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Tuberculosis (TB) is still an important public health issue in Jiangsu province, China. In this study, based
on the TB transmission routes and the statistical data of TB cases, we formulate a novel TB epidemic
model accounting for the effects of the contaminated environments on TB transmission dynamics. The
value of this study lies in two aspects. Mathematically, we define the basic reproduction number, R0,
and prove thatR0 can be used to govern the threshold dynamics of the model. Epidemiologically, we find
that the annual averageR0 is 1:13; > 1 and TB in Jiangsu is an endemic disease. Therefore, in order to con-
trol the TB in Jiangsu efficiently, we must decrease the virus shedding rate or increase the recovery rates,
and increase the environmental clearance rate.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Tuberculosis (TB) is an ancient and chronic infectious disease,
which is caused by infection with the Mycobacterium tuberculosis
(MTB) (Blower et al., 1996). Normally, the TB bacteria are put into
the air when a person with TB disease, and TB patients are mainly
transmitted by droplets produced by coughing, sneezing, laughing,
loud talking, etc. Droplet transmission is the most important way
of transmission of TB. When a person breathes in TB bacteria, the
bacteria can settle in the lungs and begin to grow (Global, 2018).

It is nowwidely believed that droplet transmission occurs when
a person is in close contact (within 1 m) with someone who has
respiratory symptoms (e.g., coughing or sneezing) and is therefore
at risk of having his/her mucosae (mouth and nose) or conjunctiva
(eyes) exposed to potentially infective respiratory droplets. Trans-
mission may also occur through fomites in the immediate environ-
ment around the infected person (Ong et al., 2020). MTB is so small
that normal air currents can keep the particles containing MTB air-
borne and transport them through rooms or some buildings (Dye
and Williams, 2000). Thank the insightful work on HFMD (Wang
et al., 2016a; Wang et al., 2016b) and COVID-19 (Ding et al.,
2020; World Health, 2020), we can believe that MTB can attach
to things (such as door handles, towels, handkerchiefs, toys, uten-
sils, bed and toilet seat, bathroom washbasin tap lever, bathroom
ceiling-exhaust louvre and stethoscope or thermometer, and so
on) used by the TB patients.

TB is closely associated with overcroding and malnutrition,
which makes it to be one of the major diseases in poor areas
(Lawn and Zumla, 2011). Those at high risk thus include: people
who inject illicit drugs, inhabitants and employees of locales where
vulnerable people gather (e.g. prisons and homeless shelters),
medically underprivileged and resource-poor communities, high-
risk ethnic minorities, children in close contact with high-risk cat-
egory patients, and health-care providers serving these patients
(Griffith and Kerr, 1996), include alcoholism (Lawn and Zumla,
2011) and diabetes mellitus (threefold increase) (Restrepo, 2007).

Currently, there are approximately 95% of the estimated 8 mil-
ion new cases of TB occuring in developing countries each year,
and two-thirds of which appears in India (27%), China (9%), Indone-
sia (8%), Philippines (6%), Pakistan (5%), Nigeria (4%), Bangladesh
(4%) and South Africa (3%), where 80% occur among people
between the ages of 15 to 59 years. And only 6% of global cases
occur in Europe (3%) and the Americas (3%) (Global, 2018).
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In recent years, the Chinese government has increased its
investment in public health, and the laws and regulations for dis-
ease prevention and control has been constantly improved, which
provides an important basic guarantee for coping with major pub-
lic health emergencies, preventing infectious diseases and ensuring
the health of the people, thus effectively controlling major infec-
tious diseases. In particular, the incidence of tuberculosis has
decreased significantly. According to the report from the World
Health Organization, in 2011, China had an estimation of 1.4 mil-
lion existing TB and 1 million incident TB; in 2017, China had an
estimation of 778,390 existing TB and 773,150 incident TB
(Global, 2018); in 2018, China had 823,342 new and relapse TB
(Survey of the epidemic situation of notifiable infectious diseases
in China, 2018). Obviously, TB is still an important public health
issue in China (Hu and Sun, 2013).

It was known that 80% of TB exists in rural areas, particularly in
north and north-western regions with low socioeconomic status in
China (Hu and Sun, 2013). But in the past 20 years in Jiangsu pro-
vince, China (see Fig. 1 for the location of Jiangsu province in
China), one of the most developed areas in China in economy, tech-
nology and culture and the total output is one of the largest in the
nation, TB ranked first in the number of notifiable B infectious dis-
eases (The reported tuberculosis cases in Jiangsu province, 2018).
In 2011, Jiangsu had 39,589 existing TB, and in 2017, 28,402 exist-
ing TB and in 2018, there is 26,506 incident TB. In particular, the
incidence of tuberculosis has decreased significantly (see Fig. 3(a)
for more details). However, the situation of prevention and control
of TB in Jiangsu province is still very serious.

It is worthy to notice that mathematical models have played a
key role in the formulation of TB control strategies. Waaler et al.
(1962) introduced the first mathematical model for TB in ordinary
differential equations. The simplest TB transmission models
include classes of susceptible, exposed, and infectious individuals,
and hence, they are known as the SEI models. Of course, there are
Fig. 1. The location of Jian
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more factors that includes drug-resistant strains, fast and slow pro-
gression, confection with HIV, relapse, reinfection, migration, treat-
ment, seasonality, and vaccination are incorporating into studying
the transmission dynamics has been searched by many authors.
Dye et al. (1998) present a model with explicit fast and slow pro-
gression from two latent classes. Ziv et al. (2004) used mathemat-
ical models to predict the potential public health impact of new TB
vaccines in high-incidence countries. Porco and Blower (1998)
included the aspect of disease relapse into their model. Then, there
are mathematical models of TB including reinfection in some
authors’ article and they assumed that the rate of reinfection is a
multiple of the rate of first infection (Feng et al., 2000; Suzanne
et al., 2005; Liu et al., 2010).

On the other hand, the TB can survive for a long period outside
the host in suitable conditions, and hence contaminated environ-
ments may play important role in TB infection. There are some
scholars investigated the disease dynamics in the contaminated
environments. Wang et al. (2016a), Wang et al. (2016b),
Chadsuthi and Wichapeng (2018) investigated the roles that
asymptomatic individuals and contaminated environments played
in Hand-foot-mouth disease dynamics. Machado et al. (2017)
developed and implemented an integrative epidemiologic cross-
sectional study that allows identifying and characterising exposure
pathways of populations living and working on the shores of a con-
taminated estuarine environment.

There naturally comes a question that how do the contaminated
environments affect the transmission dynamics of TB in Jiangsu,
China?.

The main focus of this paper is to investigate how contaminated
environments affect TB dynamics through studying the threshold
dynamics of a general TB model. And the rest of the paper is orga-
nized as follows. In Section 2, we formulate the model in details. In
Section 3, we give the dynamics analysis of the model, we intro-
duce the basic reproduction number R0 and prove that R0 can
gsu province in China.
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be used to govern the threshold dynamics of the model. In Sections
4, we give the TB epidemics in Jiangsu, China via numerical simu-
lations. In Section 5, we provide a brief discussion and the sum-
mary of the main results.

2. Model derivation

Suppose that the total population individuals N tð Þ divide into
susceptible S tð Þ, infectious but not yet symptomatic, i.e., pre-
symptomatic Te tð Þ, infectious with symptoms T tð Þ, and recovered
R tð Þ. We further consider the TB virus concentration in
environment as W tð Þ, which is the density of pathogen of the con-
taminated environments including door handles, towels, handker-
chiefs, toys, utensils, bed and toilet seat, bathroom washbasin tap
lever, bathroom ceiling-exhaust louvre etc. at time t. And our
model involves two typical transmissions: one is the direct trans-
mission between susceptible S tð Þ and infected individuals (includ-
ing pre-symptomatic Te tð Þ and symptomatic T tð Þ) with rate of
b1 tð Þ; the other is the indirect transmission to susceptible individ-
uals and infected individuals (i.e., Te tð Þ and T tð Þ) by contaminated
environments W tð Þ with rate of b2 tð Þ. A seasonality in the
long-term patterns of TB incidences time series can be observed
evidently (see Fig. 3), and there is a growing awareness that sea-
sonality can cause population fluctuations ranging from annual
cycles to multiyear oscillations (Liu et al., 2010), and hence we
assume that the transmission rates b1 and b2 tð Þ to be continuous
and non-negative periodic functions with period of x. A flow dia-
gram describing the model is depicted in Fig. 2.

Thus we can establish the following TB epidemic model involv-
ing five ordinary differential equations:

dS
dt ¼ K� lS� b1 tð ÞS T

N � b2 tð ÞSW þ qR; t > 0;
dTe
dt ¼ 1� pð Þb1 tð ÞS T

N þ 1� qð Þb2 tð ÞSW � lþ tþ c1ð ÞTe; t > 0;
dT
dt ¼ tTe þ pb1 tð ÞS T

N þ qb2 tð ÞSW � lþ dþ c2ð ÞT; t > 0;
dR
dt ¼ c1Te þ c2T � lR� qR; t > 0;
dW
dt ¼ aT � cW ; t > 0;

8>>>>>>><>>>>>>>:
ð2:1Þ

with the initial conditions

S 0ð Þ ¼ S0; Te 0ð Þ ¼ Te0; T 0ð Þ ¼ T0; R 0ð Þ ¼ R0; W 0ð Þ ¼ W0; ð2:2Þ
and N ¼ Sþ Te þ T þ R.The meanings of each variables and parame-
ters in model (2.1) are as follows.

� K: the recruitment rate of susceptible;
� l: the per capita natural mortality rate;
� b1 tð Þ: the rate of the susceptible get infected by direct
individual-to-individual transmission;
Fig. 2. Flow diagram representi
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� b2 tð Þ: the rate of the susceptible get infected by indirect con-
taminated environment transmission;

� p: proportion of TB symptomatic infectious by direct
transmission;

� q: proportion of TB symptomatic infectious by indirect
transmission;

� t: reactivation rate the pre-symptomatic infectious;
� c1: the recovery rate of the pre-symptomatic infectious;
� c2: the recovery rate of the symptomatic infectious;
� q: the rate from recovered to susceptible.
� d: disease-related death;
� a: the virus shedding rate from symptomatic infected
individuals;

� c: the clearance rate of the virus in the environments.For the
sake of conveniently analysis, set u tð Þ ¼ u1;u2;u3;u4;u5ð Þ ¼
Te; T;W;R; Sð Þ. Then model (2.1) with (2.2) is equivalent to the
following system:

du1
dt ¼ 1� pð Þb1 tð Þu5

u2
N þ 1� qð Þb2 tð Þu5u3 � lþ tþ c1ð Þu1; t > 0;

du2
dt ¼ tu1 þ pb1 tð Þu5

u2
N þ qb2 tð Þu5u3 � lþ dþ c2ð Þu2; t > 0;

du3
dt ¼ au2 � cu3; t > 0;
du4
dt ¼ c1u1 þ c2u2 � lu4 � qu4; t > 0;
du5
dt ¼ K� lu5 � b1 tð Þu5

u2
N � b2 tð Þu5u3 þ qu4; t > 0;

8>>>>>>><>>>>>>>:
ð2:3Þ

with initial conditions

u 0ð Þ ¼ u0;ui 0ð Þ ¼ u0
i i ¼ 1;2; � � �5ð Þ:

Theorem 2.1. Model (2.3) has a unique and bounded solution with
the initial value u0 2 R5

þ, i.e,

lim
t!1

N tð Þ 6 K
l
; lim

t!1
u3 tð Þ 6 aK

cl
:

Proof. Considering the non-negativity of I, i.e., I P 0, the total pop-
ulation N tð Þ can be determined by the following model:

dN
dt ¼ K� lN � dI 6 K� lN;
N 0ð Þ ¼ u0

1 þ u0
2 þ u0

4 þ u0
5 ¼ N0:

(
ð2:4Þ

It is easy to see that the linear differential equation dN
dt ¼ K� lN

has a unique equilibrium N� ¼ K
l, which is globally asymptotically

stable. The comparison principle implies that limt!1N tð Þ 6 K
l.Then

8e > 0, there exists a t0 > 0 such that

N tð Þ 6 N� þ e; t > t0: ð2:5Þ
Then we have
ng TB transmission routes.



Fig. 3. The TB incidences times series and the relative infectivity in Jiangsu, China from 2009 to 2018. Panel (a) shows the monthly number of TB incidences. Panel (c) is an
annualised version of panel (a). Panel (b) shows the relative TB infectivity from 2009 to 2018. Panel (d) is an annualised version of panel (b), where the short bars are the
relative infectivity of each month of different years, and the diamonds are the average of each month.
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du3

dt
6 a N� þ eð Þ � cu3; t > t0:

It follows from the comparison principle that limt!1u3 tð Þ 6 aK
cl. This

completes the proof.

Let UA �ð Þ tð Þ be the fundamental solution matrix of equation
dx
dt ¼ A tð Þx, where A tð Þ is a continuous, cooperative, irreducible
andx-periodic n� n functional matrix. Let r UA �ð Þ xð Þ� �

be the spec-
tral radius of UA �ð Þ xð Þ.

Lemma 2.2. [Zhang and Zhao, 2007, Lemma 2.1] Let
n ¼ 1

x ln r UA �ð Þ xð Þ� �
. Then there exists a positive x-periodic function

v tð Þ such that entv tð Þ is a solution of dx
dt ¼ A tð Þx.
3. Dynamics analysis

3.1. Basic reproduction number

Following (Diekmann et al., 1990; Van den Driessche and
Watmough, 2002; Diekmann and Heesterbeek, 2000), let F uið Þ be
the input rate of newly infected individuals and V uið Þ be the rate
of transfer of individuals, then

F uið Þ ¼

1� pð Þb1 tð Þu5
u2
N þ 1� qð Þb2 tð Þu5u3

pb1 tð Þu5
u2
N þ qb2 tð Þu5u3

0
0
0

0BBBBBB@

1CCCCCCA
and

V uið Þ ¼

lþ tþ c1ð Þu1

�tu1 þ lþ dþ c2ð Þu2

�au2 þ u3

� c1u1 þ c2u2 � lu4 � qu4ð Þ
� K� lu5 � b1u5

u2
N � b2u5u3 þ qu4

� �

0BBBBBB@

1CCCCCCA:
4

Obviously model (2.3) admits a disease free equilibrium (DFE)

E0 ¼ 0; 0;0;0; Kl
� �

.

Then

F tð Þ ¼ @F i uið Þ
@ui

� �
jE0 ¼

0 1� pð Þb1 tð Þ 1�qð Þb2 tð ÞK
l

0 pb1 tð Þ qb2K
l

0 0 0

0BB@
1CCA; i ¼ 1;2;3;

V tð Þ ¼ @V i uið Þ
@ui

� �
jE0 ¼

lþ tþ c1 0 0
�t lþ dþ c2 0
0 �a c

0B@
1CA; i ¼ 1;2;3:

Let Y t; sð Þ t P sð Þ be the evolution operator of the linear x-
periodic system

dy
dt

¼ �V tð Þy: ð3:1Þ

That is, for each s 2 R, the 3� 3 matrix Y t; sð Þ satisfies

dY t; sð Þ
dt

¼ �V tð ÞY t; sð Þ; 8t P s; Y s; sð Þ ¼ I;

where I is the 3� 3 identity matrix. Thus, the monodromy matrix
U�V tð Þ of (3.1) equals Y t;0ð Þ; t P 0.

Following the method established byWang and Zhao (2008), let
/ sð Þ be x-periodic in s and the initial distribution of infectious
individuals. So F sð Þ/ sð Þ is the rate of new infections produced by
the infected individuals who are introduced at time s. When
t P s;Y t; sð ÞF sð Þ/ sð Þ gives the distribution of those infected individ-
uals who are newly infected by / sð Þ and remain in the infected
compartments at time t. Naturally,Z t

�1
Y t; sð ÞF sð Þ/ sð Þds ¼

Z 1

0
Y t; t � að ÞF t � að Þ/ t � að Þda

is the distribution of accumulative new infections at time t pro-
duced by all those infected individuals / sð Þ introduced at time pre-
vious to t.

Let Cx be the ordered Banach space of all x-periodic functions
from R to R3, which is equipped with the maximum norm k � k and
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the positive cone Cþ
x :¼ / 2 Cx : / tð Þ P 0;8t 2 Rf g. Then we can

define a linear operator L implies that

L/ð Þ tð Þ :¼
Z 1

0
Y t; t � að ÞF t � að Þ/ t � að Þda; 8t 2 R; / 2 Cx;

which is called the next infection operator, and the spectral radius
of L is defined as the basic reproduction number:

R0 :¼ r Lð Þ: ð3:2Þ
In order to characterise R0, we introduce the linear x-periodic

system

dw
dt

¼ �V tð Þ þ F tð Þ
k

� �
w; t 2 Rþ ð3:3Þ

with parameter k 2 R. Let W t; s; kð Þ; t P s be the evolution operator
of system (3.3) on R3. Clearly, UF�V tð Þ ¼ W t;0;1ð Þ; t P 0. Hence, we
derive

UF
k�V tð Þ ¼ W t;0; kð Þ:
Following the general calculation procedure in Wang and Zhao

(2008, Theorem 2.1), the basic reproduction number R0 is the
unique solution of r W x;0; kð Þð Þ ¼ 1.

Following Wang and Zhao (2008), we can obtain the relation
between R0 and r W x;0; kð Þð Þ ¼ 1 shown in the following lemma.

Lemma 3.1. [Wang and Zhao, 2008, Theorem 2.2] The following
statements are valid:

(i) R0 ¼ 1 iff r UF�V xð Þð Þ ¼ 1;
(ii) R0 > 1 iff r UF�V xð Þð Þ > 1;
(iii) R0 < 1 iff r UF�V xð Þð Þ < 1.
Remark 3.2. In the special case of b1 tð Þ ¼ b1 and b2 tð Þ ¼ b2, the

basic reproduction number R0 of model (2.3) is R0 ¼ r FV�1
� �

, i.e.,

R0 :¼ Rdir
0 þRind

0

¼ clb1 lpþ pc1 þ tð Þ þKab2 lqþ qc1 þ tð Þ
cl lþ tþ c1ð Þ lþ dþ c2ð Þ ; ð3:4Þ

where

Rdir
0 :¼ b1 l pþpc1þtð Þ

lþtþc1ð Þ lþdþc2ð Þ ; Rind
0 :¼ b2K a cl qþqc1þtð Þ

cl lþtþc1ð Þ lþdþc2ð Þ :

Here,Rdir
0 indicates the average number of secondary infections gen-

erated by a single infected individual introduced into a completely
susceptible population directly during their life cycle. Rind

0 indicates
the average number of secondary infections generated by the virus
that is released into the environment during their life cycle.
Remark 3.3. From (3.4), we can know that the basic reproduction
number R0 can be decomposed into two parts, i.e., the direct, Rdir

0 ,
and indirect reproduction number, Rind

0 . Because of the complexity
of R0, defined as the spectral radius of L, and hence, in the numer-
ical simulation in Section 4.2.2, Rdir

0 is modeled as a constant to be
estimated, Rind

0 denoted by Rind
0 tð Þ, to be a periodic time-varying

function constructed by a step function. According to the strong
seasonality in both TB incidences and relative infectivity, the peri-
odicity of Rind

0 tð Þ is considered to be one year, i.e.,
Rind

0 tð Þ ¼ Rind
0 t þ oneyearð Þ. We model Rind

0 tð Þ changes across dif-
ferent months, in other words, we can obtain different values of
Rind

0 s in each month. The value of Rind
0 is restricted to be the same

within each month.
5

3.2. Threshold dynamics

Theorem 3.4. If R0 < 1, the DFE E0 ¼ 0;0;0;0;K=lð Þ of model (2.3)
is global asymptotically stable.
Proof. Consider an auxiliary system

dw1
dt ¼ 1� pð Þb1 tð Þw2 þ 1� qð Þb2 tð Þ N� þ �ð Þw3 � lþ tþ c1ð Þw1;

dw2
dt ¼ pb1 tð Þw2 þ qb2 tð Þ N� þ �ð Þw3 þ tw1 � lþ dþ c2ð Þw2;

dw3
dt ¼ aw2 � cw3;

8>><>>:
ð3:5Þ

which is equivalent to

dw
dt

¼ F tð Þ � V tð Þ þ �M tð Þð Þu;

where w ¼ w1;w2;w3ð ÞT and

M tð Þ ¼
0 0 1� qð Þb2

0 0 qb2

0 0 0

0B@
1CA:

It follows Lemma 2.2 that there exits a positivex-periodic func-
tion v tð Þ ¼ v1;v2 tð Þ;v3 tð Þð Þ such that eptv tð Þ is a solution of (3.5),
where p ¼ 1

x ln r UF�VþeMð Þ. Choose t1 > t0 and a small number
a > 0 such that w t1ð Þ 6 av 0ð Þ. Then we can get
w tð Þ 6 av t � t1ð Þep t�t1ð Þ for t > t1. By the comparison principle, we
have

u1 tð Þ;u2 tð Þ;u tð Þð ÞT 6 w tð Þ 6 av t � t1ð Þep t�t1ð Þ; 8 t > t1;

where T is the transposition of the vector. It follows from R0 < 1
that r UF�V xð Þð Þ < 1. Since r UF�VþeM xð Þð Þ is continuous for all small
e, we can choose e > 0 small enough such that r UF�VþeM xð Þð Þ < 1.
Hence, we get p < 0. It follows that w tð Þ ! 0 as t ! 1. Hence
limt!1 u1; u2;u3ð Þ ¼ 0;0; 0ð Þ. By the fourth and fifth equation of
model (2.3), we get limt!1u4 tð Þ ¼ 0; limt!1u5 tð Þ ¼ K

l. This

indicates that DFE E0 of model (2.3) is global asymptotically
stable.

In the following, we attempt to explore the uniform persistence
of model (2.1) when R0 > 1. Define

X :¼ u1;u2;u3;u4;u5ð Þ : ui P 0; i ¼ 1;2; � � �5f g;
X0 :¼ u1;u2;u3;u4;u5ð Þ 2 X : ui > 0; i ¼ 1;2;3;4f g;
@X0 :¼ X n X0:

Lemma 3.5. X and X0 are positively invariant.
Proof. From the fifth equation of model (2.3), we can derive that

du5

dt
P K� a tð Þu5;

where a tð Þ ¼ lþ b1 tð Þ u1
N þ b2 tð Þu3. Then

u5 tð Þ P e�
R t

0
a s1ð Þds1 u0

5 þK
Z t

0
e
R s2
0

a s1ð Þds1ds2
� �

> 0; 8 t > 0: ð3:6Þ

By (Smith, 1996, Theorem 4.1.1) as generalized to nonau-
tonomous systems, the irreducibility of the cooperative matrix
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eM tð Þ¼

� lþtþc1ð Þ 1�pð Þb1 tð Þu5N 1�qð Þb2 tð Þu5 0
t pb1 tð Þu5N � lþdþc2ð Þ qb2 tð Þ 0
0 a �c 0
c1 c2 0 � lþqð Þ

0BBB@
1CCCA

implies that u1 tð Þ;u2 tð Þ;u3 tð Þ; u4 tð Þð ÞT � 0; 8 t > 0. Thus, X and X0

are positively invariant. Clearly, @X0 is relatively closed in X.

Let P : X ! X be the Poincaré map associated with model (2.3),
that is,

P u0ð Þ ¼ u x;u0ð Þ; 8u0 2 X;

where u t;u0ð Þ is the unique solution of model (2.3) with u 0ð Þ ¼ u0.
Then

Pm u0ð Þ ¼ u mx;u0ð Þ; 8m P 0:

From Theorem 2.1, we know that P is a dissipative point on R5
þ.

Thus P admits a global attractor, which attracts every bounded set
in R5

þ. We then introduce the following lemma.

Lemma 3.6. If R0 > 1, there exists a r� > 0 such that, 8 u0 2 X0,
when ku0 � E0k 6 r�, there is

lim sup
m!1

d Pm u0ð Þ; E0ð Þ P r�;

where d Pm u0ð Þ; E0ð Þ represents distance between Pm u0ð Þ and E0.
Proof. Since R0 > 1, Lemma 3.1 implies that r UF�V xð Þð Þ > 1. Then
we can choose � > 0 small enough that r UF�VþM� xð Þð Þ > 1, where

M� tð Þ ¼
0 2� 1�qð Þb2 tð Þ

N�þ� 1� qð Þb2 tð Þ�
0 2�qb2 tð Þ

N�þ� qb2 tð Þ�
0 0 0

0B@
1CA: ð3:7Þ

By the continuity of the solutions with respect to the initial val-
ues, for � > 0, there exists a r� > 0 such that 8 u0 2 X0 with
ku0 � E0k 6 r�, we can obtain

ku t;u0ð Þ � u t; E0ð Þk 6 �; 8t 2 0;x½ �:
We proceed by contradiction to prove that

lim sup
m!1

d Pm x0ð Þ; E0ð Þ P r�:

If not, we can get

lim sup
m!1

d Pm x0ð Þ; E0ð Þ < r� for some u0 2 X0:

Without loss of generality, we can assume that
d Pm u0ð Þ; E0ð Þ < r� for all m P 0. Then we can get

ku t; Pm u0ð Þð Þ � u t; E0ð Þk 6 �; 8t 2 0;x½ �:
For any t P 0, let t ¼ mxþ t0, where t0 2 0;x½ � and m ¼ t

x

� 	
,

which is the greatest integer less than or equal to t
x. Then,

ku t; Pm u0ð Þð Þ � u t; E0ð Þk ¼ ku t0; Pm u0ð Þð Þ � u 0; E0ð Þk 6 �; 8 t P 0:

It follows from (2.5) that there exists t2 > t0 that
N� � � 6 u5 tð Þ 6 N� þ �;0 6 ui 6 �; i ¼ 1;2;3;4 and u5

N P N���
N�þ� ¼

1� 2�
N�þ� for t > t2.
Consider the following auxiliary system

d �w1
dt ¼ 1�pð Þb1 tð Þ 1� 2�

N�þ�

� �
�w2þ 1�qð Þb2 tð Þ N� ��ð Þ �w3� lþtþc1ð Þ �w1; t>0;

d �w2
dt ¼pb1 tð Þ 1� 2�

N�þ�

� �
�w2þqb2 N� ��ð Þ �w3þtu1� lþdþc2ð Þ �w2; t>0;

d �w3
dt ¼a �w2�c �w3; t>0:

8>>><>>>:
ð3:8Þ

which is equivalent to
6

d�w
dt

¼ F tð Þ � V tð Þ �M� tð Þð Þu;

where �w ¼ �w1; �w2; �w3ð ÞT and M� tð Þ defined as in (3.7).
It follows from Lemma 2.2 that there exists a positive x-

periodic function �v tð Þ ¼ �v1; �v2 tð Þ; �v3 tð Þð Þ such that e�pt �v tð Þ is a
solution of (3.5), where �p ¼ 1

x ln r UF�V�M�ð Þ > 0. Choose t3 > t2 and
a small number �a > 0 such that �w t3ð Þ P �a�v 0ð Þ, Then we have get
�w tð Þ P �a�v t � t3ð Þe�p t�t3ð Þ for t > t3. By the comparison principle, we
have
u1 tð Þ;u2 tð Þ;u tð Þð ÞT P �w tð Þ P a�v t � t3ð Þe�p t�t3ð Þ; 8 t > t3:

Then u1 tð Þ;u2 tð Þ; u tð Þð ÞT ! 1 as t ! 1, a contradiction. This com-
pletes the proof.

Define

M@ :¼ u0 2 @X0 : Pm u0ð Þ 2 @X0;m P 0

 �

:

Lemma 3.7. P is uniformly persistent with respect to X0; @X0ð Þ.
Proof. Now we first prove

M@ ¼ 0;0;0;0;u5ð Þ 2 X;u5 P 0f g: ð3:9Þ
Noting that

0;0;0;0;u5ð Þ 2 X;u5 P 0f g#M@;

we only need to prove that

M@ # 0;0;0;0;u5ð Þ 2 X;u5 P 0f g:
It suffices to prove that for any u0 2 M@ , we have

ui mxð Þ ¼ 0;8m P 0; i ¼ 1;2;3;4. If it is not true, there exists an
m1 P 0, such that u1 m1xð Þ;u2 m1xð Þ;u3 m1xð Þ; u4 m1xð Þð ÞT > 0.
Thus (3.6) implies that

u5 tð Þ > 0; 8 t > m1x

by replacing the initial time 0 with m1x. Similarly, By (Smith, 1996,
Theorem 4.1.1) as generalized to nonautonomous systems, it fol-
lows that u1 tð Þ;u2 tð Þ; u3 tð Þ;u4 tð Þð ÞT � 0; 8 t > m1x. where the initial

value u1 m1xð Þ;u2 m1xð Þ;u3 m1xð Þ;u4 m1xð Þð ÞT > 0. Then we have
u tð Þ 2 X0; 8 t > m1x, i.e,

u tð Þ R @X0; 8 t > m1x:

Thus, if u0 R 0;0;0;0;u5ð Þ 2 X;u5 P 0f g, then u0 R M@ , which
contradicts with u0 2 M@ . Hence, M@ # 0;0;0;0;u5ð Þ 2 X;u5 P 0f g,
which implies that (3.9) holds. Clearly, E0 is the only fixed point
of P and acyclic in @M. Moreover, Lemma 3.6 implies that E0 is
an isolated invariant set in X and Ws E0ð Þ \ X0 ¼ £, where Ws E0ð Þ
is the stable set of E0. By the acyclicity theorem on uniform persis-
tence for maps citep[Thorem 3.1.1]zhao2003dynamical, it follows
that P is uniformly persistent with respect to X0; @X0ð Þ.
Definition 3.8. (Zhao et al., 2003, p.18) (Uniformly persistent)
Model (2.3) is said to be uniformly persistent if there exists a con-
stant 1 > 0 such that any solution u tð Þ ¼ u1; u2; u3; u4;u5ð Þ with
u0 2 X0 satisfies

min lim inf
t!1

ui tð Þ
n o

P 1; i ¼ 1;2; � � � ;5: ð3:10Þ
Theorem 3.9. IfR0 > 1, model (2.3) has at least one positive periodic
solution which is uniformly persistent.
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Proof. It follows from Lemma 3.7 and (Zhao et al., 2003, Thorem
3.1.1) that the solution of model (2.3) is uniformly persistent.

Furthermore, taking advantage of Zhao et al. (2003,
Theorem 1.3.6), P has a fixed point u� 0ð Þ 2 X0. Then, we see that
u�
i 0ð Þ > 0 i ¼ 1;2;3;4ð Þ;u�

5 0ð Þ P 0. We further prove that u�
5 0ð Þ > 0.

Suppose not, if u�
5 0ð Þ ¼ 0, form the last equation of model (2.3), we

derive that

du�
5

dt
P K� a� tð Þu�

5

with u�
5 0ð Þ ¼ u�

5 nxð Þ ¼ 0;n ¼ 1;2;3 � � �, where a� tð Þ ¼ lþ b1 tð Þ u�1
N þ

b2 tð Þu�
3. Therefore, we have

u�
5 nxð Þ P e�

R nx

0
a� s1ð Þds1 u5 0ð Þ� þK

Z t

0
e
R s2
0

a� s1ð Þds1ds2
� �

> 0; 8 t > 0; ð3:11Þ
which yields a contradiction. Hence, u�

5 0ð Þ > 0 and u� 0ð Þ is a positive
x-periodic solution of model (2.3). This completes the proof.

We next consider the special case of b1 tð Þ ¼ b1; b2 tð Þ ¼ b2. For
simplicity, define

u að Þ :¼laþac1þt;
/ að Þ :¼ 1�að Þ lþqþc1ð Þ;
w að Þ :¼ aqþlþc2ð Þc1þ 1�að Þqþlþtð Þc2þl2þlqþtlþqt;

where a 2 0;1½ �.
To find endemic equilibrium, we make the substitution x ¼ u2

N .
Then,

1� pð Þb1 tð Þu5xþ 1� qð Þb2 tð Þu5u3 � lþ tþ c1ð Þu1 ¼ 0;
tu1 þ pb1 tð Þu5xþ qb2 tð Þu5u3 � lþ dþ c2ð Þu2 ¼ 0;
au2 � cu3 ¼ 0;
c1u1 þ c2u2 � lu4 � qu4 ¼ 0;
K� lu5 � b1 tð Þu5x� b2 tð Þu5u3 þ qu4 ¼ 0:

8>>>>>><>>>>>>:
ð3:12Þ

Since K� lN � du2 ¼ 0, By using some algebraic computations,
we can obtain

u1 ¼ xK lþdþc2ð Þa0
d xRdir

0 þlRdir
0 þlRind

0ð Þu pð Þu qð Þ d xþlð Þ; u2 ¼ Kx
lþdx ;

u3 ¼ aKx
c lþdxð Þ ; u5 ¼ K

lR0þdRdir
0 x

;

where x is a positive real root of the following equation:

f xð Þ ¼ Ax2 þ Bxþ C ¼ 0; ð3:13Þ

where,

A ¼ Rdir
0 du qð Þ / pð Þdþ w pð Þð Þ > 0;

B ¼ b1Rdir
0 þ b2Rind

0 þ d lþ qð Þu pð Þu qð Þ 1�Rdir
0

� �
;

C ¼ l lþ qð Þu pð Þu qð Þ 1�R0ð Þ;
and

b1 ¼ lu qð Þ / pð Þdþ w pð Þð Þ > 0; b2 ¼ lu pð Þ / qð Þdþ w qð Þð Þ > 0:

If R0 	 1, then Rdir
0 	 1, C P 0 and B > 0. It follows that Eqn.

(3.13) has no positive real root. If R0 > 1, Eq. (3.13) has a unique
real root x�:

x� ¼ �Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
2A

:

Hence model (2.3) has a unique endemic equilibrium
E� ¼ u�

1;u
�
2;u

�
3;u

�
4;u

�
5

� �
with
7

u�
1 ¼ x�K lþdþc2ð Þa0

d x�Rdir
0 þlR0ð Þu pð Þu qð Þ d x�þlð Þ ; u

�
2 ¼ Kx�

lþdx� ;

u�
3 ¼ aKx�

c lþdx�ð Þ ; u
�
4 ¼ c1u�1þc2u�2

lþq ; u�
5 ¼ K

lR0þdRdir
0 x�

:
ð3:14Þ

In a special case of d ¼ 0, if R0 > 1, model (2.3) has a unique
endemic equilibrium E� ¼ u�

1;u
�
2;u

�
3;u

�
4;u

�
5

� �
with

u�
2 ¼ K R0�1ð Þ lþqð Þu qð Þu pð Þ

l Rdir
0 u qð Þw pð ÞþRind

0 u pð Þw qð Þð Þ ;

u�
1 ¼ u�2 lþc2ð Þ Rdir

0 1�pð Þu qð ÞþRind
0 1�qð Þu pð Þð Þ

R0u pð Þu qð Þ ;

u�
3 ¼ au�2

c ; u�
4 ¼ c1u�1þc2u�2

lþq ; u�
5 ¼ K

R0l
:

ð3:15Þ
4. TB epidemics in Jiangsu, China via numerical simulations

4.1. TB epidemics in Jiangsu, China from 2009 to 2018

The monthly TB incident cases are collected from the Jiangsu
provincial center for diseases control and prevention (CDC) (The
reported tuberculosis cases in Jiangsu province, 2018). In Fig. 3
(a), we show the local TB epidemic from 2009 to 2018. We can
observe that a substantially decreasing trend in the TB incidences,
dropped from some 4000 cases per month in 2009 to some 2000
cases per month in 2018.

The relative infectivity can be (preliminary) quantified by using
the approach in Fine and Clarkson (1982) as well as adopted in
Zhao et al. (2018). The relative infectivity can be easily calculated
by using the ratio of the number of incidences of time t þ 1ð Þ to
the number of incidences of time t, i.e., Qt ¼ casetþ1=caset . This Q
appears to be a simplified version of quantifying the time-
varying (effective) reproduction number by the serial interval
approach as studied and implemented in Wallinga and Teunis
(2004), Fraser (2007) and Zhao et al. (2019). The relative infectivity
of TB, Qt , is quantified in Fig. 3(b).

In Fig. 3(c), we show the strong seasonality (Fine and Clarkson,
1982) in the TB incidence time series in the annualised epidemic
curves. And in Fig. 3(d), we show the annualised relative infectivity
to show the seasonality in the TB infectivity across years. We can
find that the (relative) infectivity in February appeared to be dom-
inant (or the highest) across different months.

4.2. Fitting and estimation results via numerical simulations

4.2.1. Statistical fitting framework
Based on the epidemic model (2.1), we compute the monthly

number of reported cases, Zi, of the i-th month (during the study
period) as

Zi :¼
R
i�th month jc2T dt; ð4:1Þ

where j 2 0;1ð Þ is a constant scaling term for the number of TB
cases. In other words, j represents a combined effect of the TB
symptomatic rate and the reporting rate. Obviously, Zi denotes
the theoretical monthly TB cases yielding from model (2.1).

On the other hand, we treat the observed (or reported) number
of TB cases, Ci for the i-th month, as a partially observed Markov
process (POMP) (King et al., 2016), also know as the hidden Markov
model (HMM) from the theoretical number of cases, i.e., Zi in Eqn.
(4.1).

We adopt the Poisson-distributed priors for the Cis such that all
Cis are assumed to follow Poisson distributions according to the
theoretical outcomes, i.e., Zis (Zhao et al., 2018). In other words,
the rate of Poisson distribution is a variable depending on Zi, and
the observed number of TB cases, Ci, is a random sample from
the (predetermined) Poisson distribution in Eqn (4.2). Therefore,
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Ci 
 Poisson mean ¼ Zið Þ: ð4:2Þ
We denote Li �ð Þ to be the likelihood function of the i-th month,

which is the measurement of the ‘‘probability” of the observed Ci,
given the theoretical number of cases being Zi under the Poisson
distribution (Zhao et al., 2018; He et al., 2009; Lin et al., 2018).

Gathering all Lis, the overall log-likelihood, denoted by l, for the
whole TB incidences time series is given in Eqn (4.3).

l Hð Þ : ¼
XM
i¼1

ln Li CijZ0; . . . ; Zi;Hð Þ½ � ¼
XM
i¼1

ln Li CijZi;Hð Þ½ �; ð4:3Þ

where H is the parameter vector to be estimated. The term M
denotes the total number of months during the study period, i.e.,
from 2009 to 2018. We apply the plug-and-play likelihood-based
inference framework to estimate the maximum likelihood esti-
mates (MLE) of H (He et al., 2009; Lin et al., 2018; Ionides et al.,
2006). The profile likelihood approach is implemented to inference
the confidence intervals of the model parameters to be estimated
(Ionides et al., 2006; Ionides et al., 2017). We use the fixed-time-
step Euler-multinomial algorithm (Zhao et al., 2018; Lin et al.,
2018) to simulate the epidemic model (2.1).

We consider that there are equivalent birth and death rate (by
forcing K ¼ lN ¼ constant in model (2.1)), and zero disease-
induced mortality rate (d ¼ 0) in the whole study period, from
2009 to 2018. In this case, the number of the total population, N,
is a constant, which, in Jiangsu, slightly changed from 78.1 million
in 2009 to 80.5 million in 2018 (The reported tuberculosis cases in
Jiangsu province, 2018).

We attempt to find the MLEs of bothRdir
0 andRind

0 tð Þwithin bio-
logically and clinically reasonable ranges by seeking for maximal
value(s) of l in (4.3). And this R0 reconstruction approach allows
us to project the TB epidemics in an intuitive manner. The projec-
tion are conducted by simulating the model (2.1) with MLEs of the
parameters up to the end of 2019.

The model simulations are conducted by using the software R
(version 3.6.3) (Team, 2013).
4.2.2. Fitting and estimation results
First of all, we show the parameters’ values used for the numer-

ical simulation and sensitivity analysis for model (2.1) in Table 1.
In Fig. 4(a)-(b), we show the MLEs of Rdir

0 and Rind
0 of each

month, respectively. And the annual average R0 is estimated of
1.13, with Rdir

0 of 0.35 (see Fig. 5(a) for details). The Rdir
0 is esti-

mated to be strictly less than one. We can find that the estimated
Table 1
The summary table of model parameters’ values.

parameter value unit statu

c�1
1 ¼ c�1

2
1.5 year fixed

l�1 75 per year fixed
K lN person fixed
p 0.05 per year fixed
q 0.1 per year fixed
a 1 per case day assumed
c 0.1 per day assumed
j 0.01 unit-free fixed
q 0 per day assumed
v 1 per day assumed

b1 tð Þ ¼ b2 tð Þ time-varying per day to be estimated

N 8� 107 person fixed

S 0ð Þ 0.15 unit-free fixed
T 0ð Þ 1� 10�3 unit-free fixed

Te 0ð Þ 1� 10�3 unit-free fixed

R 0ð Þ 1� S 0ð Þ � T 0ð Þ � Te 0ð Þ unit-free fixed
W 0ð Þ 0.04 unit-free assumed
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annual trends in Rind
0 tð Þ (Fig. 4(b)) are consistent with the patterns

in the preliminary descriptive ‘‘infectivity” in Fig. 3(d). We esti-
mated that the Rind

0 in February is larger than one (estimated to
be 6.9 in Fig. 5(b)), whereas those in other months are likely to
below one.

In Fig. 4(c), we give the fitting results and projection to 2019.
We find that a decreasing trend in the fitting results, which
matched the trends in the observed incidence data. The projection
is also likely to maintain these trends in 2019.

It is should be noted that the term b2 is considered as a time-
varying parameter such that the indirect transmission could also
be time-varying. Hence, the Rind

0 tð Þ reconstructed in Fig. 4(b) is
the time-varying reproduction number.

Getting back to the basic reproduction number defined in (3.2),
we agree that it should be in an autonomous setting that all model
parameters are fixed. In this case, the term b2 in (3.2) is the average
of b2 tð Þ, i.e., annual average. Thus, the basic reproduction number,
R0, in (3.2) is the annual average of the time-varying, which is esti-
mated at 1.13 in Fig. 4.

In addition, in the special case of b1 tð Þ ¼ b1 and b2 tð Þ ¼ b2, since,
in (3.4), b1 and Rdir

0 ; b2 and Rind
0 are all one-to-one mapping, the

profile of fitted values of b1 and b2 can thus be directly derived
from the estimates in Fig. 5 and other fixed parameters in Table 1.
We consider the terms Rdir

0 and Rind
0 appear easier to interpret and

more biologically meaningful, and thus we choose to show the fit-
ting values of Rdir

0 and Rind
0 in Fig. 5.

Since the numerical simulation is conducted with the same
complexity in the model structure, we can directly study the
goodness-of-fit (in term of the likelihood) and the fitting errors.
The goodness-of-fit and the error term analyses are demonstrated
in Fig. 6. We can find that the fitted values of the TB incidences are
in line with the observations with the error terms (largely) follow-
ing in a Normally distribution (Fig. 6(a)-(b)). And the mean per-
centage error is close to zero (Fig. 6(c)).
4.2.3. Sensitivity analysis and the trend change in the TB epidemic
Following (Zhao et al., 2018; Zhao et al., 2018; Musa et al., 2019;

Gao et al., 2016; Tang et al., 2016; Tang et al., 2016), we adopt the
partial ranked correlation coefficient (PRCC) for the sensitivity
analysis between the model outcomes and the parameters. The
PRCCs of the R0, infection attack rate (IAR) and the environmental
contamination level of the model (2.1) are estimated. The sensitiv-
ity analysis results are in Fig. 7, and suggest that most of the model
parameters are significantly associated with the TB infectivity, IAR
and the environmental contamination, which should be given pri-
orities in controlling the TB epidemics.

Based on the results of the sensitivity analysis above, we con-
duct the numerical simulations to present the changing dynamics
of the TB epidemics and the environmental contamination levels
with changes in the epidemiological parameters. Fig. 8(a) and (b)
show the trend changes in the TB epidemic with changes in the
Rdir

0 and Rind
0 tð Þ, respectively. Fig. 8(c) and (d) show the trend

changes in the environmental contamination levels with changes
in the parameters a and c, respectively.
5. Concluding remarks

The main focus of this study is to investigate the effects of the
contaminated environments on the TB transmission dynamics in
Jiangsu, China analytically and numerically. Mathematically, we
define the basic reproduction number R0 (cf. (3.2), and prove that
R0 can be used to govern the threshold dynamics of the model: if
R0 < 1, the unique DFE is globally asymptotic stable (cf. Theo-
rem 3.4); while R0 > 1, there is at least one positive periodic solu-



Fig. 4. The estimation of direct, Rdir
0 , and indirect reproduction number, Rind

0 , and the model simulation and projection results. Panel (a) shows the maximal likelihood
estimation (MLE) of Rdir

0 . Panel (b) shows the MLEs of the Rind
0 of each month. Panel (c) presents the model simulation results, the black dots are the observed number of

incidence, the blue line is the model fitting result and the green dashed line is the model projection result. The shading areas represents the 95% credible intervals (CI). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. (a) The profile likelihood of the direct basic reproduction number Rdir
0 ; (b) The profile likelihood of the indirect basic reproduction number, Rind

0 in February as an
example. The green dots are the random prior samples of different set of parameter values for further simulation purpose. The green curve is the smoothed (by the locally
estimated scatterplot smoothing, LOESS) likelihood profile. The horizontal black dashed line is the 95% CI cutoff. The red triangle is the MLE of the parameter of interest. The
two vertical red dashed lines indicate the lower and upper bounds of the 95% CI. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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tion and TB will persist uniformly (Theorem 3.9). Epidemiologi-
cally, we show that the cost of the contaminated environments
affect the transmission dynamics of TB in Jiangsu, China in the fol-
lowing aspects:

(i) Based on the monthly TB incident cases counted by the
Jiangsu CDC (cf. Fig. 3(a) ), the TB incidence time series has
strong seasonality (cf. Fig. 3(c) ). And the annual average R0 is
9

1:13 > 1, then from Theorem 3.9, we can conclude that the TB
in Jiangsu persists under current circumstances. That is, the
TB becomes an endemic disease and will persist in Jiangsu for
a long time. And there is a long way to go to achieve the
world-wide goal towards elimination of tuberculosis by 2050.
(ii) The annualised relative infectivity (cf. Fig. 3(d)) shows that
the relative infectivity in February is dominant across different
months. This is consistent with the estimation of that Rind

0 in



Fig. 6. The matching between the observed and fitted values and the distribution of the fitting error terms, e.g., the differences between observed and fitted values. Panel (a)
shows the (normalised) observations against the fits (dots), and the diagonal line represents the ‘‘y ¼ x” line. Panel (b) shows the Normal quantile–quantile (QQ) plot of the
fitting errors. Panel (c) shows the distribution of the percentage errors, i.e., the ratios of the errors over the observations. Panel (d) shows the distribution of the errors.

Fig. 7. The partial rank correlation coefficients (PRCC) of basic reproduction number in panel (a), the infection attack rate (IAR) in panel (b) and the level of the environmental
contamination in panel (c) against the model parameters. The S 0ð Þ denotes the initial susceptible ratio. The W 0ð Þ denotes the initial environmental contamination level. The
dots are the estimated PRCCs, and the bars represent the 95% CIs. The ranges of model parameters are based on the values in Table 1 having a random perturbation with a
coefficient of variation of 0.2.
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February is 6.9 (cf. Fig. 5(b)), whereas those in other months are
likely to below one. This phenomenon seems to be the first
reported case. For one of the possible explanations, we conjec-
ture that this is induced by the travel or migration with the
winter vacation and the Spring Festival, commonly started since
mid-February of each year and lasted for about 20 days. During
this period, a large number of people working or living outside
of Jiangsu will return to their hometown, and the local CDC will
increase the screening of tuberculosis for returning people.
Moreover, due to population movements and increased expo-
sure rates, the risk of tuberculosis transmission has increased
significantly, and the resulting lagging effect will increase the
number of cases in the next month (see Fig. 3(c)). Although this
has not yet been formally verified in public health filed, it is
desirable in future studies. From the model fitting side, both
of the surveillance reporting and the TB infectivity have similar
effects on the number of TB incidences. This means it is difficult
to disentangle the solo effect of both factor as the same time
based on our model framework. We choose to set the surveil-
lance reporting efforts, in term of j in Eqn (4.1), as a constant
during the entire study period, i.e., 2009–2018, and estimate
the TB infectivity, in term of R0 tð Þ, as a time-varying function.
10
If both R0 and j were set to be time-varying in the fitting pro-
cedure, the potential over-fitting problem as well as the estima-
tion biases in both R0 and j would probably occur. This is
largely due to the effects of R0 and j cannot be disentangled
and thus not independent in our model structure. Although lack
of supporting information or data, our model is still capable to
capture the long-term TB epidemic in Jiangsu. We remark that
more detailed information on quantifying the local TB surveil-
lance and the changing dynamics of the de jure population
and floating population would be very helpful to identifying
more accurate TB infectivity estimates.
(iii) From the numerical results in Fig. 5, we find that merely
controlling the changing dynamics of the TB indirect transmis-
sion, in term of the Rind

0 tð Þ, appears sufficient to successfully
capture the long-term patterns in TB epidemics in Jiangsu. With
Rdir

0 estimated strictly less than one, we remark that the TB epi-
demics are likely to be controlled, in term of R0 < 1, by effec-
tively controlling the indirect transmission path. Also, Fig. 8
indicates that the control measures reduce the Rind

0 tð Þ or Rdir
0

could effectively decrease the number of TB cases. This could
be achieved by providing timely and effective treatment and
maintaining a low environment contamination level. We fur-



Fig. 8. The numerical simulation results with the changes in epidemiological parameters. The panels (a) and (b) are the numbers of TB cases. The panels (c) and (d) are the
levels of the environmental contamination. In panels (a) and (b), the blue lines are the same main results, by using the R0 MLEs, as in Fig. 4(c). In panels (c) and (d), the black
lines are the same main results as in Fig. 4(c). Except for those indicated in the figure legends, all other model parameters and initial conditions are the same as in Table 1.

Y. Cai et al. Journal of Theoretical Biology 508 (2021) 110453
ther find that a lower virus shedding rate, a, and a higher envi-
ronmental clearance rate, c, lead to low level of environment
contamination (Fig. 8) and R0 (Fig. 7), which could control the
TB epidemic efficiently.
(iv) From Fig. 7, the TB transmissibility and number of cases are
positively associated with the effective transmission rates b1

and b2, as well as the virus shedding rate a. The effective control
efforts are suggested to focus on reducing the b1; b2 and a. We
also find that the recovery rates, c1 and c2, and environmental
clearance rate, c, are negatively associated with the TB trans-
missibility and number of cases. Thus, increasing c1 and c2
are also likely to control the TB epidemics.

It is worthy to note that, increasing number of evidences sup-
port that the respiratory infections are primarily transmitted
between people through respiratory droplets and contact routes
World Health, 2020; Liu et al., 2020; Li et al., 2020; Huang et al.,
2020). Recently, Gao et al. (2020) investigated the relative contri-
butions of different transmission routes to a multi-route transmit-
ted respiratory infection and found that all transmission routes can
dominate the total transmission risk under different scenarios. In
the present paper, we model the transmissions of the TB into
two categories, one is direct, and the other is indirect, which is
measure by W tð Þ representing the effects of the contaminated
environments. Our model (2.1) provides a straightforward method
to evaluate the transmission efficiency of different transmission
routes of TB.

In addition, the progress in controlling TB is, however, currently
influenced by some major factors, such as multidrug resistant
(MDR) (Dodd et al., 2016; Knight et al., 2019; Liu et al., 2019),
ambient particulate air pollution (Liu et al., 2019; Peng et al.,
2017; Liu et al., 2019), etc. The effects of MDR or air pollution on
the transmission dynamics of TB in Jiangsu, China will be desirable
in our future studies.
11
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