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Mammals have two types of thermogenic adipocytes: brown adipocytes and beige

adipocytes. Thermogenic adipocytes express high levels of uncoupling protein 1 (UCP1)

to dissipates energy in the form of heat by uncoupling the mitochondrial proton

gradient from mitochondrial respiration. There is much evidence that UCP1 is the

center of BAT thermogenesis and systemic energy homeostasis. Recently, UCP1

independent thermogenic pathway identified in thermogenic adipocytes. Importantly,

the thermogenic pathways are different in brown and beige adipocytes. Ca2+-ATPase

2b calcium cycling mechanism is selective to beige adipocytes. It remains unknown

how the multiple thermogenic mechanisms are coordinately regulated. The discovery

of UCP1-independent thermogenic mechanisms potential offer new opportunities for

improving obesity and type 2 diabetes particularly in groups such as elderly and obese

populations who do not possess UCP1 positive adipocytes.
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THERMOGENIC FAT: BROWN AND BEIGE ADIPOCYTES

Mammals have brown and beige thermogenic adipocytes, which are both rich in mitochondria
and express uncoupling protein 1 (UCP1). However, brown and beige adipocytes play distinct
developmental and anatomical roles in rodents and humans. Brown adipocytes are located in the
interscapular and perirenal regions of rodents and infants. By contrast, beige adipocytes (or brite
adipocytes) are induced thermogenic adipocytes found sporadically within the white adipose tissue
(WAT). The development of beige adipocytes is called “browning” or “beiging.” Beige adipocytes
are induced by environmental stimuli, such as chronic cold, β3-adrenergic receptor agonists,
peroxisome proliferator-activated receptor gamma (PPARγ) agonists, exercise (1), and cachexia
(2). Since the emergence of evidence that adult humans have brown adipose tissue (BAT) (3–7), the
debate over whether adult humans have beige adipocytes has been crucial to the metabolic field.

The function of BAT is to regulate the systemic energy balance through non-shivering
thermogenesis (NST). Transcriptional analysis of adult human BAT revealed expression of
molecular markers specific for murine beige adipocytes (8–10). By contrast, the deep neck region in
adult humans possesses thermogenic fat that is similar to the brown fat of mice (11). Of note, clonal
analysis of adipose tissue from adult humans revealed evidence that humans have beige adipocytes
(12). Even adults who do not exhibit brown fat by 18F-labeled fluorodeoxyglucose positron
emission tomography/computerized tomography (18F-FDG-PET/CT) develop thermogenic fat
upon prolonged cold stimulation (13–15).
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FIGURE 1 | Functional characteristics of thermogenic fat brown and beige

adipocytes share many characteristics. In contrast, thermogenic mechanisms

are discrete between the two cell types.

Many studies have reported that the amount of cold-induced
thermogenic fat positively correlates with the degree of NST
and improvements in insulin sensitivity in humans (13–16).
Recently, a study showed a much wider distribution of BAT,
including in the abdominal subcutaneous regions, in adult
humans by refined 18F-FDG-PET/CT imaging (17). These
results support the existence of thermogenic adipocytes in
adult humans. Thermogenic adipocytes have the characteristics
of the beige-like inducible adipocytes that contribute to
whole-body energy homeostasis. Based on these findings,
researchers have hypothesized that beige fat may be a
promising new therapeutic target to increase energy expenditure
and treat obesity and type 2 diabetes. Future studies will
determine the function and distinct, essential characteristics
of beige fat in humans. While brown and beige adipocytes
share many characteristics such as express UCP1, enriched
mitochondria, and differentiation mechanisms-transcriptional
factor PR domain-containing protein 16 (PRDM16), PPARγ. In
contrast to this, recent studies, mainly in mice, suggest discrete
thermogenic mechanisms in the two cell types (Figure 1). In this
review, we discuss thermogenic mechanisms and pathways in
thermogenic fat.

UCP1-DEPENDENT THERMOGENESIS IN
THERMOGENIC FAT: BROWN AND BEIGE
ADIPOCYTES

UCP1 localizes to the mitochondrial inner membrane. It
generates heat by dissipating the energy proton gradient from
the electron transport chain in mitochondrial respiration. There
is considerable evidence that UCP1 is at the center of BAT
thermogenesis and systemic energy homeostasis. Many studies
have investigated if UCP1 is essential to thermogenesis in
thermogenic adipocytes. Ucp1 knockout (KO) mice are unable to

maintain their body temperature and develop hypothermia upon
acute cold challenge (18). In addition, BAT-deficient mice created
by transgenic expression of diphtheria toxin showed diabetic and
obese phenotypes in room-temperature environments (19).

The re-synthesis of triacylglycerols after lipolysis is a
thermogenic process that is dependent on the amount of
ATP needed for triacylglycerol synthesis. Fatty acid synthesis
and oxidation are both stimulated and tightly regulated by
adrenergic activation (20). Upon adrenergic stimulation, brown
adipocyte lipolysis and mitochondrial respiration are activated in
a UCP1-dependent manner (21).

However, recent studies in mice with BAT-specific deficiencies
in the lipolysis enzyme adipose triglyceride lipase (ATGL) or
the ATGL-activating protein comparative gene identification-
58 (CGI-58) revealed that the absence of lipolysis in BAT does
not change NST (22, 23). These results suggest the existence of
compensatory pathways that require further investigation.

UCP1 IS DISPENSABLE FOR
THERMOGENESIS IN THERMOGENIC FAT

UCP1, often called thermogenin, had been thought to be the
only thermogenic protein responsible for NST in thermogenic
fat (24, 25). However, the Kozak group demonstrated that mixed
strain F1 Ucp1 KOmice were able to adapt to cold exposure with
gradual acclimation (26–30). Recently, our study revealed that, in
an increased beige fat-enriched mouse model, fatty acid-binding
protein (aP2)-promoter Prdm16 transgenic mice (aP2-PRDM16)
transgenic × Ucp1 KO mice could maintain their temperature
in a cold environment although mice totally lacking Ucp1 could
not (31). This finding suggests the existence of physiologically
relevant UCP1-independent thermogenesis in adipocytes.

Intriguingly, Ucp1 KO mice fed a high-fat diet (HFD) were
resistant to the development of obesity at room temperature,
suggesting the activation of a UCP1-independent thermogenic
pathway (18, 32). Skeletal muscle has mainly been thought to
contribute to UCP1-independent thermogenesis via increased
capacity for shivering thermogenesis caused by chronic
contractile activity (24). However, the findings of the studies
on skeletal muscle UCP1-independent thermogenesis are
inconsistent and the mechanism requires further investigation
(24, 30, 33–36).

UCP1-INDEPENDENT THERMOGENIC
MECHANISMS IN THERMOGENIC FAT

UCP1 has been thought to be responsible for regulating
the energy expenditure and glucose homeostasis of brown
and beige fat. The beige fat-deficient adipocyte-specific
Prdm16 KO and adipocyte-specific euchromatic histone-
lysine N-methyltransferase 1 (EHMT1) KO mice have obese
and diabetic phenotypes at room temperature due to insulin
resistance (37, 38). However, Ucp1 KO mice do not have a
diabetic phenotype and only develop an obese phenotype under
thermoneutral conditions (18, 39). This discrepancy in the
metabolic phenotypes of Ucp1 KO and beige fat-deficient mice
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suggests that brown and beige fat have UCP1-independent
metabolic mechanisms that contribute to systemic energy and
glucose homeostasis.

Many observations support the existence of UCP1-
independent metabolic mechanisms. The inguinal WAT of Ucp1
KO mice maintained in a chronic cold environment showed
greater respiration than that of Ucp1 KO mice maintained under
thermoneutrality (30). In addition, chronic β3 adrenergic agonist
treatment increased oxygen consumption in the epididymal
WAT of Ucp1 KO mice (20). Recently, creatine-substrate
cycling (28, 40, 41) and Ca2+ cycling have been identified as
UCP1-independent thermogenic pathways.

Creatine-Substrate Cycling
A decline in creatine levels has been linked to the inhibition
of thermal responses through unknown mechanisms in rodent
models (42, 43). Kazak et al. recently found that creatine
substrate cycling stimulates mitochondrial respiration and serves
as a thermogenic pathway in thermogenic adipocytes (28, 41).
This pathway was discovered in the mitochondria of murine
beige fat. Recently, the creatine thermogenic pathway has
been suggested to exist in other adipocytes because fat-specific
deletion of the creatine synthesis rate-limiting enzyme glycine
amidinotransferase (Gatm) reduced creatine levels in BAT and
conferred mild cold intolerance (40). Global creatine transporter
(Slc6a8) KO mice had similar levels of creatine reduction as the
adipocyte-specific Gatm KO mice, and had an obese phenotype
compared to controls (44). Similarly, creatine enzyme Ckmt1
and Ckb double KO mice showed cold intolerance and reduced
norepinephrine responses to activate thermogenic respiration
(45). These data support the role of the creatine substrate cycling
pathway as an adaptive thermogenesis pathway in vivo.

UCP1-Independent Thermogenesis:
Ca2+-Dependent ATP Hydrolysis in Brown
Adipocytes and Muscle
Calcium transport contributes to NST in both BAT and muscle
through sarco-endoplasmic reticulum ATPase (SERCA) activity
(46–48). In muscle, Ca2+ cycling pathways involving SERCA
drive thermogenesis such as malignant hyperthermia. Ca2+

cycling in the extraocular heater muscle cells of fish suggests the
process may be evolutionarily conserved (49, 50).

Sarcolipin (SLN) is a direct peptide-binding SERCA that
localizes to the sarcoplasmic reticulum of skeletal muscle. SLN
regulates SERCA-mediated ATP turnover in muscle via Ca2+

cycling without affecting ATPase activity (51). SLN may function
as an uncoupler of calcium transport from ATP hydrolysis via
SERCA, which would be elevated in NST (52). The physiological
role of SLN in NST is supported by several mouse studies. Sln
KO animals are mildly cold-intolerant (53). In a mouse model
of surgical intrascapular BAT ablation, the removal of BAT was
tolerated in the setting of acute cold exposure. By contrast,
intrascapular BAT ablation in Sln KO mice resulted in cold
intolerance, despite the maintenance of skeletal muscle shivering
(53). Moreover, Sln KOmice fed a HFD had an obese phenotype,
whereas mice with muscle-specific transgenic expression of Sln

FIGURE 2 | Ca2+ cycling thermogenesis in beige adipocytes the newly

identified UCP1-independent thermogenic mechanism depends on

ATP-dependent Ca2+ cycling via sacro-endoplasmic reticulumn ATPase

2b(SERCA2b) and the Ca2+ release channel ryanodine receptor 2 (RyR2).

fed a HFD had an obesity-resistant phenotype (54, 55). These
data support the role of SLN in regulating systemic energy
expenditure via calcium uncoupling (53).

UCP1-Independent Calcium Cycling
Thermogenic Mechanisms in Beige
Adipocytes
Our recent study revealed a new thermogenic mechanism
in beige adipocytes. The newly identified UCP1-independent
thermogenic mechanism depends on ATP-dependent Ca2+

cycling via SERCA2b and the Ca2+ release channel ryanodine
receptor 2 (RyR2) (Figure 2) (31). Adipocyte-specific Serca2 KO
mice have impaired beige adipocyte thermogenesis. Intriguingly,
the SERCA2b-mediated Ca2+ cycling thermogenic mechanism is
necessary for beige adipocyte thermogenesis, but dispensable in
brown adipocytes. The selectivity of this pathway for beige fat
relate to the ability of beige adipocytes to produce ATP due to
their high expression of ATP synthase. Thus, beige adipocytes can
generate heat in an ATP-dependent manner through SERCA2b-
mediated Ca2+ cycling even in the absence of UCP1. Brown
adipocytes express low levels of ATP synthase and cannot
produce ATP due to their low ATP synthesis capacity (56).

Furthermore, our study showed that beige fat dramatically
contributes to whole-body energy and glucose homeostasis via
UCP1-independent metabolic mechanisms. Mice with beige fat-
specific overexpression of Prdm16 driven by the aP2 promoter
were protected from diet-induced obesity compared to littermate
control mice (57). Furthermore, aP2-Prdm16 transgenic × Ucp1
KO mice fed a HFD were resistant to obesity, even in the
absence of UCP1 (31). Importantly, both aP2-Prdm16 transgenic
mice and aP2-Prdm16 transgenic × Ucp1 KO mice showed
dramatically better glucose homeostasis on a HFD than mice
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with normal Prdm16 expression. These data strongly support the
existence of a UCP1-independent metabolic mechanism in beige
fat that contributes to systemic energy and glucose homeostasis.
Therefore, Ca2+ cycling mediated by SERCA2–RyR2 signaling
in beige adipocytes may be a potential therapeutic target for
obesity and type 2 diabetes. For example, S107, a pharmacological
RyR2 stabilizer that minimizes Ca2+ leak from RyR2 and
increases Ca2+ loading from the endoplasmic reticulum (58),
enhances Ca2+ cycling thermogenesis. S107 treatment of Ucp1
KO mice induced resistance to hypothermia upon cold exposure
by activating UCP1-independent thermogenesis (31).

Nevertheless, there is concern that activation of Ca2+ cycling
in vivo may have potentially harmful effects on skeletal muscle
and the heart. Ryr1 mutation causes malignant hyperthermia
(50), and human RYR2 gene mutations cause arrhythmogenic
right ventricular cardiomyopathy type 2 and lethal arrhythmia
due to catecholaminergic polymorphic ventricular tachycardia
(59, 60). Given that activating systemic Ca2+ cycling may be
harmful, it may be promising to activate Ca2+ cycling selectively
in beige fat to treat obesity and type 2 diabetes while avoiding
harmful effects on the muscle and heart.

BEYOND THERMOGENESIS IN
THERMOGENIC ADIPOCYTES

Recently, some studies shed light on the physiological function of
beige fat to repress adipose tissue fibrosis; these findings are likely
to extend beyond thermogenesis (61). Chronic cold-acclimated
mice or mice with adipocyte-specific Prdm16 overexpression
markedly repress adipose tissue fibrosis. Of note, this repressive
effect was independent of UCP1 and independent of body weight
reduction (62). The repression of adipose tissue fibrosis caused
notable improvements in systemic glucose homeostasis via a
UCP1-independent mechanism (62). Although the findings need
to be supported by further work, it appears that beige fat can
repress adipose tissue fibrosis and control whole-body glucose
homeostasis. Brown and beige fat release several physiological
agents, known as “batokines,” to control systemic glucose
homeostasis (63–66). These data suggest that thermogenic fat has
an important physiological function beyond thermogenesis.

DISCUSSION

As thermogenic adipocytes exert multiple thermogenic
mechanisms, it will be critical to determine how the regulation of
the multiple mechanisms is orchestrated. SLN, a crucial calcium
uncoupler, is not expressed in beige adipocytes (31); beige
adipocytes must utilize an unknown regulator of the calcium
system. Further work is needed to determine the regulator of
SERCA2B activity and calcium uncoupler in beige adipocytes.

Brown adipocytes and beige adipocytes have common
characteristics, but recent evidence indicates that they have
distinct thermogenic mechanisms and functions. Of note,
UCP1 is still the main regulator of thermogenesis in BAT,
as revealed by numerous studies. However, emerging evidence
suggests that beige fat uses UCP1-independent thermogenic

pathways, which substantially contribute to systemic energy
homeostasis. It will be essential to determine the coordination
and contribution of the canonical (UCP1-dependent) and non-
canonical (UCP1-independent) thermogenic mechanisms in
adipose tissue to whole-body energy homeostasis. In particular,
the newly identified UCP1-independent thermogenic pathways
creatine substrate cycling and Ca2+ cycling should be evaluated
as non-canonical mechanisms of thermogenesis.

Intriguingly, Ca2+ cycling-related thermogenesis seems to
be evolutionarily conserved in humans and mice, and even
in species that lack functional UCP1, such as pigs (31).
These data suggest that UCP1-independent Ca2+ cycling
thermogenesis may be the fundamental thermogenic system.
Importantly, fibroblast growth factor 21 (FGF21) signaling
increases intracellular Ca2+ levels in adipocytes (67) and induces
browning (68). Recent evidence indicates that the anti-obesity
and anti-diabetic activities of FGF21 are UCP1-independent (69,
70). Furthermore, FGF21 and UCP1 are not required for cold
environment acclimation in mice (71). These findings suggest
that at least some of the metabolic actions of FGF21 are mediated
via UCP1-independent thermogenesis in adipose tissue.

It is of high clinical importance to determine the regulator
of UCP1-independent thermogenesis because understanding the
mechanism may lead to the development of new treatments for
obesity and type 2 diabetes. This may be promising for treating
obese and elderly populations who do not possess UCP1-positive
adipocytes. The current literature suggests that it may be possible
to selectively activate UCP1-independent thermogenesis, such
as that mediated by Ca2+ cycling, to treat patients who lack
UCP1-positive adipocytes. New tools such as “designer receptors
exclusively activated by designer drugs” (DREADD) and the
optogenetic tool channel rhodopsin 2 (ChR2) (72) may modulate
intracellular calcium signaling pathways in adipocytes and lead
to novel treatments for obesity and type 2 diabetes.
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