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A possible route towards dissipation-protected
qubits using a multidimensional dark space and
its symmetries
Raul A. Santos 1✉, Fernando Iemini2,3, Alex Kamenev4,5 & Yuval Gefen6

Quantum systems are always subject to interactions with an environment, typically resulting

in decoherence and distortion of quantum correlations. It has been recently shown that a

controlled interaction with the environment may actually help to create a state, dubbed as

“dark”, which is immune to decoherence. To encode quantum information in the dark states,

they need to span a space with a dimensionality larger than one, so different orthogonal

states act as a computational basis. Here, we devise a symmetry-based conceptual frame-

work to engineer such degenerate dark spaces (DDS), protected from decoherence by the

environment. We illustrate this construction with a model protocol, inspired by the fractional

quantum Hall effect, where the DDS basis is isomorphic to a set of degenerate Laughlin

states. The long-time steady state of our driven-dissipative model exhibits thus all the

characteristics of degenerate vacua of a unitary topological system.
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It is believed that dissipation conspires against coherence of
quantum states, rendering them to be close to a classical
ensemble. This belief was recently challenged by approaches

aimed at incorporating both drive and dissipation to reach a
correlated coherent steady state1–11. One remarkable example has
been the idea of harnessing dissipation to purify nontrivial
topological states12–14. This is achieved by a careful interplay
between radiation-induced drive, and coupling to an external
bath, that provides a desired relaxation channel. A sequence of
excitations and relaxations generates, in the long time limit, a
non-equilibrium steady state that decouples from the external
drive creating a decoherence free subspace15,16 dubbed a dark
state. This idea opens a way to engineer a rich variety of non-
trivial stationary states, going well beyond thermal states of
equilibrium systems.

In order to use this approach to design (and ultimately
manipulate) qubits, it is necessary to engineer a non-equilibrium
steady space, which is at least two dimensions14,17. Here we
develop a framework to construct driven-dissipative schemes with
degenerate dark spaces (DDS). We achieve this goal by analyzing
the role of symmetries in dissipative dynamics. Specifically, we
claim that the dimensionality of DDS is given by the period of the
projective symmetry representation18, inherent to the system’s
evolution (which is considered to be Lindbladian19,20). To this
end we extend the discussion of Lindbladian symmetries21–23 to
include those that are realized projectively, providing a link
between the projective representations and the dimensionality of
the DDS density operator.

We illustrate this framework by studying driven-dissipative
evolution of a correlated one-dimensional (1D) system, inspired
by Laughlin quantum Hall states with ν= 1/m filling fractions (m
is an odd integer) in a quasi-1D strip (the so-called “thin torus
limit”). This evolution is described by a Lindbladian master
equation that possesses a DDS. The latter is spanned by m
orthogonal vectors, isomorphic to the set of many-body Laughlin
ground states on the torus. This correlated DDS has an extra
advantage of being exactly described by computationally con-
venient matrix product states (MPS). We design a systematic
protocol, based on adiabatically varied Lindbladians, that max-
imizes the purity and fidelity (overlap with the dark space) of its
ultimate steady states.

Results
Projective representation of symmetries in Hamiltonian
dynamics. As a warm up for the symmetry discussion, let us
consider the Hamiltonian case. If a Hamiltonian is invariant
under the action of a symmetry group G, then action of the group
elements, g 2 G, on a state is implemented by a unitary repre-
sentation18. In particular, the eigenstates of the Hamiltonian can
be labeled by eigenvalues of the symmetry operator. As quantum
states form rays in the Hilbert space, such that states ψj i and
eiϕ ψj i are equivalent, it is natural to consider representations that
satisfy the group multiplication rule up to a phase, i.e. projective
representations18, defined as

Dðg1ÞDðg2Þ ¼ eiϕ ðg1;g2ÞDðg1g2Þ; ð1Þ
where D(g) is a representation of a group element g 2 G. Every
projective representation is characterized by the set of phases
ω2ðg1; g2Þ ¼ eiϕ ðg1;g2Þ, known as a 2-cocycle, which are strongly
constrained by associativity18. For a quantum system invariant
under the projective representation (1), the period of the 2-
cocycle (i.e the minimum number m such that ½ω2ðg1; g2Þ�m ¼ 1
for all g1, g2) determines the dimension of the degenerate space.
Given a nontrivial 2-cocycle, representations of at least some
group elements do not commute, even for an Abelian group G, i.e.

for some g; h 2 G, [D(g), D(h)] ≠ 0. One can thus label the
eigenstates by eigenvalues of say D(g) and generate a different
state, with the same energy by acting on it with D(h). Notice that
this argument implies degeneracy of an entire spectrum.

Degenerate dark states in Lindbladian evolution. The way
symmetry operators act on the Lindbladian operators is rather
different from the Hamiltonian case. In a system with a combined
unitary and dissipative dynamics, the most general Markovian
evolution of the density matrix operator, ρ, is described by the
quantum master equation, _ρ ¼ LðρÞ, with

LðρÞ ¼ �i½H; ρ� þ
X
i

‘iρ‘
y
i �

1
2

‘yi ‘iρþ ρ‘yi ‘i
� �� �

: ð2Þ

Here H is an effective Hamiltonian that represents the unitary
evolution. Generically non-Hermitian, quantum jump operators,
ℓi, describe environment-induced dissipation effects19,20,24.

A Lindbladian is invariant under an irreducible unitary
representation D(g) with g an element of G, if the Hamiltonian
and the quantum jump operators satisfy21,22

DðgÞHDyðgÞ ¼ H; DðgÞ‘iDyðgÞ ¼
X
j

UðgÞ
ij ‘j ð3Þ

(also known as weak symmetry21) where UðgÞ is a unitary matrix
that depends on g. In particular, if σ is an eigenmatrix of L with an
eigenvalue λσ, i.e. LðσÞ ¼ λσσ, then D(g)σD†(g) is an eigenmatrix
with the same eigenvalue. These eigenmatrices obtained from σ by
conjugation can represent either the same, or different states. For a
projective representation D(g), satisfying (1), D(g)σD†(g) and σ are
necessarily different for some element g. This is because if for a
particular element h 2 G, D(h)σD†(h)= σ, then σ and D(h) share
eigenvectors, so one can take an element g such that D(g) does not
commute with D(h). Given that [D(g), D(h)] ≠ 0, D(g)σD†(g) and σ
do not share eigenvectors, meaning that they are different. By virtue
of the Schur’s lemma18, the only case where this logic fails is for σ a
fully mixed state, proportional to the identity matrix.

Focusing on the case of projective representations of Abelian
groups, where DðhÞDðgÞ ¼ ei~ϕðh;gÞDðgÞDðhÞ (here ~ϕðg1; g2Þ ¼
ϕðg1; g2Þ � ϕðg2; g1Þ is again a cocycle) one can determine the
dimension of the degenerate subspace in terms of the factor
ei~ϕðh;gÞ. Focusing on an eigenvector ej i of D(h) with eigenvalue eiα,
the operator D(g) acts on this state as a cyclic raising operator, as
DðhÞDðgÞ ej i ¼ eiðαþ~ϕðh;gÞÞDðgÞ ej i. For ~ϕðh; gÞ ¼ 2πa

m , with a, m co-
prime integers, one can raise a state m times before it returns to
itself. This implies that all eigenspaces of L are m-fold degenerate.
In particular, the stationary subspace, defined by the eigenvalue
λ= 0, is m-dimensional. Note that the degeneracies of the
eigenspaces of L do not translate into degeneracies of the density
matrix in general, as the eigenmatrices of L need not to be self-
adjoint, but can come in pairs {σ, σ†} with eigenvalues fλσ ; λ�σg.
For the DDS, this is not a problem as λ= 0.

Although conditions presented above are sufficient for the
existence of DDS, they are actually excessive and impractical.
Indeed, the symmetry operators D(g) split the entire Hilbert space
into sectors of different quantum numbers that do not mix during
the evolution. In other words, there is a certain number of
conservation laws, which confine the long time evolution of any
initial state to only a limited fraction of DDS. To access the entire
DDS, this needs to be avoided. In order to achieve this, we
consider states ρ in the DDS that satisfy

‘iρ ¼ 0 for all i: ð4Þ
We call such DDS frustration free, as ρ is annihilated individually
by each quantum jump operator, ℓi. For systems that satisfies
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Eq. (4), one can deform quantum jump operators in a way that
the symmetry is broken in all the decaying subspaces, while it is
maintained within the DDS. With this in mind, we define dressed
quantum jump operators, that do not satisfy Eq. (3), as ~‘i ¼ Ry

i ‘i,
where Ry

i are for now arbitrary local operators. Dynamics,
generated by the dressed operators, does not, in general, obey any
conservation laws. Yet, ~‘i still satisfy Eq. (4), which preserves the
DDS and its degenerate multidimensional nature. For properly
dressed quantum jump operators, a generic initial state evolves
into a state within DDS, which has projections on all of its basis
eigenmatrices.

Below we demonstrate these considerations on a 1D model,
borrowing intuition from the well-studied physics of the Laughlin
states on a torus25,26. In particular, we demonstrate that the
system is driven to DDS regardless of the nature of an initial state
(pure or mixed). We also devise adiabatic time-dependent
Lindbladians that guarantee that the initial state is fully driven
into the DDS, resulting in a state with a maximized purity.

Laughlin states in a narrow torus geometry. A quantum Hall
droplet of N electrons subject to a magnetic flux NΦ=mN (in
units of the flux quanta) and filling fraction N/NΦ≡ ν= 1/m
(with odd integer m) develops nontrivial correlations that are
reproduced by Laughlin wavefunctions27. In a torus with periods
Lx and Ly (with distances measured in units of the magnetic
length), the area is related to the flux as LxLy= 2πNΦ. The
Laughlin states at filling ν= 1/m correspond to exact zero energy
states of a local Hamiltonian28, which, after projecting onto the
lowest Landau level (LLL), takes the form
H ¼ P

nð‘y0;n‘0;n þ ‘y1;n‘1;nÞ, where the operators ℓs,n (s= 0, 1)
are29 (see “Methods”)

‘s;n ¼
X
l ≥ 0

η l þ s
2

� �
cn�l�scnþl: ð5Þ

Here cn destroys an electron at orbital n; ηðlÞ / e�ðκl Þ2 is a fast
decaying function in the narrow torus limit, κ2 ¼ 2π

NΦ

Lx
Ly
� 1 (see

“Methods”). The crucial property of Laughlin states Ψj i that
makes them useful for our discussion of the Lindbladian evolu-
tion is that they satisfies ‘s;n Ψj i ¼ 0, for s= 0, 1 and all n.

In the quantum Hall context, the operators D(g) of Eq. (3)
correspond to inserting fluxes through the two periods of the
torus (Fig. 1). In the 1D representation they are the translation
operator T and the operator U, which measures the center of
mass of the particles in orbital space. They are given by

T ¼ exp
2πi
NΦ

XNΦ�1

k¼0

k~̂nk

( )
; U ¼ exp

2πi
NΦ

XNΦ

l¼1

ln̂l

( )
; ð6Þ

where n̂l and ~̂nk are the number operators at position l and
with momentum k, correspondingly. Note that T and U satisfy
TUT†= e−2πiνU. They thus provide a projective representation of
the group G ¼ Zm ´Zm with m= 1/ν. This group is represented
by D(g)=UaTb, where a, b= 0, …, m − 1, while Um= Tm= 1
and UT= ωTU with ω ¼ expð2πi =mÞ.

One can choose a basis Ψaj i, such that, e.g., operator U is
diagonal, with its eigenvalues, ωa, along the diagonal. In this basis,
the operator T acts as a raising operator, because, if

U Ψaj i ¼ ei
2πa
m Ψaj i, then UT Ψaj i ¼ ei

2πðaþ1Þ
m T Ψaj i. In the context

of the quantum Hall effect, states Ψaj i are the m-fold degenerate
Laughlin ground states on the torus25,30.

Note that, although the construction of the Lindbladian using
the projective symmetry ensures that the eigenvalue λ= 0 of L is
m-fold degenerate, the frustration-free condition Eq (4) enlarges

the degeneracy of λ= 0 to m2. This is seen as follows: The
symmetry operators U and T ensure that the density matrices
Ψaj i Ψah j for a= 0…m− 1 share the same eigenvalue (they are
related by conjugation with T). In general, the matrices
Ψaj ihΨaþpj are related, for a fixed p, by conjugation with T.
Now these m different families (each labeled by p= 0…m− 1)
share the same eigenvalue between them due to the frustration-
free condition which ensures that if Ψaj i is annihilated by the
quantum jump operators, then all the matrices Ψaj i Ψbh j are
as well.

Lindblad operators from quantum Hall physics. In the narrow
torus limit, κ≫ 1, one can truncate expressions for operators ℓs,n
in Eq. (5), which become short-range in n. In this limit we have
(switching from the orbital guiding center index n to the real
space site index i)

‘0;i ¼ ciciþ2 and ‘1;i ¼ ciciþ1 þ βci�1ciþ2; ð7Þ

where β ¼ ηð32Þ=ηð12Þ ¼ 3e�2κ2 . These operators transform as

U‘s;jU
y ¼ e

4πi
NΦ

ðjþ1�s
2Þ‘s;j and Tℓs,jT† = ℓs,j+1. Hereafter we regard β

as an arbitrary parameter. We now employ these results to con-
struct quantum jump operators that drive the system into the
frustration free DDS. In contrast with the ℓs,i operators in the
previous section, here these operators represent processes in a real
lattice of NΦ sites, where ci destroys a fermion at the lattice site i.
We assume m= 3 and the fermion density ν= 1/3.

We also assume a purely dissipative evolution _ρ ¼ LðρÞ with
H= 0, Eq. (2), and the quantum jump operators ~‘i ¼ Ry

iQi with
Ry
i ¼ cyi c

y
iþ1 þ tð‘y0;i þ ‘y0;iþ1Þ, and
Qi ¼ ‘1;i þ Að‘0;i�1 þ ‘0;iþ1Þ þ Bð‘1;iþ1 þ ‘1;i�1Þ: ð8Þ

Here operators Qi are linear combinations of the operators that
annihilate the Laughlin states. Parameters t, B, A, and β are
determined by a realization of the dissipative dynamics and are
non-universal. The DDS only depends on β. For the purposes of
this work we take them as free parameters.

Flux NΦ L = NΦ sites

T

U

LLL projection

Lx

Lx

Ly

Ly

Φ1

Φ2

Fig. 1 LLL projection and flux insertion in the quantum Hall liquid. The LLL
projection of a quantum Hall liquid on a torus maps the two-dimensional
state into a one-dimensional ring of particles in orbital space. Inserting a
flux quanta through one of the two cycles of the torus (depicted in red and
blue) corresponds to a unitary operation that acts between the different
ground states in the torus. In the one-dimensional representation, these
unitary operations correspond to translation of the guiding centers by one
orbital (T), or multiplication by a phase (U), depicted by blue and red
arrows, respectively.
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Realization of Lindblad operators ~‘i. The dissipative evolution
dictated by the Qi operators can be obtained by coupling two
systems: a target fermion chain (where ci destroys a fermion at
site i) with no intrinsic dynamics (H0= 0) and a fermionic chain
with Hubbard interactions described by the Hamiltonian
H1 ¼

P
iJ1ðf yi f iþ1 þ h:c:Þ � U

P
ininiþ1 þ E1ni, where fi destroys

a fermion in this at position i in this chain and ni ¼ f yi f i.
We assume that the chemical potential E1 is the largest
energy scale in the system. These two chains interact through an
external classical radiation, with coupling Hamiltonian
Hrad ¼ Ω cos ðωtÞPif

y
i ðci þ αðci�1 þ ciþ1ÞÞþ h.c., where Ω is

the intensity of the radiation, α parameterizes the spatial laser
envelope, and ω is the frequency of the monochromatic light. The
role of the driving is to excite particles from the target chain to
the interacting chain. The particles then relax to the lower energy
state interacting with the bath, which provides dissipation. These
components are shown in Fig. 2a

As a motivation for this construction, let us consider how a
charge-density-wave (CDW) state decouples from the dynamics
in this context, in the limit J1 <<U and α= 0, becoming a dark
state. At first order in Ω, exciting a single particle from the c to
the f chain is strongly suppressed as E1 is large. But in second
order ( Ω2

2E1�U�ω), the radiation Hamiltonian can create two states
in the f chain, which can bound in a doublon, consisting on a
tightly bound pair of fermions (due to the Hubbard attraction).
The wavefunction of the doublon decays exponentially with the
distance d between its two constituents as td with t ~ J1/U≪ 1.
This means that, for the laser to create a doublon, the particles in
the c chain should be near each other, as the laser acts locally. In
particular, the state which locally contains nearby fermions
cyi c

y
iþ1 0j i will be affected by radiation, as well as cyi c

y
iþ2 0j i, where

0j i is the state with no particles. The first local configuration that
is not affected by radiation, becoming dark is cyi c

y
iþ3 0j i, as the

fermions are too far away to be excited into a configuration with a
non-vanishing matrix element with the doublon. The whole
system will decouple when reaches one of the CDW states.
Increasing the range of the laser (by letting α ≠ 0) creates
superpositions.

The Lindblad operators (8) are obtained considering transi-
tions between the doublon band and the low-energy band in the
system (more details in the Supplementary Note 4). After
performing the rotating wave approximation to account for the
time dependence of the radiation Hamiltonian, the dynamics of
the system occurs between the lower c and the doublon bands (see
Fig 2b, upper panel). Using second-order perturbation theory in
Ω, we obtain the matrix elements of the transitions between the
doublon states dij i ¼ f yi f

y
iþ1 0j i and the lower band states

i; jj i ¼ cyi c
y
j 0j i. The transition process from lower band to

doublon reads (after adiabatic elimination of the doublon)
~‘i ¼ A2

Ωc
y
i c

y
iþ1Qi, valid for t= α3≪ 1, with Qi given in (8). The

prefactor AΩ ~Ω2/(2E1−U− ω), while A, B, and β entering the
definition of Q satisfy A= α, B= αAΩ, and β= α2. The fermion
operators in Qi all act on the chain c. Finally, taking into account
the transitions from the doublon back to the c chain, which is
mainly mediated by the dissipation with the bath, and integrating
out the doublon states, we arrive at the Lindblad operators (8).

Structure of the DDS. Heuristically, one can understand the roles
of Ry

i andQi as follows. OperatorQi checks if at the site i the state
matches the local configuration of one of the Laughlin-like states.
If true, it gives zero and the system stops evolving locally; if false,
the operator Ry

iQi scrambles the particles. As long as this process
can efficiently mix the particles locally, all states in the Hilbert
space eventually evolve into DDS, spanned by the three Laughlin
states. Crucially, the decay into these states is a consequence of

BEC Chain f

Chain c

E1

EINT

0

j – 2 j – 1 j + 1j

j j + 1

x / a

2E1 – U

E1

EINT

0

j – 2 j – 1 j + 1j x / a

2E1 – U

2E1 – U

2E1 ff

cf

Doublon

cc

K0

0

E1

–� / a � / a

a b

Fig. 2 Implementation of Lindblad operators. a Two chains c and f filled with fermions are immersed in a bath, realized as a Bose–Einstein condensate
(BEC). Transitions between the two chains that have different chemical potential are mediated by the absorption of a photon from an external laser (blue
wavy lines), or due to the relaxation induced by the bath (black arrows). Particles in the upper band are subject to nearest neighbor attractive interactions,
of magnitude U (red line). b Two-particle excitation spectrum, consisting of three free-particle bands (cc, cf, and ff) and the doublon band as a function of
the total momentum of the pair. The laser frequency is red detuned from the transition energy 2E1−U, so that the laser mainly creates doublon excitations.
b Left inset: In second-order perturbation theory in Ω, the radiation couples the lower two-particle band with the doublon band. b Right inset: These
excitations can decay back to the lower band by emitting phonons in the bath.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19646-4

4 NATURE COMMUNICATIONS |         (2020) 11:5899 | https://doi.org/10.1038/s41467-020-19646-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the projective symmetry, enforcing existence of the degenerate
space with Qiρ ¼ 0 and thus _ρ ¼ LðρÞ ¼ 0.

The basis of such DDS is formed by the Laughlin states Ψaj i,
where a= 0, 1, 2, which are annihilated by all composite
operators, ‘s;i Ψaj i ¼ 0, for all s, i (and thus by the quantum jump
operators). Assuming periodic boundary conditions, these states
are given by29,31 MPS32,33

Ψaj i ¼ N tr ga1g
a
1 ¼ gaL=3

n o
; ð9Þ

where N is a normalization factor, a= 0, 1, 2 and

g0i ¼
� � �j ii � � �j ii

�β ���j ii 0

� �
; g1i ¼

� � �j ii ���j ii
�β � � �j ii 0

� �

g2i ¼
���j ii � � �j ii

�β � � �j ii 0

� �
ð10Þ

The state � � �j ii represents the three consecutive empty sites
at positions (3i− 2, 3i− 1, 3i), while a full dot represents an
occupied site, e.g. � � �j ii ¼ cy3i�2 � � �j ii, etc. The dark space basis
vectors, Ψaj i, are related by a translation T by one site, as
T Ψaj i ¼ Ψa�1

�� �
, where ⊕ is an addition modulo 3. In the basis

Ψaj i, the operators T and U are represented by the 3 × 3 matrices

T ¼
0 1 0

0 0 1

1 0 0

0
B@

1
CA; U ¼

1 0 0

0 ω2 0

0 0 ω

0
B@

1
CA; ω ¼ e

2πi
3 : ð11Þ

Within DDS the density matrix is ρ ¼ P2
a;b¼0 ϱab Ψaj i Ψbh j, with

ϱab a 3 × 3 positive semidefinite, hermitian matrix with unit trace.
In general, the structure of the density matrix within DDS depends
on initial conditions, which determine the parameters ϱab.

The basis vectors that define the DDS depend explicitly on the
parameter β. For β= 0 the DDS is spanned by a mixture of three
different classical CDW30, e.g. �� � �� � ¼j i, with periodic
density and sharp structure factor in each basis vector. Changing
this parameter modifies the average local density. The latter is
given by

Trðρ n̂3iþaÞ ¼
3ϱaa � 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jβj2

q þ 1
2
ð1� ϱaa Þ; ð12Þ

indicating that, if β is known, the local density measurements are
enough to determine the probabilities ρaa.

An alternative way of characterizing the DDS is through the
correlation function of local observables. To highlight the relation
with the CDW states, we focus on the static structure factor

SaðkÞ ¼
3
L

XL
i¼1

Trðρ n̂an̂aþi�1Þeik ði�1Þ; ð13Þ

shown in Fig. 3b. As β increases, the system transitions from a
crystal-like state with the well-defined translational symmetry of
three sites into a more homogeneous state, where the density is
uniform across the system.

Finally, to describe the quantum nature of the DDS basis states,
we compute their entanglement entropy. We separate the degrees
of freedom of the system in two complementary large regions A
and Ac and define the partial density matrix ρA ¼ TrAcð Ψaj i Ψah jÞ.
The entanglement entropy is then SðβÞ ¼ �TrðρAln ðρAÞÞ. The
result is shown in Fig. 3c. We observe that the entanglement
entropy is monotonic with β. It reaches its maximum value of
2ln ð2Þ for MPS of bond dimension 2 at ∣β∣→∞.

Time evolution and global diagnostics. Now that we have
constructed a dissipative evolution that drives the system into
the DDS, we discuss how the system approaches the DDS. We
analyze the Lindbladian evolution with the quantum jump
operators (8) numerically. The decay into the DDS is evaluated
using a quench protocol: the system is initiated in the CDW
state �� � �� � ¼j i, which is one of the dark states of the
Lindbladian at β= 0. This state is evolved then using the
Lindblad operators (8) with A= B= t = 1 and β ∈ [0, 1] for
simplicity (the results are qualitatively similar for slightly
varying these parameters). In order to obtain the evolution of
the system we perform exact diagonalization using
Runge–Kutta (RK) integration34 of the master equation, for
systems of sizes up to L= 15.

To characterize the steady-state mixture, we compute the purity
of the state, defined as γðtÞ ¼ Trfρ2ðtÞg. From Fig. 4a, we find that
the purity approaches 1/3 with larger system sizes. This is indeed
the case for a sudden quench from β(t ≤ 0)= 0 to β(t > 0)= 1. In
this scenario, the system explores an extensive portion of the Hilbert
space, becoming highly mixed, as seen in the intermediate region of
Fig. 4a, where the purity plateaus at a minimum. Only after the
system is sufficiently mixed, it starts approaching DDS and its
purity increases. The information about the initial state is practically
lost in the intermediate mixing process, and the eventual steady
state is a highly mixed state within DDS.

Convergence to DDS, spanned by Laughlin-like dark states
f Ψaj iga¼0;1;2, may be visualized by

DDDSðtÞ ¼ TrfρðtÞPDDSg; ð14Þ

where PDDS ¼
P2

a¼0 Ψaj i Ψah j is a projector onto the DDS.
Figure 4b shows that the system indeed evolves towards the
Laughlin-like DDS, proving that this is the only non-decaying
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Fig. 3 Characteristics of the DDS basis states. a Expectation value Trðρ n̂xÞ
for different positions x. Starting from a CDW configuration, the system is
evolved using a protocol with a given β. This generates a DDS state that
depends on β. The top row represents the pure state ϱ00= 1, while the
second row represents the mixed state ϱ00= 0.5, ϱ11= 0.3, ϱ22= 0.2.
Different colors are used to help track the changes in average occupation at
each site and to highlight the 3-site periodicity of the density. b Static
structure factor S1(k) for different values of β, for a pure state with ρ11= 1.
At β= 0 the system is in the CDW state, with a definite spatial periodicity,
indicated by the peaks in S1(k) at k ¼ 0; 2π3 ; 4π3 . Increasing ∣β∣, the system
becomes more homogeneous. c Entanglement entropy of the DDS as a
function of β.
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subspace of the Lindbladian evolution. At large times, one
finds 1� DDDSðtÞ / e�λ0t , where the rate λ0 is given by the lowest
non-zero eigenvalue of the Lindblad operator. (A longer
discussion regarding this gap for finite systems is developed in
the supplementary note 1.)

One notices that λ0 is slowly decreasing upon increasing the
system size. We note that local observables, like the particle
density, fast approach their steady-state values in a way which is
independent of the system size (Fig. 4a). This separation of scales
indicates that, while locally the system reaches a configuration
that is close to the dark states that span the DDS, globally it takes
much longer to fully reach the DDS.

If instead of quenching the system into β= 1, we quench it into
β≪ 1, we observe a very different behavior. Here the system does
not have to explore an extensive part of the Hilbert space before it
reaches the DDS. As a result, the purity remains close to 1 at all
times, as can be seen in Fig. 4c.

Adiabatic evolution. Although the previous analysis shows that
the system does not generically end up in a pure state, it is
possible to increase the purity of the final state by performing an
adiabatic evolution from a pure state35–37. To illustrate this, we
evolve the system from an initial state given by a superposition of
the three CDW configurations. This allows us to characterize the
coherences in the MPS basis throughout the adiabatic evolution
(Sec. III in SI). Individual CDW states can be created using

existing experimental techniques38. We then evolve this state with
the Lindblad operators (8) using a time-dependent β parameter:
β(t)= Δ ⋅ t for 0 < t ≤ 1/Δ and β(t)= 1 for t > 1/Δ, where Δ is the
ramp velocity. The purity of the final state depends on Δ as
shown in Fig. 5a. For small enough Δ, the system does not explore
the whole Hilbert space, but instead remains almost pure
throughout its entire evolution. This mechanism can be used to
achieve a purity arbitrarily close to unity. For larger ramp velo-
cities, the system rapidly departs from the initial state, exploring
the many-body Hilbert space, as shown for intermediate times in
Fig. 5b, before leaking back to the DDS, which remains the only
attractor of the dynamics. This increases the departure of the
steady state from a pure state and erases the information about
the initial state. The steady-state purity as a function of the ramp
velocity is shown in Fig. 5c.

Discussion
We have shown that to achieve a DDS the Lindbladian evolution
should have an underlying symmetry, admitting a projective
representation. The period of its 2-cocycle determines the
dimensionality of the dark space. Reaching a DDS, protected
against environmental influence, offers a way of maintaining
quantum information. To manipulate this information, it is
necessary to have an access to high-purity states within the DDS.
We found that an adiabatically varying Lindblad operator allows
to reach such nearly pure, entangled states. We have
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demonstrated these ideas by studying the thin torus limit of the
ν= 1/3 fractional quantum Hall state of matter. Being able to
generate and manipulate states within a DDS may be utilized for
quantum information processing platforms. The many-body
nature of the state renders it less fragile against local disturbances.

Methods
Mapping fractional quantum Hall ground state to one-dimensional model. In
this section we revisit the exact mapping of the Laughlin state27 into a one-dimensional
state39,40. We will be interested in filling fractions ν < 1. Recalling that a 2DEG in a
strong magnetic field displays Landau levels, we assume that the relevant physics
occurs in the LLL. We place the system into a 2D torus with linear sizes Lx and Ly and
area A ¼ LxLysin θ , defined by the region in the upper half complex plane enclosed by
the points w= (0, Lx, Lyτ, Lx+ Lyτ). This torus is characterized by the modular
parameter τ= Ly/Lxeiθ= τ1+ iτ2, ðImðτÞ> 0; θ 2 ½0; π�Þ. Following ref. 25 we
introduce the translation operators tðLÞ ¼ expðL 	 ð∇� ieAÞ � iLxy þ iLyxÞ (here
L= (Lx, Ly) are measured in units of the magnetic length) which correspond to the
usual translation operators in terms of the canonical momentum, and an extra space-
dependent phase. The single-particle wavefunction satisfies the boundary conditions
tðLaÞΨ ¼ eiϕaΨ, with La a translation over the lattice vectors L1= (Lx, 0) and
L2 ¼ Lyðcos θ; sin θ Þ. Both conditions can be satisfied if the flux over the torus
LxLy sin θ

2π ¼ NΦ is integral. We parameterize the coordinates on the torus by z ¼ ~z=Lx
with ~z ¼ Lxðx þ yτ Þ, where x ∈ [0, 1] and y ∈ [0, 1].

The relation with the usual Cartesian coordinates is x1= Lx(x + τ1y) and x2=
Lyτ2y. The single-particle wavefunction has the form Ψ ¼ e�

1
2ðImðτÞL1yÞ2 f ðzÞ, where

f(z) is an entire (holomorphic) function in the complex plane. Then we use units
where

ffiffiffiffiffiffiffiffiffiffiffi
_=eB

p ¼ 1. In the Landau gauge A ¼ �By x̂, the boundary conditions read

f ðz þ 1Þ ¼ f ðzÞeiϕ1 ;
f ðz þ τÞ ¼ f ðzÞeiϕ2 e�iπNΦð2zþτÞ;

ð15Þ

where the phases ϕa correspond to the fluxes piercing the torus in the two
orthogonal directions a= 1, 2. From these relations it follows thatR
dz d

d z ln ðf ðzÞÞ ¼ 2πi NΦ , which implies that the function f(z) has NΦ zeroes.
The single-particle wavefunction that satisfies boundary conditions (15) and has

NΦ zeroes is given by the generalized theta function

ϕnðz; τ; ϕ1;ϕ2Þ ¼ e�
1
2 ImðτÞLxyð Þ2ϑ z � zn

τ

NΦ

����
� �

eiϕ1 z�znð Þ

with ϑðzjτÞ ¼
X1

m¼�1
eiπτ
	 
m2

e2πimz
ð16Þ

and zn ¼ 2πnþϕ2�τϕ1
2πNs

. This corresponds to a normalizable wavefunction for

ImðτÞ> 0. The zeroes of φn(z; τ, ϕ1, ϕ2) are located at z ¼ zn þ 1
2 þmþ 1

2 þ n
	 


τ
NΦ
.

As shown in ref. 28, the Laughlin state at filling ν= 1/3 is the zero energy exact
ground state of the Landau problem with the interaction H ¼ V0

R
drj∇ρðrÞj2,

where ρ(r)= ψ†(r)ψ(r) and r= (x1, x2). The projection of the electron operator into
the first Landau level is ψ= ∑nφn(r)cn, where cn destroys a state at occupation n.
The interaction Hamiltonian projected onto the first Landau level becomes

H ¼ 32NΦV0

jτj3L21
X
j

Qy
j Qj

with Qy
j ¼

XNΦ

j

X1
k¼�1

j� NΦkð Þe� 2πi
NΦ τ j�kNΦð Þ2 cyjþkc

y
j�k:

ð17Þ

In this sum the pair of numbers (j, k) are all integers or all half integers and satisfy
0 < j <NΦ, 0 < k, l, <NΦ/2. Separating both cases, and defining κ2 ¼ 2π

NΦ

Lx
Ly
gives the

operators ℓs,n (Eq. 5) in the main text.

Physical realization. We consider a one-dimensional optical lattice (system)
immersed in condensate that acts as a bath to the system, providing dissipation.
Each site in the optical lattice consists of a potential-well accommodating two
single-particle levels denoted by c and f

Hsys ¼ H0 � U
X
i

ni;1niþ1;1 þ
X
i;σ

Eσniσ : ð18Þ

Here �PN
i;σðJσayi;σaiþ1;σ þ h:c:Þ and ai,σ is a fermionic annihilation operator at site

i= 1…NΦ and level σ= {0, 1}. The relation with the main text operators is ai,0= ci
and ai,1= fi. The Hamiltonian includes an attractive (U > 0) interaction between
neighbor particles in the level σ = 1. The operator niσ ¼ ayiσ aiσ measures the
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occupation at the site i and level σ. We assume that the number of particles in the
system is given by Ne=NΦ/3.

To capture the essential physics generated by the interaction, we first study the
two-particle problem. Defining the two-particle state σσ 0j i ¼ P

i;jχ
σσ 0
ij ayi;σa

y
j;σ 0 0j i,

with 0j i the state with no particles (vacuum), the Schrödinger equation for the
wavefunction χsij ¼ 1ffiffi

2
p ðχ11ij � χ11ji Þ reads �J1ðΔi þ ΔjÞχsij � Uðδi;jþ1 þ δiþ1;jÞχsij ¼

ðE � 2E1 þ 4J1Þχsij , with Δiχij= χi+1,j− 2χij+ χi−1,j, the discrete Laplace operator.
Introducing the central and relative coordinates R= a(j+ l)/2 and r = a(j− l) the
wavefunction can be written as χjl ¼ eiRK χðKÞr ¼ eiRK

P
qe

irq ~χsq where we have
introduced the total and relative momentum K= k1+ k2 and 2q= k1− k2. The
Schrödinger equation for χsij becomes

~χsq ¼
2
NΦ

U sin q �χ

E � 2E1 þ 4J1 cos
K
2 cos q

; ð19Þ

where �χ ¼ P
q2 sin q ~χ

s
q . For fixed center of mass momentum, the bound state

energy Ed(K) is found by solving self-consistently Eq. (19), leading to

EdðKÞ ¼ 2E1 � U � 4 J21
U cos2 K

2. We consider the regime J0 ~ 0, along with ∣U∣ ≫ E1
and J1

E1

 J1

jU j 
 1. In this case, the bound state energy Ed(k ~ 0) is far below the

bottom of the (1, 0)-pair band, but still above the (0, 0) two-particle band. The
amplitude for tunneling between two 0 states is taken to be negligible compared to
all other energy scales (J0 ~ 0). This implies a flat band for the (0, 0) pair. The two-
particle energies Eσσ 0 of the continuous Bloch bands are

Eσσ 0 ðK; qÞ ¼ ðσ þ σ0ÞE1 � 2ðJσ þ Jσ 0 Þ cos
Ka
2

cos qa

þ 2ðJσ � Jσ 0 Þ sin
Ka
2

sin qa;
ð20Þ

A doublon state of definite momentum is created by the combination

dyK ¼ P
Re

iKR
P

‘e
�‘=ξðKÞf y

Rþ‘
2
f y
R�‘

2
, with ξ�1ðKÞ ¼ ln J1

jU j cos
K
2

� �
. The state dKj i �

dyK 0j i is normalized as hdK 0 jdK i ¼ δK 0K , with 0j i a state with no particles.
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