from biomedical images. In addition, we
wanted to identify epithelium from stroma tissues using the proposed measures. For more
information about the dataset, please refer to [25].

The other employed dataset was the KTH-TIPS dataset [24,26]. This dataset is com-
posed of images of ten different materials (aluminum foil, bread, corduroy, cotton, cracker,
linen, orange peel, sandpaper, sponge, and styrofoam). There are 81 images per material
class, consisting of 9 different scales, 3 illumination differences, and 3 poses. The dimension
of each image is 200 × 200 px. The target was to assess the classification capabilities and
optimum parameter selection for FuzzyEn2D and DispEn2D (and their multiscale versions)
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in extracting generic texture features. For more information about the dataset, please refer
to [26].

2.2. Experimental Procedure
2.2.1. Data Pre-Processing

Images in the original datasets exhibit variations in their dimensions and color profiles.
Therefore, prior to the feature extraction step, the following pre-processing steps were
performed for all the images. Initially, images were imported into MATLAB R2020a [27].
To remove the variation in the image dimension, we calculated the center point of each
image and cropped each image to two different sizes; these sizes were set at 50 × 50 px
and 100 × 100 px, respectively. The second step involved taking the cropped images and
transforming them into a grayscale representation, such that they had comparable ranges
of pixel values. The grayscale transformation was performed instead of a standardization
step as the grayscale transformations retain the texture information which is lost if the
images are standardized in the case of our processed datasets. In addition to eliminating
the variation, these steps reduce the computation time required by the entropy algorithms.
After the pre-processing steps were complete, the images were divided into 75% training
images and 25% test images.

2.2.2. Feature Extraction

In our experiments, the entropy algorithms performed the feature extraction and
dimensionality reduction step. The entropy algorithms were initialized with a set of
parameters and the pre-processed images were then applied to them. For the single-scale
approach, both FuzzyEn2D and DispEn2D algorithms output a single value representing
the image. In the case of the multiscale approach, each algorithm outputs a vector of values
representing the image. The resulting values of the entropy algorithms were then passed
to the five classifiers and the classification accuracy was determined. The parameters
used in the entropy algorithms were changed and the process was repeated. Each entropy
algorithm was thus initialized with a combination of different parameters to examine the
influence that different parameters could have on the quality of the extracted features and
their classification performance.

2.2.3. Fuzzy Entropy

FuzzyEn2D has recently been proposed as an extension to the 1D fuzzy entropy
algorithm [14]. By definition, FuzzyEn2D is calculated as the negative natural logarithm of
the conditional probability that two patterns similar for their corresponding m×m points
will remain similar when the (m + 1)× (m + 1) points are considered. For FuzzyEn2D
calculation, initial parameters should be defined as follows: m as the template size, r as the
tolerance level, and n as the fuzzy power.

Consider an image U = {u(i, j)} j=1,2,.......,W
i=1,2,.......,H of H×W size. At first, Xm

i,j is defined as
the m-length square pattern of origin u(i, j), as follows:

Xm
i,j =


ui,j ... ui,j+m−1

ui+1,j ... ui+1,j+m−1
... ... ...

ui+m−1,j ... ui+m−1,j+m−1

. (1)

Similarly, Xm+1
i,j is defined as the (m+ 1) square patterns. Let Nm = (W−m)(H−m) be the

total number of square windows in U that can be generated for both the m = [m, m] and (m
+ 1) = [m + 1, m + 1] sizes. For Xm

i,j and its neighboring windows Xm
a,b, the distance function

dm
ij,ab between them is defined as the maximum absolute difference of their corresponding
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scalar components. Knowing that a changes from 1 to H −m and that b changes from 1 to
W −m with (a, b) 6= (i, j), the distance function is expressed as follows:

dm
ij,ab = d[Xm

i,j, Xm
a,b ] = max

k,l∈(0,m−1)
(|u(i + k, j + l)− u(a + k, b + l)|). (2)

The similarity degree Dm
ij,ab of Xm

i,j with its neighboring patterns Xm
a,b is defined by a

fuzzy function µ(dm
ij,ab, n, r):

Dm
ij,ab(n, r) = µ(dm

ij,ab, n, r) = exp(−(dm
ij,ab)

n/r). (3)

Then, the similarity degree of each pattern is averaged to obtain:

Φm
i,j(n, r) =

1
Nm − 1

a=H−m,b=W−m

∑
a=1,b=1

Dm
ij,ab, (4)

with (a, b) 6= (i, j) to construct:

Φm(n, r) =
1

Nm

i=H−m,j=W−m

∑
i=1,j=1

Φm
i,j(n, r). (5)

It is similar for m + 1 to obtain Φm+1(n, r). Finally, the bidimensional fuzzy entropy of the
image U is:

FuzEn2D(U, m, n, r) = ln
Φm(n, r)

Φm+1(n, r)
. (6)

A key aspect of fuzzy entropy is that it employs, for the similarity degree, a continuous
function (in our case exp (−(dm

ij,ab)
n/r), where dm

ij,ab is the distance function [14]). The
parameter n determines the gradient of the boundary of the exponential function and
r is the width of the boundary of the exponential function, rather than the strict binary
Heaviside function that is used by sample entropy measures.

Images with repeating periodic structures (regular patterns) would hold a low entropy
value. On the contrary, images with non-repeating structures (irregular, unpredictable
patterns) would hold a high entropy value. In what follows, we will use the notation of m
as a scalar value for simplicity reasons. As we will choose squared embedding dimensions,
the notation m = 1 will represent [1, 1], m = 2 will represent [2, 2], and so on. This notation
will also hold for DispEn2D.

For FuzzyEn2D, we study the sensitivity of the following parameters on a range of
values based on previous studies [9,14,28,29]: embedding dimension m = {1, 2}, tolerance
r = {0.12, 0.24, 0.36, 0.48}, and fuzzy power n = {2, 3, 4, 5}.

2.2.4. Dispersion Entropy

DispEn2D [15] is our second employed entropy measure. In the latter, two initial
parameters should be defined: m, the embedding dimension vector, and c, the number of
classes. In DispEn2D, the values of the pixels within the image are mapped to c classes.
This mapping results in embeddings (using an embedding dimension m) that are then
matched to a dispersion pattern. When all possible two-dimensional dispersion patterns of
an image have equal probability value, the highest value of DispEn2D is reached, indicating
irregularity in an image. The DispEn2D algorithm is defined as follows. Consider an image
U = {u(i, j)} j=1,2,.......,W

i=1,2,.......,H of H× W size. First, u(i, j) elements are mapped into c classes
using linear and non-linear methods [30] to form zc

i,j = round(c× yi,j + 0.5). The number
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of classes c could be an integer from 3 to 9. In order to avoid having most of the u(i, j)
elements be within the classes 1 to c, a sigmoid function is often used, where:

yi,j =
1

σ
√

2π

∫ ui,j

−∞
e
−(t−µ)2

2σ2 dt, (7)

with µ and σ representing the mean and standard deviation of the original image U. Let m
be the embedding dimension vector [m, m] to define zm,c

k,l such as:

zm,c
k,l =


zc

k,l zc
k,l+1 · · · zc

k,l+(m−1)
zc

k+1,l zc
k+1,l+1 · · · zc

k+1,l+(m−1)
· · · · · · · · · · · ·

zc
k+(m−1),l zc

k+(m−1),l+1 · · · zc
k+(m−1),l+(m−1)

, (8)

where k ranges from 1 to h− (m− 1) and l ranges from 1 to w− (m− 1). After that, zm,c
k,l

is mapped to a dispersion pattern πυ0,υ1 ...υm×m−1 . For each zm,c
k,l , cm×m dispersion patterns

can be formed. Furthermore, the relative frequency is calculated for each of the cm×m

dispersion patterns, specifically πυ0,υ1 ...υm×m−1 :

p(πυ0,υ1 ...υm×m−1) =
#{k, l, zm,c

k,l has type πυ0,υ1 ...υm×m−1}
(h− (m− 1))(w− (m− 1))

, (9)

where l ≤ w− (m− 1) and k ≤ h− (m− 1). Finally, DispEn2D is calculated as:

DispEn2D(U, m, c) = −
cm×m

∑
π=1

p(πυ0,υ1 ...υm×m−1)× ln(p(πυ0,υ1 ...υm×m−1)). (10)

When the image is completely regular, the smallest value of DispEn2D is obtained.
In DispEn2D, two parameters must be manually selected: m and c. Combinations of
m = {2, 3} and c = {3, 4, 5, 6} are all examined during our experiments. These values were
chosen based on recommendations from Reference [15].

2.2.5. Multiscale Approach

FuzzyEn2D and DispEn2D allow to quantify the irregularity of images at one scale.
However, such approaches are highly sensitive to high frequency components and may fail
to account for inherent data at multiple scales [21]. To this end, multiscale entropy-based
techniques have been introduced. These techniques can quantify the irregularity of an
image over multiple spatial scales, defining its complexity [31,32]. These complexity-based
measures are composed of two main steps: (1) a coarse-graining process, which involves
removing high-frequency image components using a digital low pass filter and downsam-
pling the filtered data by a scale factor τ; and (2) the calculation of an entropy method
for each coarse-grained data at each scale τ. The multiscale extensions to FuzzyEn2D
and DispEn2D, known as multiscale FuzzyEn2D (MFuzzyEn2D) and multiscale DispEn2D
(MDispEn2D), respectively, are used in this study. Thus, MFuzzyEn2D and MDispEn2D can
be defined by the following two-step procedure:

1. Construct the coarse-grained images I(τ) as

I(τ)ij =
1
τ2

k=iτ
l=jτ

∑
k=(i−1)τ+1
l=(j−1)τ+1

Ikl , (11)

where 1 ≤ i ≤ [H
τ ] and 1 ≤ j ≤ [W

τ ].
2. Compute FuzzyEn2D or DispEn2D of each coarse-grained image.
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A decrease in entropy values across spatial scales indicates that an image may be
irregular but not structurally complex. However, when no noticeable changes in entropy
values are observed across scales, this signifies that an image maintains complex structures
across multiple scale factors; the image is said to be complex.

In our work, in the multiscale extensions for both entropy techniques, values of τ = 1
to 10 were examined. This was performed to determine whether complexity analysis was
better than irregularity quantification—that is, single-scale calculations—for improved
classification outcomes.

2.2.6. Classification

The extracted features were exported to Python, where the data was split into its
respective 75% training and 25% test sets, in which classifiers from the Scikit learns li-
brary [33] were used to classify the texture features. The 5 classifiers used in this study are
briefly outlined below.

Naive Bayes

The Naive Bayes classification methods are a set of supervised learning algorithms
based on applying Bayes’ theorem with the “naive” assumption of conditional indepen-
dence between every pair of features given the value of the class variable [34]. Bayes’
theorem states that given a class variable y and dependent feature vector x1 → xn are
guided by the following operation:

P(y|x1, . . . , xn) =
P(y)P(x1, . . . , xn|y)

P(x1, . . . , xn)
. (12)

In the Scikit learns GaussianNB algorithm, the likelihood between features is assumed
to be Gaussian:

P(xi|y) =
1√

2πσ2
y

exp

(
−
(xi − µy)2

2σ2
y

)
, (13)

where the parameters µy and σy are estimated using the maximum likelihood.
This variant of the Naive Bayes algorithm was employed with the parameters

priors = None and var_smoothing = 1e− 9.

Decision Tree

Decision trees are a non-parametric supervised learning method used for classification
and regression. The goal is to create a model that predicts the value of a target variable by
learning simple decision rules inferred from the data features [35]. A tree can be seen as a
piecewise constant approximation. The Scikit learns DecisionTreeClassifier algorithm was
used in our experiments with the parameter random_state = 0 and all other parameters
were initialized with the algorithm’s default values.

Support Vector Machine

The main objective of the support vector machine (SVM) classifier is to find a hyper-
plane in an N-dimensional space, (where N represents the number of features) which bests
discriminates classes [36]. The hyperplane is a decision boundary between data points,
where the best hyperplane has the maximum distance between points in disparate classes.
The equation for this decision boundary (hyperplane) is presented as:

wTx + b = 0, (14)

where w is the adjustable weight vector and b is the bias of the hyperplane. The linearly
separable classes can be represented as follows:

wTx + b ≤ 0 f or di = −1, wTx + b > 0 f or di = +1. (15)
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The Scikit learns svm algorithm was initialized with default parameters and was used
in our experiments.

Multi-Layer Perceptron

Multi-layer perceptron (MLP) is a brand of artificial neural networks (ANN). MLP
consists of three layers of neurons; an input layer, a hidden layer, and an output layer. Each
neuron, except those found in the input layer, uses non-linear activation functions that
transform the input of each neuron into a desirable output [37]. These networks are trained
using back-propagation. The Scikit learns MLPClassifier algorithm was initialized with the
parameters random_state = 1 and max_iter = 10, 000, and all other parameters remained
unchanged with their default values.

K-Nearest Neighbour

The K-nearest neighbour (KNN) is a type of instance-based learning or non-
generalizing learning: it does not attempt to construct a general internal model but simply
stores instances of the training data. Classification is computed from a simple majority vote
of the k-nearest neighbors of each point: a query point is assigned the data class which has
the most representatives within the nearest neighbors of the point [38]. The Scikit learns
KNeighborsClassifier with values of k = 1→ 9 was used in our experiments.

2.2.7. Experimental Procedure

The experimental procedure was conducted using the following method: after pre-
processing each image (reducing its size and converting it to grayscale), the feature
extraction step involved applying the multiscale entropy algorithm (MFuzzyEn2D and
MDispEn2D, independently) for each set of parameters. This led to obtaining the entropy
values that were one set of values for each set of parameters. The number of entropy values
calculated was dependent on the scale factor τ value. Thus, for instance, when τ = 5, each
image would be represented as a vector containing 5 entropy values. Then, these vectors
would be independently exported to each classifier to obtain the classification results. The
experimental flowchart used in our study can been seen in Figure 1.

1038 x 1038 px 100 x 100 px 100 x 100 px

Feature Extraction

Classification

Preprocessing

100 x 100 px Multiscale Entropy Algorithm

[2.0134]
[2.1123]

..
.

[2.3267]

[2.0134]
[2.1123]

..
.

[2.3267]

Entropy Vectors

Entropy Vectors Classification Algorithm Prediction

Experimental Procedure

Figure 1. Flowchart depicting the different stages of the experimental procedure.
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3. Results and Discussion

In this work, the Epistroma dataset [23] and the KTH-TIPS dataset [24] were processed
with two different multiscale two-dimensional entropy algorithms. For each algorithm, a
different parameter combination was used. The corresponding entropy values obtained
were used for machine learning classification purposes. The training/test data was split as
75% training and 25% test data. In all tests involving the Epistroma dataset, 1032 training
and 344 test images were used, while 61 training and 21 test images were used for each
unique texture in all the experiments involving the KTH-TIPS dataset.

3.1. Epistroma

The Epistroma dataset contains two classes representing two types of colorectal cancer
tissue: stroma and epithelium. As such, a binary classification was used in the experiments
conducted on the Epistroma dataset. Two different image sizes, namely 50 × 50 px and
100 × 100 px, were examined for each sample in the following experiments.

3.1.1. Classification Accuracy

Initially, the multiscale entropy algorithms were compared based on their overall
classification performance. The two classification metrics are average accuracy and av-
erage max accuracy. Average accuracy is the average of all classification results across
all classifiers. Average max accuracy specifies the average of the highest classification
accuracy achieved by each classifier. For this, we took the highest accuracy achieved by
each of the five classifiers and averaged these values to derive a single result. Secondly,
the optimal choice of each parameter was assessed by recording which parameter value
resulted in the highest classification accuracy for each classifier. Finally, multiscale analysis
was conducted to determine whether complexity or irregularity provides a better textural
representation of our images. This was investigated by observing the τ value choice that
results in the highest average classification accuracy for each classifier. If a τ value greater
than 1 provides the highest average classification accuracy, this indicates that complexity
provides a better representation of the texture in the images. Conversely, if a τ value equal
to 1 provides the highest average classification accuracy, this indicates that irregularity
provides a better representation.

1. Classification Performance: As shown in Table 1, across all possible parameter and
multiscale combinations, MFuzzyEn2D outperformed MDispEn2D regarding average
max classification accuracy for both image sizes, achieving accuracies of 98.84% and
100% for 50 × 50 px and 100 × 100 px images, respectively. However, MDispEn2D
achieved a higher average classification accuracy than MFuzzyEn2D for both image
sizes, producing accuracies of 93.66% and 94.77% for 50 × 50 px and 100 × 100 px
images, respectively.

2. Parameter Optimization: Figure 2 shows a color map which displays the performance
of different parameters with respect to each classifier for the MFuzzyEn2D and
MDispEn2D algorithms. In the MFuzzyEn2D case, for images of size 50 × 50 px,
the value of m did not appear to have a significant influence on the classification
performance, while a value of n = 5 and larger values of r are recommended. Finally,
for images of size 100 × 100 px, larger values for m, n, and r are recommended. In
the MDispEn2D case, for images of size 50 × 50 px, m = 3 is recommended as all five
classifiers performed optimally with this parameter value, while a c value of 3 or 6
is advised. Additionally, for images of size 100 × 100 px, larger values of m and c
are favored.
Additionally, in MFuzzyEn2D, parameter combinations of m = 1, n = 4, r = 0.24,
0.36, 0.48, m = 1, n = 5, r = 0.12, 0.24, 0.36 and m = 2, n = 5, r = 0.36, 0.48 resulted
in an average accuracy greater than 85% for all the classifiers and both image sizes.
For images of size 50 × 50 px using MDispEn2D, a parameter combination of m = 3
and c = 3 achieved an average classification accuracy greater than 85% for four
out of the five classifiers, while a combination of m = 3 and c = 6 achieved an
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average accuracy greater than 85% for all the five classifiers. Similarly, for images
of size 100 × 100 px, parameter combinations of m = 3 and c = 3, 5 , or 6 achieved
an average accuracy greater than 85% for three out of the five classifiers. We should
note that the 85% classification accuracy was chosen as a threshold for the choice of
parameter combinations across different time scales, classifiers, and datasets for the
purpose of providing a general application to datasets and classifiers that was not
explored in our experiments. Additionally, we believe there exists many techniques
in which we could increase our classification accuracy, such as by bagging which can
improve the stability and accuracy of classification algorithms [39]. These techniques
are not explored in our work as we are only investigating the influence that key
parameters exhibit on the classification performance of features extracted by the
MFuzzyEn2D and MDispEn2D algorithms.

3. Multiscale Analysis: Table 2 shows the values of τ, which resulted in the highest
average classification accuracy for each classifier and image size. Results show that
for all five classifiers, τ > 1 results in the highest average classification accuracy,
indicating that complexity analysis provides a stronger textural description than
irregularity analysis for the images found in this biomedical dataset.

𝑀𝐹𝑢𝑧𝑧𝑦𝐸𝑛2𝐷

𝑀𝐷𝑖𝑠𝑝𝐸𝑛2𝐷
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Figure 2. Color map displaying the performance of different parameter values as a representation of
the classifier performance for the Epistroma dataset. The number located inside each box represents
the number of classifiers (over five classifiers) that produced the highest average classification
accuracy based on the respective parameter value (number above each box). Darker green boxes
show the optimal parameter choice, while red boxes show the weakest choice.
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Table 1. Classification accuracy comparison between MFuzzyEn2D and MDispEn2D for different
image sizes of the Epistroma dataset.

Entropy Algorithm Image Size Average Accuracy Average Max
Accuracy

MFuzzyEn2D
50 × 50 93.40 98.84

100 × 100 94.15 100

MDispEn2D
50 × 50 93.66 97.09

100 × 100 94.77 96.80

Table 2. Comparison between values of τ that resulted in the highest average classification accuracy
for each classifier with the Epistroma dataset. τ = n indicates that gathering entropy values from
scale 1 to n leads to the highest average classification accuracy.

50 × 50 100 × 100
Classifier MFuzzyEn2D MDispEn2D MFuzzyEn2D MDispEn2D

Decision tree τ = 5 τ = 10 τ = 6 τ = 7
Naive Bayes τ = 10 τ = 2 τ = 10 τ = 5

SVM τ = 5 τ = 6 τ = 9 τ = 9
MLP τ = 7 τ = 10 τ = 10 τ = 10
KNN τ = 4 τ = 9 τ = 7 τ = 4

3.1.2. Computation Time

As can be seen from the algorithm mentioned in Section 2.2.3, the computation time
for the MFuzzyEn2D algorithm is invariant to changes in parameter values. In contrast, the
computation time of MDispEn2D increases as the values of m and c increase. The results
show that MFuzzyEn2D was computationally faster than MDispEn2D, achieving an average
computation time of 0.29 and 4.12 seconds/per image for image sizes of 50 × 50 px and
100 × 100 px, respectively. In comparison, MDispEn2D produced an average computation
time of 15.18 and 26.10 seconds/per image for image sizes of 50 × 50 px and 100 × 100 px,
respectively. We should note that MDispEn2D was computationally faster for lower values
of m and c; however, its classification accuracy remained lower than that of MFuzzyEn2D.
All experiments were conducted on a Desktop PC with an Intel(R) Core(TM) i7-9700K CPU
@ 3.60GHz, 3600 Mhz, eight core(s), eight logical processor(s) and 32 GB DIMM RAM.

3.2. KTH-TIPS

The KTH-TIPS dataset is comprised of 10 unique classes (textures). A binary classifi-
cation is performed on a texture vs. texture basis such that each texture is classified against
disparate textures. Therefore, the classification accuracy presented in the following section
displays the averaged results across nine tests, as there are nine distinct classes in relation
to the class under examination. All tests were conducted on images of size 100 × 100 px
for this dataset.

Classification Accuracy

Similarly to the experiments involving the Epistroma dataset, the multiscale entropy
algorithms were compared based on their overall classification performance. The two
classification metrics discussed are average accuracy, which describes the average of all
classification results across all texture vs. texture tests for all the classifiers, and average
max accuracy, which specifies the average of the highest classification accuracy across all
the texture vs. texture tests achieved by each classifier. Secondly, the optimal choice of
each parameter was assessed by recording which parameter value resulted in the highest
classification accuracy for each classifier across all the texture combinations. Thirdly, the
multiscale entropy algorithms were compared on a texture vs. texture basis, whereby the
highest average classification accuracy for each unique texture combination was identified
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in addition to the multiscale entropy approach used to achieve said accuracy. Finally, mul-
tiscale analysis was conducted to determine whether complexity or irregularity provides a
better textural representation of our images. This was investigated in the same manner as
the one described in the Epistroma tests.

1. Classification Performance: As can be seen in Table 3, across all the possible parameter,
texture, and multiscale combinations, MFuzzyEn2D outperformed MDispEn2D in
both average classification and max average classification accuracy. Additionally, the
KNN classifier achieved the highest average and maximum average classification
accuracy for both entropy techniques.

2. Parameter Optimization: Figure 3 shows a color map that displays the performance
of different parameters with respect to each classifier for the MFuzzyEn2D and
MDispEn2D algorithms. These results indicate that a majority of the classifiers (three
out of five) achieve optimal classification performance for a parameter combination
of m = 1, n = 2, and r = 0.12. Similarly, Figure 4 indicates that lower values for
the parameters m and c produced a higher classification accuracy for textures ex-
tracted by the MDispEn2D algorithm. Additionally, for MFuzzyEn2D, all parameter
combinations resulted in an average accuracy greater than 85% for all the classifiers
in the experiments containing the texture aluminium, while no parameter combina-
tion resulted in an average accuracy greater than 85% for any classifier when using
MDispEn2D.

3. Texture Analysis: Figure 4 displays each texture vs. texture test alongside which
entropy algorithm achieved the highest average classification accuracy, where a
green cell represents an average classification accuracy greater than 85%, a yellow cell
represents an accuracy between 70% and 85%, and a red cell represents an accurancy of
less than 70%. Results indicate that MFuzzyEn2D performed extremely well in every
test involving aluminium. Moreover, across the board, MFuzzyEn2D outperformed or
matched the classification performance of MDispEn2D on all the texture combinations.
Furthermore, both entropy techniques performed poorly on a majority of the tests
involving the texture corduroy.

4. Multiscale Analysis: Table 4 displays the average classification accuracy for the mul-
tiscale extensions MFuzzyEn2D and MDispEn2D across different scale factors. The
results show that the texture images examined in this study contained complex
structures across multiple spatial scales: for τ values > 1, the average classification
accuracy increased for all the classifiers.

Table 3. Classification accuracy comparison between MFuzzyEn2D and MDispEn2D for the KTH-
TIPS dataset.

Average Accuracy Max Average Accuracy
Classifier MFuzzyEn2D MDispEn2D MFuzzyEn2D MDispEn2D

Decision tree 79.52 67.31 100 98.22
Naive Bayes 74.99 56.26 100 95.09

SVM 80.55 66.17 100 95.69
MLP 73.78 55.40 100 97.32
KNN 83.18 71.46 100 100
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Table 4. Comparison between values of τ that resulted in the highest average classification accuracy
for each classifier with the KTH-TIPS dataset. τ = n indicates that gathering entropy values from
scale 1 to n leads to the highest average classification accuracy.

Classifier MFuzzyEn2D MDispEn2D

Decision Tree τ = 5 τ = 4
Naive Bayes τ = 5 τ = 3

SVM τ = 4 τ = 5
MLP τ = 5 τ = 10
KNN τ = 5 τ = 10

𝑀𝐹𝑢𝑧𝑧𝑦𝐸𝑛2𝐷 𝑀𝐷𝑖𝑠𝑝𝐸𝑛2𝐷
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Figure 3. Color map displaying the performance of different parameter values as a representation of
classifier performance for the KTH-TIPS dataset. The number located inside each box represents the
number of classifiers (over five classifiers) that produced the highest average classification accuracy
based on the respective parameter value (number above each box). Darker green boxes show the
optimal parameter choice, while red boxes show the weakest choice.
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Figure 4. Texture matrix representing the performance of both MFuzzyEn2D and MDispEn2D al-
gorithms with the KTH-TIPS dataset. The entropy technique, which achieved a higher average
classification accuracy, is displayed within the matrix, while the color scale represents the average
classification accuracy achieved.

The results from our study show that the choice of optimal parameter values for both
MFuzzyEn2D and MDispEn2D is dependent on the image category under examination. For
example, for images in the biomedical dataset (Epistroma), larger parameter values are
recommended as a majority of the classifiers used in our experiments performed optimally
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with larger values of m, n, r (MFuzzyEn2D) and m, c (MDispEn2D). In contrast to this, for
images in the generic texture dataset (KTH-TIPS), the results advocate for lower values of
parameters for both multiscale entropy algorithms.

Moreover, multiscale analysis is recommended as it demonstrated better classification
results with both entropy measures. This is in agreement with the literature and considering
the fact that complexity analysis is more informative and inclusive for the inherent data at
several scale factors.

Furthermore, although MDispEn2D is more computationally efficient at lower values
of m and c, its computation time increases exponentially for larger values. Moreover, for all
parameter values, the computation time for the MFuzzyEn2D algorithm remained consis-
tent, in addition to superior classification performance across both datasets. MFuzzyEn2D
emerges as the optimal textural feature extraction algorithm for the classification of images
found in the Epistroma and KTH-TIPS datasets.

3.3. Main Findings and Significance of the Work

From the results mentioned above, the main findings of our study are as follows:

• Textural features extracted by MFuzzyEn2D resulted in better classification perfor-
mance than those extracted by the MDispEn2D as a majority.

• In MDispEn2D, for images of size 50 × 50 px from the Epistroma dataset, parameter
combinations of (1) m = 3 and c = 3, and (2) m = 3 and c = 6 achieved an average
classification accuracy greater than 85% for four out of the five classifiers and for all
five classifiers, respectively. For images of size 100 × 100 px, parameter combinations
of m = 3 and c = 3, 5, or 6 achieved an average accuracy greater than 85% for three out
of the five classifiers. Additionally, for images in the KTH-TIPS dataset, no parameter
combination resulted in an average accuracy greater than 85%.

• In MFuzzyEn2D, for images in the Epistroma dataset, parameter combinations of
(1) m = 1, n = 4, r = 0.24, 0.36, 0.48, m = 1, n = 5, r = 0.12, 0.24, and 0.36, and
(2) m = 2, n = 5, r = 0.36, and 0.48 resulted in an average accuracy greater than 85%
for both image sizes. Additionally, for images in the KTH-TIPS dataset, all parameter
combinations resulted in an average accuracy greater than 85% for experiments
containing the texture aluminium.

• The computation time of MFuzzyEn2D was invariant to changes in parameter values.
Contrarily, larger values of m and c increased the computation time of MDispEn2D ex-
ponentially. Furthermore, MDispEn2D was computationally faster than MFuzzyEn2D
for lower values of m and c. However, in most cases, this lowered the classification
performance.

• The multiscale version of entropy measures led to the creation of a vector of entropy
values. Our results reveal that, when the vector of entropy values is applied to
the classifier, the subsequent results show improved classification accuracy. This
shows that the texture of coarse-grained versions of images provides information for
classification purposes.

• In most cases, the choice of classifier did not have a significant impact on the classifi-
cation of the extracted features by both entropy algorithms.

Other authors used the Epistroma dataset and KTH-TIPS dataset to compare different
texture algorithm performances. Thus, Bianconi et al. processed the color images (we
processed their grayscale version) and used local binary pattern (LBP) variants for texture
feature extraction, alongside CNN-based features [40]. Moreover, Bello-Cerezo et al. used
the same datasets with extensions of LBP [41]. Kather et al. used the Epistroma dataset
with pre-trained deep networks and LBP variants [42]. The results reported by all these
studies are in the same range as the ones presented herein. Our study therefore shows that
by using specific parameters, namely MFuzzyEn2D and MDispEn2D, one can approach
state-of-the-art in terms of image classification for the two datasets processed.
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4. Conclusions

In this paper, we provided a comparison of various parameter selections for both
FuzzyEn2D and DispEn2D in terms of classification accuracy and computation time. Ad-
ditionally, this comparison was extended to the multiscale version of each algorithm
(MFuzzyEn2D and MDispEn2D). For this purpose, two publicly available datasets were pro-
cessed: the Epistroma dataset and the KTH-TIPS dataset. From our review of the literature,
we understand this work to be the first experimental study on the influence of parameter
selection for both FuzzyE2D and DispEn2D using a variety of machine learning classifiers.

Our study shows that by using specific parameters, namely MFuzzyEn2D and
MDispEn2D, one can approach state-of-the-art in terms of image classification for mul-
tiple image types. However, textural features extracted by MFuzzyEn2D resulted in a
better classification performance than those extracted by the MDispEn2D as a majority.
Furthermore, the computation time of MFuzzyEn2D was not modified with the changes
in parameters values, unlike that of MDispEn2D. Finally, the use of a multiscale approach
leads to improvements in the classification results. These findings provide a guide for
researchers in using MFuzzyEn2D and MDispEn2D.

Based on the work proposed herein, other bidimensional entropy measures could be
also investigated as, to the best of our knowledge, there are no complete studies examining
the role of parameter selection and classification accuracy for other 2D entropy measures.
In addition, the computational cost of our study could be compared to that of other
classification methods, as the entropy measure applications do not require processing large
datasets. Furthermore, several possible directions could be also investigated using entropy
measures and machine learning techniques with possible applications in the medical field,
among others.
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