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Abstract

Polycomb (PcG) and trithorax (trxG) proteins play important roles in establishing lineage-specific genetic programs through
induction of chromatin modifications that lead to gene silencing or activation. Previously, we described an association
between the MLL/SET1 complexes and a highly restricted, gene-specific DNA-binding protein Ap2d that is required for
recruitment of the MLL/SET1 complex to target Hoxc8 specifically. Here, we reduced levels of Ap2d and Ash2l in the
neuroblastoma cell line, Neuro2A, and analyzed their gene expression profiles using whole-genome mouse cDNA
microarrays. This analysis yielded 42 genes that are potentially co-regulated by Ap2d and Ash2l, and we have identified
evolutionarily conserved Ap2-binding sites in 20 of them. To determine whether some of these were direct targets of the
Ap2d-Ash2l complex, we analyzed several promoters for the presence of Ap2d and Ash2l by chromatin immunoprecip-
itation (ChIP). Among the targets we screened, we identified Fgfr3 as a direct transcriptional target of the Ap2d-Ash2l
complex. Additionally, we found that Ap2d is necessary for the recruitment of Ash2l-containing complexes to this promoter
and that this recruitment leads to trimethylation of lysine 4 of histone H3 (H3K4me3). Thus, we have identified several
candidate targets of complexes containing Ap2d and Ash2l that can be used to further elucidate their roles during
development and showed that Fgfr3 is a novel direct target of these complexes.
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Introduction

PcG and trxG proteins act antagonistically to maintain

heritable patterns of gene expression, with the former marking

genes for repression and the latter for activation. PcG

complexes are associated with trimethylation of histone H3 at

lysine 27 (H3K27me3) whereas trxG complexes are linked to

H3K4me3 [1,2]. This relationship embodies the characteristic

of cellular memory to establish the identity in each cell type

during development. Previously, these marks were considered to

be static; recent evidence, however, has shown that these marks

are involved in dynamic gene regulation through active

recruitment of PcG and trxG complexes during cellular

differentiation [2,3]. Studies using embryonic stem (ES) cells

and neural and muscle progenitors reveal that these marks vary

depending on the cell type and that the majority of these marks

is present at the promoters of key developmental genes [3,4].

Furthermore, experiments that are based on chromatin immu-

noprecipitation coupled to DNA microarray analysis (ChIP-

chip) and the more recent ChIP-seq, in which enriched DNA is

directly sequenced, reveal an association between the intensity

of the H3K4me3 epigenetic mark at the promoter and active

transcription [3]. Conversely, the presence of the H3K27me3

mark is associated with gene repression [3]. These data suggest

that PcG and trxG proteins play a role in establishing lineage-

specific genetic programs through induction of chromatin

modifications.

The trxG protein group includes members of the MLL/SET1

family of histone lysine methyltransferases (HKMTs) and their

associated proteins. The MLL/SET1 family consists of six

members, Mixed Lineage Leukemia 1 (MLL1), MLL2 (ALR),

MLL3 (HALR), MLL4, SET1A and SET1B, which share a

catalytic SET domain that has been shown to have H3K4

methyltransferase activity [5,6,7,8]. MLL/SET1 proteins exist in

multimeric complexes that contain three highly conserved

subunits: Ash2l, RbBP5 and WDR5 [9]. Recently, it had been

reported that these subunits are important for regulating the

enzymatic activity of the SET domain-containing factor. Ash2l, in

particular, was shown to be critical for H3K4me3 as downregu-

lation of Ash2l leads to a genome-wide decrease in this epigenetic

mark [10].

We recently reported that the gene-specific transcription factor

Activating protein 2d (Ap2d) is important for the recruitment of

MLL2 to the Hoxc8 locus during embryogenesis and that this

recruitment leads to H3K4me3 and subsequent gene activation

[11]. Ap2d is a member of the Ap2 family of sequence-specific

DNA-binding proteins, which consists of Ap2a, -b, -c, -d and -e.
Ap2 proteins bind a GC-rich consensus sequence that is found on

a variety of cellular and viral enhancers. Ap2d is considered the

most divergent family member, as it has a unique transactivation
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domain (TAD) that has been shown to specifically bind Ash2l.

Additionally, Ap2d’s gene, Tcfap2d, has a highly restricted

expression pattern and is found in the developing myocardium,

central nervous system and retina [12].

To search systematically for Ap2d- and Ash2l-regulated targets,

we assessed the transcriptome using cDNA microarrays to identify

genes whose expression was significantly decreased when either

protein was diminished and then filtered those results using the

criterion of an evolutionarily conserved Ap2-binding site in the

promoter. To identify true targets of Ap2d and Ash2l-containing

complexes among several candidates, we tested for the presence of

Ap2d and Ash2l at their promoters. Among the genes we tested,

we identified Fgfr3 as a direct target of Ap2d and Ash2l given that

both proteins were present at the Fgfr3 promoter and that

downregulation of either Ap2d or Ash2l resulted in a decrease of

Fgfr3 expression. Thus, we provide evidence suggesting that Ap2d
plays an important role in altering the epigenetic landscape of a set

of developmentally regulated targets through recruitment of

Ash2l-containing HKMT complexes.

Results

Identification of Ap2d and Ash2l Target Genes by cDNA
Microarray Analysis

To identify targets of Ap2d and Ash2l, we performed whole

genome analysis of cDNA expression levels obtained from

Neuro2a cells treated with either Tcfap2d- or Ash2l-specific RNAi

or a scrambled control. As shown in Fig. 1, treatment with either

Tcfap2d- or Ash2l-specific RNAi resulted in a significant decrease of

their respective transcripts only. Previously, we had shown that

treatment with Ash2l-specific RNAi resulted in a decrease in Ash2l

protein only [11].

To systematically identify genes regulated by both Ap2d and

Ash2l at the genome-wide scale, we obtained cDNAs from RNAi-

treated Neuro2a cells and performed microarray analysis using the

GeneChipH Mouse Genome 430 2.0 Array. Triplicate microarray

experiments were performed comparing signals obtained from

cells treated with either Tcfap2d- or Ash2l-specific RNAi to those of

cells treated with a scrambled control. Signal values were

calculated using the MAS5 and PLIER statistical algorithms.

Genes that had a significance level of p,0.05 and a fold change

greater than 1.1 were selected for analysis. Using signal values

obtained from the MAS5 probe summarization algorithm, we

identified 917 and 806 genes that were differentially expressed

when Ap2d or Ash2l, respectively, was downregulated. Compar-

ison of these two groups yielded 76 genes whose expression was

significantly altered when Tcfap2d and Ash2l were knocked down

individually (Fig. 2A). Given that Ap2d and Ash2l form a complex

that is involved in H3K4me3, we assumed that a reduction in

either Ap2d or Ash2l would lead to decreased expression of their

direct targets. Hence, to identify candidate targets of the Ap2d-

Ash2l complex, we focused solely on genes that were downreg-

ulated when they were reduced. Of the 76 genes whose expressed

was significantly changed when Ap2d and Ash2l were decreased,

33 genes with known function were downregulated. To determine

whether we could identify additional targets that had not been

previously identified by MAS5, we applied an alternative method

using the PLIER probe summarization algorithm to obtain signal

values. Through this method, we identified 9 additional genes that

were downregulated when Ap2d and Ash2l levels were decreased.

Altogether, 42 genes were identified as candidate targets of the

Ap2d-Ash2l complex (Fig. 2B).

Functional annotation was performed based on gene ontology

(GO) for the 42 genes that were downregulated in RNAi-treated

cells (Table 1). A majority of the genes encodes for proteins

that are involved in particular developmental functions, such as

transcriptional regulation and signal transduction (Fig. 2C).

Indeed, a significant enrichment of transcriptional regulators was

identified in our analysis as only a small percentage (,4%) of

genes encode for this class of genes in the mouse genome [14].

Additionally, these gene functions are consistent with the role of

both Ap2d and Ash2l in development. We therefore concluded

that these genes were probable targets of the Ap2d-Ash2l

complex. Altogether, these candidate targets may shed some

insight into the role of the Ap2d-Ash2l complex during

development.

Figure 1. Tcfap2d and Ash2l are downregulated in Neuro2a cells treated with either Ap2d or Ash2l RNAi. Total RNA was extracted 72
hours post-transfection from Neuro2a cells treated with Tcfap2d- or Ash2l-specific siRNA or scrambled control. Gapdh, Tcfap2d and Ash2l transcript
levels were quantified by real-time PCR. Normalized values were calculated as percentages of transcript levels detected in cells treated with the
scrambled control. Significant differences are as indicated with * (p#.001).
doi:10.1371/journal.pone.0008535.g001

Fgfr3 Is a Target of Ap2d
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Prediction of Evolutionarily Conserved Ap2-Binding Sites
in the Promoter Region of Putative Targets

To identify direct targets of the Ap2d-Ash2l complex, we

searched the promoters of the 42 candidate genes for evolution-

arily conserved Ap2-binding sites using rVista 2.0 [15]. We

analyzed genomic sequences up to 5 kilobases (kb) upstream and

2 kb downstream of the transcriptional start site (TSS). Of the 42

candidate targets tested, we found highly conserved Ap2-binding

sites in 21 of 42 genes we assessed (Table 1). Given that a number

of the candidate genes had Ap2-binding sites within 5 kb of the

TSS, we concluded that these genes with Ap2-binding sites might

be direct targets of the Ap2d-Ash2l complex.

Knockdown of Tcfap2d and Ash2l Leads to Decreased
Expression of Candidate Ap2d and Ash2l Targets

To determine whether candidate targets with evolutionarily

conserved Ap2-binding sites were indeed regulated by Ap2d and

Ash2l, we investigated the expression level of these targets upon

downregulation of Ap2d or Ash2l. We selected a number of genes

that had roles in transcriptional regulation, development and

signal transduction and tested the expression level of these genes

using quantitative RT-PCR. Steady-state transcript levels for

Plexin A3 (Plxna3), Fibroblast growth factor receptor 3 (Fgfr3) and

Dickkopf homolog 3 (Dkk3) were significantly downregulated in

Neuro2a cells after treatment with either Tcfap2d- or Ash2l-specific

RNAi (Fig. 3). Plxna3, Fgfr3 and Dkk3 encode proteins that play

important roles in neuronal development [16,17,18]. Ap2d, in

turn, has been implicated in neuronal development due to its

highly restricted expression pattern in this tissue during embryo-

genesis [12]. Furthermore, MLL complexes have been implicated

in neuronal differentiation, as MLL recruitment leads to increased

H3K4me3 and activation of neuronal-specific genes [19]. Given

that the candidate genes have overlapping roles in neuronal

development with Ap2d and Ash2l-containing complexes, we

predicted that these candidate genes were likely to be direct targets

of Ap2d and Ash2l.

Ap2d Recruits Ash2l to the Fgfr3 Locus and Promotes
H3K4me3

To identify direct targets of Ap2d and Ash2l, we determined

whether these proteins were present on the Fgfr3, Plxna3 and Dkk3

promoters. We hypothesized that Ap2d and Ash2l would bind the

promoters of these genes through highly conserved Ap2-binding

sites that were previously identified in silico. To test this hypothesis,

we performed chromatin immunoprecipitation (ChIP) using

antibodies against V5/Ap2d and Ash2l and analyzed the bound

DNA by quantitative PCR. We found that Ap2d and Ash2l were

present only at the Fgfr3 promoter. Additionally, these proteins co-

localized at various regions of the promoter that were highly

enriched in evolutionarily conserved Ap2-binding sites (Fig. 4A).

These regions include the sites ,1.2 kb (21.2 kb) upstream and

,200 bp (TSS) and ,1.4 kb (+1.4 kb) downstream of the TSS.

To determine whether Ap2d recruits Ash2l-containing histone

methyltransferases to the Fgfr3 promoter, we performed ChIP

analysis with anti-Ash2l antibodies and Neuro2a cells treated with

Tcfap2d-specific siRNA. Downregulation of Ap2d significantly

decreased the association of Ash2l with the 21.2 kb, TSS and

+1.6 kb sites (Fig. 4B). Having demonstrated an Ap2d-dependent

recruitment of Ash2l, we next determined whether this recruit-

ment altered H3K4 trimethylation at the Fgfr3 locus, as this

epigenetic status marks transcriptional initiation [20,21]. We

performed ChIP experiments using anti-trimethylated H3K4

antibodies with chromatin fragments obtained from Neuro2a cells

Figure 2. Ap2d and Ash2l regulate a variety of genes involved
in development. (A) Downregulation of Tcfap2d and Ash2l in cells
leads to the differential expression of 917 and 806 genes, respectively.
Comparison of these groups yields 76 genes whose expressions are
changed when both Tcfap2d and Ash2l levels are reduced. (B) Among
the 713 and 409 genes that are downregulated when Tcfap2d or Ash2l
are decreased, respectively, 42 genes are decreased when both genes
are reduced. (C) Functional annotation based on gene ontology (GO)
reveal that the majority of the 42 genes encode for a variety of
developmental proteins involved in transcriptional regulation and
signal transduction. Microarray analysis was performed with cDNAs
obtained from Neuro2a cells treated with either Tcfap2d- or Ash2l-
specific RNAi or a scrambled control. Signal values were calculated
using the MAS5 and PLIER statistical algorithms. Genes with a
significance level of p,0.05 as compared to the scrambled control
were selected for analysis.
doi:10.1371/journal.pone.0008535.g002

Fgfr3 Is a Target of Ap2d
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Table 1. Ap2d and Ash2l Candidate Target Genes in Neuro2a Cells.

Gene Title Gene Symbol Accession Number Number of motifs

Transcription factors and regulators rVista*

expressed sequence AA407331 AA407331/Smad2 NM_010754.4 7

DAZ interacting protein 1-like Dzip1l NM_028258

EBNA1 binding protein 2 Ebna1 bp2 NM_026932 1

eukaryotic translation initiation factor 2C, 3 Eif2c3 NM_153402 1

Kruppel-like factor 5 Klf5 NM_009769 3

leucine rich repeat and fibronectin type III domain containing 1 Lrfn1 NM_030562 8

nuclear factor I/X Nfix NM_001081981 12

zinc finger homeobox 3 Zfhx3 NM_007496 17

zinc finger protein 655 Zfp655 NM_028298

zinc finger, MYM-type 6 Zmym6 NM_177462

Secreted factors

dickkopf homolog 3 Dkk3 NM_015814

Signal transduction

ATP-binding cassette, sub-family D (ALD), member 1 Abcd1 NM_007435 3

rho/rac guanine nucleotide exchange factor (GEF) 18 Arhgef18 NM_133962

DIX domain containing 1 Dixdc1 NM_178118 4

fibroblast growth factor receptor 3 Fgfr3 NM_008010 8

gamma-aminobutyric acid (GABA-A) receptor, pi Gabrp NM_146017

GTPase activating protein and VPS9 domains 1 Gapvd1 NM_025709 2

Differentiation/Development/Tissue specific expression

crystallin, zeta Cryz NM_009968

filamin, beta Flnb NM_134080

low density lipoprotein receptor-related protein 4 Lrp4 NM_172668 6

plexin A3 Plxna3 NM_008883 6

Nucleotide metabolism

arginine/serine-rich coiled-coil 2 Rsrc2 NM_001005525 2

Protein metabolism

argininosuccinate lyase Asl NM_133768

carbonic anhydrase 11 Car11 NM_009800

Esterase D/formylglutathione hydrolase Esd NM_016903

flavin containing monooxygenase 2 Fmo2 NM_018881

histocompatibility (minor) HA-1 Hmha1 NM_027521 2

Zinc finger, DHHC domain containing 13 Zdhhc13 NM_028031 1

Intracellular Transport

spire homolog 1 (Drosophila) Spire1 NM_194355

vacuolar protein sorting 13B (yeast) Vps13b AK122302

Ubiquitination

BRCA1/BRCA2-containing complex, subunit 3 Brcc3 NM_145956

ubiquitin-activating enzyme E1, Chr Y 1 Ube1y1 NM_011667

Proteolysis

AE binding protein 1 Aebp1 NM_009636

methionine aminopeptidase-like 1 Metapl1 NM_025633 1

protease, serine, 36 Prss36 NM_001081374

Actin Cytoskeleton Organization

coronin, actin binding protein, 2B Coro2b NM_175484

Transport

ATPase, class II, type 9A Atp9a NM_015731 8

Cell Cycle/Apoptosis

cell division cycle and apoptosis regulator 1 Ccar1 NM_026201

Fgfr3 Is a Target of Ap2d
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treated with either Tcfap2d-specific siRNA or a scrambled control.

We found significantly reduced levels of H3K4 trimethylation at

the Fgfr3 locus when Ap2d was downregulated (Fig. 4C). These

results indicate that Ap2d recruits Ash2l to the Fgfr3 promoter

resulting in H3K4me3 and increased gene activation. It should be

noted that downregulation of Ap2d did not alter Ash2l and Alr

protein levels similar to previous results [11].

Discussion

In this study, we identified a number of candidate targets of

Ap2d and Ash2l by comparing the gene expression profiles of

Neuro2a cells treated with Tcfap2d- or Ash2l-specific RNAi.

Functional classification of probable Ap2d- and Ash2l-regulated

targets revealed an overrepresentation of genes involved in

transcriptional regulation, signal transduction and development.

We also identified a number of genes that were involved in the

Wnt/b-catenin pathway (Dixdc1, Dkk3, Lrp4, AA407331/Smad2)

and the small GTPase-mediated signaling pathway (Arhgef1,

Gapvd1) implying a probable role of Ap2d and Ash2l-containing

complexes in these developmental pathways. Moreover, a

significant portion of these candidate genes (21 out of 42)

contained evolutionarily conserved Ap2-binding sites. We dem-

onstrated that one of the three candidate genes we assessed, Fgfr3,

was indeed a direct target of Ap2d and Ash2l given that both

proteins co-localized at the promoter and that downregulation of

Ap2d or Ash2l resulted in decreased Fgfr3 expression. Given that

we had only assessed a limited window for Ap2-binding sites and

only those sites for Ap2d-Ash2l binding, it should be noted that the

genes for which we did not find any Ap2 binding sites might have

binding sites further up- and downstream of the regions that we

had assessed. As such, genes that were downregulated but for

which we failed to find an Ap2-binding site are not necessarily false

positives or indirectly regulated.

A growing body of evidence has shown that Fgfr1, -2 and -3

play important roles in the proliferation and differentiation of

neural stem cells (NSCs). Immunocytochemical studies with NSCs

derived from E15 rat striatum showed that expression of these

receptors is developmentally regulated and cell lineage-specific.

During the first day of culture, 50% and 70% of the NSCs or early

precursors expressed Fgfr1 and -2, respectively, while a restricted

population expressed Fgfr3 [22]. After 10 days in culture, the

number of cells expressing Fgfr1 and -2 was significantly decreased

to 15% of the total cell number whereas those expressing Fgfr3

comprised a significant portion of the population suggesting that

Fgfr3 is increased during the process of cellular differentiation [22].

Gene Title Gene Symbol Accession Number Number of motifs

dendrin Ddn AK158894 4

Nuclear mitotic apparatus protein 1 Numa1 NM_133947

Disease

carnitine deficiency-associated gene expressed in ventricle 3 Cdv3 NM_175565 4

Misc

follicular lymphoma variant translocation 1 Fvt1 NM_027534

*Number of evolutionarily conserved Ap2-binding sites within 5 kb upstream and 2 kb downstream of the transcriptional start site (TSS).
doi:10.1371/journal.pone.0008535.t001

Table 1. Cont.

Figure 3. Ap2d and Ash2l regulate Plxna3, Fgfr3 and Dkk3 expression in Neuro2a cells. Plxna3, Fgfr3 and Dkk3 are downregulated
when Ap2d and Ash2l are downregulated. Total RNA was extracted 72 hours post-transfection from Neuro2a cells treated with Tcfap2d- or
Ash2l-specific siRNA or scrambled control. Gapdh, Zfhx3, Plxna3, Fgfr3, Dkk3 and Sp7 transcript levels were quantified by real-time PCR. Normalized
values were calculated as percentages of transcript levels detected in cells treated with the scrambled control. Significant differences are as indicated
with * (p#.05).
doi:10.1371/journal.pone.0008535.g003

Fgfr3 Is a Target of Ap2d
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These results indicate that Fgfr3 may play a critical role in

terminal differentiation while Fgfr1 and -2 may be important for

earlier events, such as cell specification. Additionally, these Fgfr-

positive cells were probed with various cell-lineage markers to

determine whether there was an enrichment of a specific Fgfr in a

particular cell lineage. Fgfr1 and -2 were detected in early

oligodendroglial precursors whereas Fgfr3 was detected in early

oligodendroglial precursors, oligodendrocytes and astrocytes [22].

These data suggest that Fgfr1–3 play specific roles in the

differentiation of NSCs into neurons, oligodendrocytes and

astroctyes. To demonstrate that Fgfr1, 2 and 3 have roles in

neuronal differentiation, NSCs were treated with basic FGF

(bFGF), which is a ligand for these receptors. As predicted,

treatment with exogenous bFGF resulted in increased proliferation

of NSCs and an increased number of oligodendrocytes after seven

days in culture [22]. Recently, mice were generated carrying

various combinations of Fgfr mutant alleles to establish the role of

Fgfr in vivo [23]. As predicted, mice with mutations in two or three

Fgfr genes demonstrated patterning defects and increased apoptosis

in the CNS, supporting the notion that Fgfr’s are important for cell

survival and identity [23]. Altogether, these data imply that Fgfr1,

-2 and -3 play important roles in the ability of NSCs to self-renew

and differentiate into distinct neuronal cell types. Moreover, their

expressions in the developing CNS overlap with that of Tcfap2d

confirming the role of Ap2d in Ffgr3 regulation during develop-

ment [24]. Indeed, these roles are consistent with those of trxG

proteins whose functions have been linked to cell differentiation

and memory.

Although we identified several Ap2d- and Ash2l-regulated

genes, a vast majority of differentially expressed genes did not

overlap when the gene expression profiles were compared between

cells treated with Tcfap2d-specific RNAi and those treated with

Ash2l-specific RNAi. Given that Ash2l and its associated proteins

are expressed ubiquitously, we hypothesized that Ash2l achieved

its specificity through interactions with developmentally regulated

transcription factors, such as Ap2d. This would imply that Ash2l

would have functions independent of those attributed to Ap2d.

Indeed, we found that only 76 out of 806 differentially expressed

genes in Ash2l RNAi-treated cells overlapped with those in Ap2d
RNAi-treated cells. Similarly, Ap2d may also interact with other

co-activators, such as histone acetyltransferases and lysine

demethylases, to activate its downstream targets. Previously, it

had been reported that Ap2 proteins interacted with Cited2 and

CBP to activate their targets indicating that Ap2d may also

Figure 4. Ap2d recruits Ash2l-containing HMT complexes to the Fgfr3 locus in Neuro2a cells. (A) (Top) Ap2d and Ash2l bind specific
regions of the Fgfr3 promoter that are highly enriched in evolutionarily conserved Ap2-binding sites. The sites are located at the transcriptional start
site (TSS) and regions ,1.2 kb (21.2 kb) upstream and ,1.4 kb (+1.4 kb) downstream of the TSS. (Bottom) Western blot analysis show expression of
Ap2d/V5 in Neuro2a cells transfected with either an empty vector or an Ap2d/V5 expression construct. (B) Ap2d downregulation results in decreased
localization of Ash2l at the promoter concomitant with reduced HK4me3 (C). (D) Real-time PCR analysis shows a specific downregulation of Tcfap2d
transcripts in Neuro2a cells treated with Tcfap2d-specific siRNA only. Normalized values were calculated as percentages of transcript levels detected
in cells treated with the scrambled control. Significant differences are as indicated with * (p#.05) and ** (p#.005).
doi:10.1371/journal.pone.0008535.g004

Fgfr3 Is a Target of Ap2d
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associate with these factors in activating its downstream targets.

This hypothesis is further supported by the observation that

interactions with Cited2 and CBP occur in regions of the Ap2

protein that are nearly identical among Ap2 family members

including Ap2d. As such, Ap2d’s interaction with Ash2l may occur

independently or in addition to its interaction with Cited2 and

CBP. These interactions would, in turn, result in a repertoire of

genes that are regulated by Ap2d independently of Ash2l. Our

results are consistent with this hypothesis, as only 76 out of 917

differentially expressed genes in Ap2d RNAi-treated cells over-

lapped with those in Ash2l RNAi-treated cells.

It had been suggested that Ash2l and its associated proteins,

including the MLL/SET1 subunits, are global regulators of gene

expression given their expression patterns and developmental

functions. As such, deletion of Ash2l or any of its associated proteins

may result in either embryonic lethality or a pleiotropic defect that

could potentially mask a variety of distinct developmental

phenotypes. To circumvent this issue, one could potentially analyze

the role of Ash2l through analysis of its various regulators, such as

Ap2d. Our studies are, therefore, an initial step in elucidating the

function of Ash2l in vivo, providing a library of genes and pathways

that are potentially regulated by Ash2l when it interacts with Ap2d.

Additionally, our studies in Neuro2a cells using endogenous proteins

may reflect to a limited extent conditions similar to that of neural

progenitors in vivo. Given that Neuro2a cells have oncogenic

properties, these targets will need to be validated in vivo.

In conclusion, we have identified a library of genes that are

regulated by both Ap2d and Ash2l. A significant portion of these

candidate target genes contains evolutionarily conserved Ap2-

binding sites implying that several of them are direct targets of the

Ap2d and Ash2l-containing HMT complexes. Among the targets

we screened, we identified Fgfr3 as a novel target of both Ap2d and

Ash2l. Thus, we provide evidence that these candidate genes will be

useful in elucidating the developmental roles of Ap2d and Ash2l.

Materials and Methods

Cell Culture and Immunoblotting
Neuro2a cells (ATCC, Manassas, VA) were maintained in

Dulbecco’s Modified Eagle Medium (Invitrogen) supplemented

with 10% (v/v) fetal bovine serum and antibiotics (Invitrogen) at 37

uC with 5% CO2. Confluent cells were transfected with constructs

expressing Ap2d/V5 using Lipofectamine 2000 (Invitrogen) at a

DNA-to-transfection reagent ratio of 1:3. Cells were harvested in

PBS after 48 h and incubated in lysis buffer (50 mM Tris-HCl

pH 8.0, 1% Triton X-100, 150 mM NaCl, 10 mM EDTA)

supplemented with 1X Protease Inhibitors (Roche, Indianapolis,

IN). Lysates were resolved by 10% SDS-PAGE and electrotrans-

ferred onto nitrocellulose membranes. Immunoblots were probed

with anti-V5 (Invitrogen) and anti-Gapdh antibodies (Sigma

Aldrich, St. Louis, MO) that were detected by chemiluminescence

according to protocol (Amersham Biosciences, Piscataway, NJ).

RNA Analysis
For siRNA knockdown experiments, Neuro2a cells were

transfected with Tcfap2d- or Ash2l-specific siRNA or a scrambled

control using Dharmafect 1 (Dharmacon, Lafayette, CO), and total

RNA isolated 72 h post transfection. Total RNA was extracted using

Trizol reagent according to the manufacturer’s protocol (Invitrogen)

and reverse transcribed using SuperscriptTM III reverse transcriptase

and oligo-dT primers (Invitrogen). Transcript levels were deter-

mined by real-time PCR using Gapdh as an internal control.

Microarray Analysis
Total RNA was extracted from Neuro2a cells transfected with

either Tcfap2d- or Ash2l-specific siRNA using the RNeasy Kit

(Qiagen, Valencia, CA). Total RNA was reverse transcribed using a

T7-oligo d(T) primer (Affymetrix, Santa Clara, CA), and cDNA was

used as template for in vitro transcription using biotin-modified

ribonucleotides. Biotinylated cRNA targets were fragmented and

hybridized to Affymetrix GeneChip Mouse Genome 430 2.0 Arrays.

Arrays were subsequently washed, stained and scanned using an

Affymetrix GeneChipH-related software. ArrayAssist (Stratagene) was

used to determine statistical significance among probe sets that were

differentially expressed between gene-specific siRNA- and NTC-

treated samples. Probe sets that were changed at least 1.1-fold with a

p-value#0.05 were used for further studies. Triplicate arrays were

used for each sample to obtain statistical significance.

Chromatin Immunoprecipitation (ChIP)
ChIP assays were performed according to manufacturer’s

protocol (Millipore Inc., Billerica, MA) [13]. Briefly, Neuro2a

cells were transfected with Ap2d/V5 or treated with RNAi for

72 h. Confluent cells were cross-linked in a solution containing 1%

formaldehyde for 10 min at room temperature, and the reaction

was terminated by the addition of glycine to a final concentration

of 0.1 M. Cells were washed twice in ice-cold PBS with protease

inhibitors (1 mM PMSF, 1 mg/ml aprotinin, 1 mg/ml pepstatin

A) and harvested. Cells were lysed in SDS Lysis Buffer (Millipore)

containing protease inhibitors for 10 min on ice. Lysates were

sonicated to shear DNA into approximately 1-kb fragments. DNA-

containing fractions were diluted 10-fold with a ChIP dilution

buffer (Millipore) containing protease inhibitors. An equivalent

amount of chromatin was incubated with anti-V5, -Ash2l, -

trimethylated H3K4 (Millipore) or IgG antibodies overnight at

4uC. Immunoprecipitated material was collected with protein A

agarose beads (Millipore) and washed sequentially with a low salt-

immune complex wash buffer (Millipore), a high salt-immune

complex wash buffer (Millipore), LiCl Immune Complex Wash

Buffer (Millipore) and 1X TE (10 mM Tris-HCl, pH 8.0, 1 mM

EDTA) for 5 min on a rotator at 4uC. Complexes were eluted

from the Protein A-bound antibodies by addition of elution buffer

(1% SDS, 0.1 M NaHCO3). Cross-linking reactions were reversed

by heating at 65uC for 4 h. The DNA was recovered from

immunoprecipitated material by proteinase K treatment at 55uC
for 1 h followed by phenol/chloroform (1:1) extraction, ethanol

precipitation, and resuspension into 50 ml of nuclease-free water.

Recovered DNA was analyzed by end-point and real-time PCR

using the following loci-specific primers: Fgfr3 F1 59-CCCTGG-

GGTGGCATCCTG-39, Fgfr3 R1 59-AAGGACCCCTCCCTG-

CAGACT-39, Fgfr3 F2 59-GACAGAGGAGACCCTGGAA-

AAGC-39, Fgfr3 R2 59- ATATCTCACCCCCTGACTGCT-

TCTG-39, Fgfr3 F3 59-GAGATGAGGGGCGGTTGTCC-39

and Fgfr3 R3 59-GTGGCTCCCTTTCGCATCCTT-39.
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