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ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) has two critical virulence fac-
tors—a type III secretion system (T3SS) and Shiga toxins (Stxs)—that are required for
the pathogen to colonize the intestine and cause diarrheal disease. Here, we carried
out a genome-wide CRISPR/Cas9 (clustered regularly interspaced short palindromic
repeats with Cas9) loss-of-function screen to identify host loci that facilitate EHEC in-
fection of intestinal epithelial cells. Many of the guide RNAs identified targeted loci
known to be associated with sphingolipid biosynthesis, particularly for production of
globotriaosylceramide (Gb3), the Stx receptor. Two loci (TM9SF2 and LAPTM4A) with
largely unknown functions were also targeted. Mutations in these loci not only res-
cued cells from Stx-mediated cell death, but also prevented cytotoxicity associated
with the EHEC T3SS. These mutations interfered with early events associated with
T3SS and Stx pathogenicity, markedly reducing entry of T3SS effectors into host cells
and binding of Stx. The convergence of Stx and T3SS onto overlapping host targets
provides guidance for design of new host-directed therapeutic agents to counter
EHEC infection.

IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) has two critical virulence
factors—a type III secretion system (T3SS) and Shiga toxins (Stxs)—that are required
for colonizing the intestine and causing diarrheal disease. We screened a genome-
wide collection of CRISPR mutants derived from intestinal epithelial cells and identi-
fied mutants with enhanced survival following EHEC infection. Many had mutations
that disrupted synthesis of a subset of lipids (sphingolipids) that includes the Stx re-
ceptor globotriaosylceramide (Gb3) and hence protect against Stx intoxication. Un-
expectedly, we found that sphingolipids also mediate early events associated with
T3SS pathogenicity. Since antibiotics are contraindicated for the treatment of EHEC,
therapeutics targeting sphingolipid biosynthesis are a promising alternative, as they
could provide protection against both of the pathogen’s key virulence factors.

KEYWORDS CRISPR screen, EHEC, EPEC, LAPTM4A, Shiga toxin, T3SS, TM9SF2, host
susceptibility, sphingolipid synthesis

Enterohemorrhagic Escherichia coli (EHEC) is a foodborne human pathogen that
causes diarrheal illness worldwide. Infection is often associated with bloody diar-

rhea that is usually self-limited; however, 5 to 7% of cases progress to hemolytic-uremic
syndrome (HUS), a life-threatening complication that can result in renal failure and
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neurological sequelae (1). EHEC pathogenesis shares many features with that of enter-
opathogenic E. coli (EPEC), another extracellular pathogen that colonizes the intestine.
Successful colonization by both species is dependent upon a type III secretion system
(T3SS) that enables tight adherence of bacteria to host epithelial cells by inducing
characteristic actin cytoskeletal rearrangements and loss of microvillus structure (at-
taching and effacing [AE] lesions) (2). EHEC virulence is also markedly shaped by
production of Shiga toxins (Stxs), variants of which are often present in multiple copies
within the EHEC genome. Translocation of Stxs to tissues outside the intestinal tract is
thought to underlie the development of HUS (3, 4).

The EHEC T3SS injects a plethora of effector proteins into host cells, resulting in
alteration or disruption of numerous host cell processes. During infection, EHEC is
thought to target epithelial cells within the large intestine; however, a variety of
cultured cell lines have been used to characterize the activity of this system. In vivo and
in vitro studies have revealed that a key effector is the translocated intimin receptor (Tir)
(5). Tir is inserted into the host cell membrane and serves as a receptor for the bacterial
adhesin intimin (6). Interactions between intimin and Tir are also required for recruit-
ment and rearrangement of actin and other cytoskeletal proteins underneath adherent
bacteria, which results in characteristic actin-rich “pedestals.” In animal models, dele-
tions of tir or eae (the intimin locus) and mutations that render the T3SS inactive
markedly reduce the pathogen’s capacity to colonize the intestine and cause disease
(7, 8).

Thirty-eight bacterial proteins in addition to Tir have been confirmed as type 3
secreted effector proteins in EHEC (9). Unlike structural components of the T3SS,
individual effector proteins are frequently not essential for bacterial virulence; although
their roles have not been fully defined, it is clear that effector proteins can act in
redundant, synergistic, and antagonistic fashions (10). Key host processes modulated
by EHEC effectors include innate immunity, cytoskeletal dynamics, host cell signaling,
and apoptosis (11). EHEC effectors also restrict host cell phagocytosis of this extracel-
lular pathogen. Effectors undergo an ordered translocation, and after its translocation,
the effector protein EspZ functions as a “translocation stop” that prevents unlimited
effector translocation and reduces infection-associated cytotoxicity (12). Compared to
wild-type (wt) infection, in vitro infection with espZ-deficient strains results in greater
host cell detachment, loss of membrane potential, and formation of condensed nuclei
(13).

Although Stxs are pivotal to EHEC pathogenesis, the effects of these AB5 toxins on
the intestinal epithelium per se are not entirely clear. Toxicity was initially thought to be
largely restricted to tissues beyond the intestinal tract (e.g., microvascular endothelial
cells within the kidneys and the brain in the setting of HUS) (14); however, more recent
in vivo and ex vivo studies suggest that Stx intoxication may also occur in the intestine
at the primary site of infection. Although at low levels, receptors for Stx are present
within human colonic epithelial cells (15), and Stx2 causes extensive cell death to the
intestinal mucosa (16, 17). Furthermore, oral administration of Stx can lead to diarrhea
in animals, and in several animal models of EHEC intestinal disease, severe diarrhea is
dependent on Stx (8, 17).

The principal receptor for most forms of Stx (including Stx1 and Stx2, which are
produced by the EHEC strain used in this study) is a neutral glycosphingolipid, globot-
riaosylceramide (Gb3). Following binding of Stx to Gb3, the toxin is internalized and
undergoes retrograde transport through early endosomes, the Golgi complex, and the
endoplasmic reticulum (ER); the A subunit is cleaved by furin in the Golgi complex,
followed by disulfide bond reduction in the ER that releases the catalytically active A1
fragment, which undergoes retro-translocation into the cytosol (18). Site-specific de-
purination of 28S rRNA by the toxin results in inhibition of protein synthesis and can
induce the ribotoxic stress response, the unfolded protein response, and apoptosis
(19–22).

Analyses of EHEC pathogenesis have primarily focused upon identification and
characterization of bacterial factors rather than on host factors required for pathoge-
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nicity. Though some host factors, particularly those required for the actions of Stx and
of the T3SS effectors, have been identified, to date, unbiased genome-wide screens for
EHEC susceptibility loci have not been reported. Recently, such screens have become
possible, given the advent of CRISPR/Cas9 (clustered regularly interspaced short pal-
indromic repeats with Cas9)-based libraries of host mutants whose composition can be
monitored using high-throughput DNA sequencing. We recently used this approach to
screen for host factors that mediate susceptibility to Vibrio parahaemolyticus’ two T3SSs
and identified several host processes not previously linked to T3SS activity (23). The
efficiency and power of this approach (24, 25) prompted us to adopt this approach to
identify mutants with heightened resistance to EHEC.

Here, we identify and characterize intestinal epithelial cell mutants that become
enriched following library infection with an EHEC strain producing an active T3SS as
well as Stx. Although minimal overlap between the action of the T3SS and Stx has
previously been reported, we identified several host loci and processes that are
required for the effects of both virulence factors. Genes required for production of the
Stx receptor Gb3 and other sphingolipids were also found to be necessary for trans-
location of T3SS effectors into host cells. Additionally, we identified 2 minimally
characterized loci not previously linked to either T3SS or Stx response pathways and
find that they are critical for the biogenesis of host cell Gb3 and hence susceptibility to
EHEC infection.

RESULTS
CRISPR/Cas9 screen for host factors conferring susceptibility to EHEC infection.

We developed a genome-wide CRISPR/Cas9 screen to identify host factors that con-
tribute to susceptibility to EHEC infection in the HT-29 colonic epithelial cell line using
the Avana library of single-guide RNAs (sgRNAs) (23). This library contains four sgRNAs
targeting each of the annotated human protein-coding genes (26). Host cells were
infected with a ΔespZ derivative of EHEC strain EDL933 (which carries genes encoding
both Stx1 and Stx2). The ΔespZ mutation heightens T3SS activity and increases host
cell death associated with infection by EHEC (13) (see Fig. S1A in the supplemental
material). We anticipated that if we could increase the toxicity of the EHEC T3SS
(Fig. S1B), we would enhance the screen’s selective pressure and yield greater enrich-
ment of host cell mutants resistant to this key virulence system. Although Stx1 and Stx2
were also produced under infection conditions (Fig. S1C), initial toxicity assays using
purified toxin suggested that they would not exert substantial selective pressure during
the screen. In contrast to infection of cells with ΔespZ EHEC, which resulted in marked
(~80%) host cell death by the end of the infection period (Fig. 1A and B), a correspond-
ing 6-h treatment of cells with purified toxin exceeding the amount detected during
infection had minimal effect on viability (Fig. S1D).

For the screen, two biological replicates of libraries of HT-29 cells mutagenized with
the Avana guide RNAs were infected for 6 h with ΔespZ EHEC at an multiplicity of
infection (MOI) of 100 (Fig. 1A). Following infection, resistant cells were cultured in the
presence of antibiotics until reaching ~70% confluence (~5 days) and then reseeded
and reinfected. Genomic DNA (gDNA) was isolated from a fraction of the surviving
population after each of the four rounds of infection as well as from the initial
uninfected cells, and high-throughput sequencing of integrated sgRNA templates was
performed to indirectly quantify the abundance of the associated mutants. We found
that as our screen progressed, as would be expected for a library under strong
selection, representation became biased toward a subset of enriched genes (see
Fig. S2A in the supplemental material). Statistical analysis was performed using the
STARS algorithm, which integrates data from independent guides targeting the same
gene to identify the most enriched genotypes (26).

We identified 13 loci with statistically significant enrichment (P � 0.001) in both
libraries after 4 rounds of infection (Fig. 2A). Unexpectedly, given our results with
purified toxin, more than half of the enriched loci encoded factors associated with
sphingolipid biosynthesis, and many were closely connected to synthesis of Gb3, the
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Stx receptor (Fig. 2B). For example, hits included the Golgi complex-localized enzymes
A4GALT, which catalyzes the final step in Gb3 synthesis, B4GALT5, which catalyzes
production of the A4GALT substrate lactosylceramide, and UGCG, which converts
ceramide (a precursor for all glycosphingolipids) into glucosylceramide. Additional hits
included the ER-localized SPTLC2, SPTSSA, and KDSR, all of which lie on the ceramide
synthesis pathway, and ARF1, which indirectly regulates intracellular trafficking of
glucosylceramide (27).

Enriched loci also included TM9SF2 and LAPTM4A, whose functions are largely
unknown. Although both are members of larger gene families coding for structurally
related proteins, only guide RNAs targeting these particular family members were
found to be enriched, suggesting that they have specific functions conferring suscep-
tibility to EHEC infection (Fig. S2B). Human TM9SF2 has been reported to be a Golgi
complex-resident transmembrane protein required for the Golgi complex localization

FIG 1 Design of a CRISPR/Cas9 screen to identify host factors underlying susceptibility to EHEC infection. (A)
Schematic of the infection and outgrowth process for an HT-29 CRISPR/Cas9 library undergoing multiple rounds
of infection with ΔespZ EHEC, which has an active T3SS and secretes Stx1 and Stx2. (B and C) Abundance of HT29
cells infected with the indicated strain relative to the abundance of mock-infected cells at day 1 (B) and day 5 (C)
postinfection. Graphs display the mean and standard deviation (SD) from 3 independent experiments. **, P � 0.01;
****, P � 0.0001.
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of NDST1, a sulfotransferase (28). Its homologues in Drosophila (TM9SF2/4) and Dictyo-
stelium (Phg1A/Phg1C) have been linked to innate immunity and membrane protein
localization (29, 30). The LAPTM4A locus has been reported to encode a transmem-
brane protein localized to lysosomes and late endosomes. It has been linked to

FIG 2 Mutations that disrupt sphingolipid biosynthesis and poorly characterized genes are enriched in the HT-29 CRISPR/Cas9 library
following repeated infection with espZ EHEC. (A) Scatterplot of the statistical significance in each library (A and B) associated with the
genes ranked in the top 5% by the STARS algorithm. Genes with a P value of �0.001 in both libraries (upper right quadrant) are named;
genes within the ellipse all have P values of �2.0e�06. (B) Products of genes shown in panel A with P � 0.001 in both libraries and
schematic representation depicting the subcellular localization of enzymes (black) that contribute to sphingolipid biosynthesis. A subset
of substrates/products is depicted in red. (C) Abundance of HT29 control and mutant cells infected with ΔespZ EHEC relative to the
abundance of mock-infected cells at day 5 postinfection. Graphs display the mean and SD from 3 independent experiments compared
to HT-29 Cas9 (leftmost bar). *, P � 0.05; **, P � 0.005; ***, P � 0.001; ****, P � 0.0001.
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intracellular transport of nucleosides, multidrug resistance, and maintenance of lyso-
somal integrity (31–34). In addition to the enrichment of guides targeting TM9SF2,
LAPTM4A, and genes related to sphingolipid biosynthesis, our analysis detected en-
richment for guides targeting several genes associated with cancer and cell prolifera-
tion (MLLT3, TFAP4, ZNF217, and DUSP6) (35–38).

The prominence among our hits of Gb3-related genes was unanticipated, because
our preliminary studies suggested that T3SS rather than Stx would exert the strongest
selective pressure in our screen. T3SSs from several organisms have been hypothesized
to associate with lipid rafts (39–41), transient membrane microdomains that typically
are enriched in sphingolipids (including Gb3) (19); however, studies of T3SS activity and
host membrane components have generally focused on the importance of cholesterol,
and a role for Gb3 in EHEC pathogenesis beyond that of Stx receptor has not been
reported. To more precisely define the contribution of screen hits to susceptibility to
EHEC infection, we developed assays that enabled the effects of Stx and T3SS on HT-29
cells to be investigated independently. Host cells were infected in parallel with a ΔespZ
mutant, a ΔespZ ΔescN mutant (which lacks an ATPase essential for T3SS activity), or a
ΔespZ Δstx1 Δstx2 mutant (ΔΔstx [a mutant that does not produce Stx1 or Stx2]) or were
mock infected, and the number of host cells present after 1 or 5 days of infection was
determined (Fig. S1B). These experiments revealed similar marked declines in abun-
dance of HT-29 cells 1 day postinfection with the type 3-active ΔespZ or ΔespZ ΔΔstx
EHEC (to �20% of that seen in mock-infected cells) (Fig. 1B); in contrast, the type
3-deficient but toxin-producing ΔespZ ΔescN mutant infection had no significant effect
on host cell abundance at this time point (Fig. 1B). However, in the subsequent 4 days,
there was a marked difference in growth between cells infected with the ΔespZ versus
ΔespZ ΔΔstx strains. Population expansion of cells previously exposed to toxin (ΔespZ
infection) was far slower than that of cells that were never exposed to the toxin (ΔespZ
ΔΔstx infection) (Fig. 1C and Fig. S1B). The abundance of HT-29 cells infected with the
ΔespZ ΔescN strain also differed significantly from that of mock-infected cells by day 5,
likely further reflecting the consequence of toxin exposure at this time point. Collec-
tively, these analyses demonstrate that the impact of T3SS is most clearly evident 1 day
postinfection and can be differentiated from that of toxin via infection with the ΔespZ
ΔΔstx strain. In contrast, the effects of Stx are delayed, become more apparent 5 days
postinfection, and can be assayed in infection with the T3SS-deficient ΔespZ ΔescN
strain. Given that our screen included multiple rounds of 5-day outgrowth following
infection (during which effects of Stx could manifest), we conclude that the screen
enriched for mutants resistant to Stx as well as T3SS.

For initial validation of our screen hits, mutants corresponding to selected enriched
loci were constructed and verified by Sanger sequencing or Western blotting (Fig. S2C
to E), and their abundance (relative to mock-infected cells) was assessed 5 days
postinfection with ΔespZ EHEC. In comparison to the HT-29 Cas9 control strain, all but
one mutant (ARF1) had significantly enhanced abundance at 5 days postinfection
(Fig. 2C), suggesting that our selection and analysis yielded robust and reliable data
regarding susceptibility to EHEC infection.

Sphingolipid biosynthesis facilitates T3SS killing. Because the hits predicted to
be involved in cell proliferation (i.e., DUSP6, TFAP4, ZNF217, and MLLT3) were less likely
to be involved in EHEC pathogenesis per se, we chose to focus further studies on a
subset of the sphingolipid biosynthesis mutants and on mutants with mutations in the
largely uncharacterized loci TM9SF2 and LAPTM4A. In particular, we focused on factors
mediating synthesis of glycosphingolipids, particularly A4GALT, which should only have
impaired production of Gb3 and other globo-series glycosphingolipids (42), and UGCG,
which is required for synthesis of all glycosphingolipids except galactosylceramines
(43). ARF1 was also included, due to its contribution to intracellular trafficking of
UGCG’s product from the cis-medial Golgi complex to the trans-Golgi network, where
B4GALT5 and A4GALT are found (27). To assess the bacterial factors underlying the
enrichment of these loci, mutants were first infected with the ΔespZ ΔΔstx strain or
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mock infected, and cell abundance was assessed 1 day following infection. Notably, all
of the mutant cells displayed significantly elevated relative abundance compared to wt
HT-29 cells (Fig. 3A). Coupled with our prior analyses of bacterial factors modulating
host survival at this time point (Fig. 1B), these results suggest that these mutations
confer resistance to ΔespZ ΔΔstx infection by protecting against the effects of EHEC’s
T3SS and thus that associated loci may play a role in the host cell response to T3SS. Of
these factors, only ARF1 has previously been linked to T3SS-mediated processes; it is
thought to facilitate insertion of the T3SS translocon during Yersinia infection (44) but
has not been linked to T3SS activity in EHEC.

The first effector translocated by EHEC’s T3SS, Tir, is essential for the activity of this
secretion system. In the absence of Tir, translocation of additional effectors does not
occur, nor does the characteristic cytoskeletal rearrangement and formation of mem-
brane “pedestals” underneath adherent bacteria (5, 6). Tir translocation can be assessed
using a Tir-CyaA reporter fusion protein, followed by measurement of intracellular
cAMP levels (45). We monitored translocation of this reporter, which is dependent on
an intact T3SS, from WT EHEC into control HT-29 Cas9 cells and mutants that appeared
resistant to the effects of T3SS. These experiments revealed significantly lower Tir
translocation into all mutants than into control HT-29 cells, ranging from ~70%
(A4GALT) down to ~10% (LAPTM4A) of wt levels (Fig. 3B). Consistent with this obser-
vation, immunofluorescence microscopy of wt and mutant HT-29 cells infected with wt
EHEC revealed markedly fewer adherent bacteria and associated actin-rich pedestals.
While EHEC formed pedestals on ~80% of infected wt HT-29 cells, pedestals were
detected on only 18 to 35% of infected mutants tested, and fewer pedestals were
generally observed per mutant cell (Fig. 3C, D, and E; see Fig. S3A in the supplemental
material). Collectively, these results indicate that the mutations rendering HT-29 cells
less susceptible to the cytotoxic effects of EHECs T3SS all limit early steps in the T3SS
effector translocation process, although they do not fully disrupt this process. These
results also demonstrate that the mutants identified in our screen are protective against
EHEC even when its T3SS activity has not been augmented by mutation of espZ (ΔespZ).

EHEC’s T3SS machinery and associated effectors are similar to those of enteropatho-
genic E. coli (EPEC), a related pathogen that does not produce Shiga toxin but that also
requires its T3SS to colonize and cause disease in the human intestine (46). We
investigated whether the mutations that protect HT-29 cells from EHEC infection also
render HT-29 less susceptible to EPEC. wt and mutant HT-29 cells were infected with an
EPEC ΔespZ mutant that, like its EHEC counterpart, is reported to have increased
cytotoxicity relative to the wt strain (13, 47) (Fig. S3B). All 5 mutants tested exhibited
increased survival compared to the wt cells at 1 day postinfection, and this increase was
linked to the presence of a functional T3SS (Fig. S3C). Survival of the TM9SF2 and ARF1
mutants was particularly enhanced, with the number of infected cells nearing 50% of
the mock-infected controls, compared to the ~5% observed with wt HT-29. Overall, our
observations suggest that host glycosphingolipids modulate T3SS-mediated cytotox-
icity for both pathogens, although pathogen reliance on particular sphingolipids is not
necessarily conserved. For example, the absence of A4GALT had a dramatic effect on
EHEC cytotoxicity, but only a modest influence on EPEC cytotoxicity. Additionally, our
results suggest that TM9SF2 may play a conserved role in facilitating the activity of the
EHEC and EPEC T3SSs.

Given previous reports that lipid rafts may promote T3SS activity and that Gb3
high-density association within lipid rafts is important for Stx binding (48), as well as our
screen’s identification of numerous sphingolipid-related loci, we hypothesized that
TM9SF2 and LAPTM4A mutants might be less susceptible to EHEC infection due to
alterations in lipid raft production or dynamics. To explore these possibilities, we
compared the trafficking in control, TM9SF2, and LAPTM4A cells of a chimeric
glycosylphosphatidylinositol-anchored green fluorescent protein construct (GPI-GFP),
which is transported to the plasma membrane, where it becomes enriched in lipid rafts
(49). Cell surface fluorescence was similarly homogenous in all three genetic back-
grounds, and we could not detect consistent differences in steady-state plasma mem-
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FIG 3 Disruption of host sphingolipid biosynthesis genes and poorly characterized genes reduces the activity
and cytotoxicity of EHEC’s T3SS. (A) Abundance of control and mutant HT29 Cas9 cells infected with ΔespZ Δstx1
Δstx2 EHEC relative to the abundance of mock-infected cells at day 1 postinfection. Graphs display the mean and
SD from 3 independent experiments. P values were obtained from one-way ANOVA with Dunnett’s postcorrec-
tion (*, P � 0.02; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001). (B) Relative translocation of Tir-CyA from wt EHEC
into HT-29 Cas9 control cells and the indicated HT-29 mutants based on cAMP levels. Translocation into HT-29
Cas9 control cells was set as 100%. Data reflect the mean and SD from 3 independent experiments. P values (****,
P � 0.0001) are based on one-way ANOVA with Dunnett’s postcorrection. (C) Confocal microscopy of control and
mutant HT-29 Cas9 cells infected for 6 h with GFP-EHEC and then stained for F-actin with Alexa 647-phalloidin
(pink) and DAPI (blue [labels nuclei]). Merged images are shown. Focal colocalization of bacteria and actin reflects
formation of actin pedestals. White boxes show enlarged images to highlight pedestals. (D) Percentage of the
indicated host cells with actin pedestals 6 h after infection. Two hundred fifty cells were assessed for each host
genotype. (E) Number of pedestals per host cell. Box plots show the range (minimum to maximum) of pedestal
numbers. One hundred cells with AE lesions were counted per genotype. ****, P � 0.0001.
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brane fluorescence between the 3 samples (Fig. S3D). To determine if the kinetics of
trafficking and insertion might nevertheless differ between wt and mutant cells, we
performed quantitative photobleaching. The rates of signal decay were similar for all 3
backgrounds, suggesting that bulk plasma membrane trafficking and lipid raft insertion
are not grossly disrupted in TM9SF2 and LAPTM4A cells (Fig. S3E). Further studies will
be needed to define the precise means by which these mutations, as well as others
tested above, limit susceptibility to EHEC and EPEC T3SSs.

LAPTM4A and TM9SF2 are required for Gb3 biosynthesis. As noted above, the
effects of Stx on HT-29 abundance were evident 5 days postinfection and could be
clearly distinguished from those of EHEC’s T3SS through infection with the Stx�

T3SS-deficient ΔescN mutant (Fig. 1C). Therefore, we also compared the abundance of
wt HT-29 cells and several mutants from our panel after challenge with the ΔescN strain.
As anticipated, mutants lacking the sphingolipid biosynthesis factors A4GALT, UGCG,
and SPTLC2 (all of which contribute to Gb3 production) were far less susceptible to
ΔescN mutant infection than wt HT-29 cells; at 5 days postinfection, the abundance of
these mutants did not differ from that of mock-infected controls (Fig. 4A). Intriguingly,
the TM9SF2 and LAPTM4A mutants were also significantly more abundant than wt cells
by 5 days post-ΔescN mutant infection, suggesting that these factors not only contrib-
ute to resistance to T3SS-mediated cytotoxicity, but also could be host factors facili-
tating intoxication.

To begin to explore the means by which TM9SF2 and LAPTM4A mutations protect
against Stx, we tested the capacity of mutants to bind to fluorescently tagged toxin. As
controls, we also assayed A4GALT and UGCG mutants, which are known to be com-
pletely deficient in Gb3 production and hence cannot bind Stx. Flow cytometry
analyses, which were performed both in HT-29 cells (Fig. 4B) and HeLa cells (see
Fig. S4A in the supplemental material), revealed that there was a high (but not uniform)
level of binding of Stx2 to both wt cell types. Notably, there was marked reduction in
Stx binding in both the TM9SF2 and LAPTM4A mutant cells (Fig. 4B and Fig. S4A); these
mutants bound equal or less toxin than the A4GALT and UGCC mutants. The residual
binding observed in all genetic backgrounds may reflect nonspecific toxin adsorption
or low-level genetic heterogeneity in the CRISPR/Cas9-mutagenized lines.

Similarly, fluorescence microscopy, which was performed using wt HeLa cells and
their derivatives due to their favorable imaging characteristics, did not reveal Stx
binding to any of the mutants, even when cells were permeabilized to enable binding
to intracellular receptor (Fig. 4C and D). Thus, the TM9SF2 and LAPTM4A mutants’
deficiencies in Stx binding do not appear to reflect impaired trafficking of Gb3 to the
cell surface, but instead reflect defective synthesis and/or enhanced degradation of this
glycosphingolipid.

To evaluate the specificity of the deficiency in the TM9SF2 and LAPTM4A HT-29
mutants, we used flow cytometry to measure their capacity to bind cholera toxin (CT),
which interacts with the glycosphingolipid GM1 (Fig. 2B) (50). In contrast to the near
ablation of Stx binding in these mutants, there was a comparatively modest reduction
in the binding of fluorescently labeled CT to these cells compared to wt HT-29 cells and
A4GALT mutant cells (which produce normal amounts of GM1) (Fig. S4B). As expected,
the UGCG cells showed a far more marked decrease in binding to cholera toxin, since
UGCG is required for synthesis of GM1 (43). Collectively, these observations suggest
that the TM9SF2 and LAPTM4A mutants’ deficiencies in Stx binding reflect relatively
specific reductions in production of Gb3 or related globo-series glycosphingolipids,
rather than deficiencies that consistently impair synthesis or trafficking to the cell
membrane of multiple surface receptors. Coupled with our analysis of the set of
mutants that display reduced sensitivity to T3SS-mediated cytotoxicity, these observa-
tions suggest that reduced production of Gb3 likely contributes to the TM9SF2 and
LAPTM4A mutants’ resistance to the effects of EHEC’s T3SS as well as to Stx.

To gain greater insight into the mechanism by which TM9SF2 and LAPTM4A enable
infection by EHEC, we determined their subcellular localization in HeLa cells via
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confocal microscopy. Consistent with previous reports (28), we found that TM9SF2
colocalized with GM130, a Golgi complex matrix protein (Fig. 5A). A subset of fluores-
cence emanated from nucleoli, potentially resulting from nonspecific primary antibody
binding, although Stx has been reported to be actively transported into nucleoli (51).
Unexpectedly, as prior studies localized LAPTM4A to lysosomes (31–34), we found that
a LAPTM4A-GFP fusion protein localized to the Golgi complex, like TM9SF2 (Fig. 5A).

The subcellular distribution of TM9SF2 and LAPTM4A raised the possibility that
these proteins might enable EHEC infection by facilitating Gb3 biosynthesis, either by

FIG 4 TM9SF2 and LAPTM4A promote sensitivity to Stx. (A) Abundance of wt and mutant HT29 Cas9 cells infected
with T3SS-deficient EHEC (ΔespZ ΔescN) relative to the abundance of mock-infected cells at day 5 postinfection.
P values are based on one-way ANOVA with Dunnett’s posttest correction (****, P � 0.0001). (B) Flow cytometry
analysis of Stx2-Alexa 647 binding to wt and mutant HT-29 Cas9 cells. Histograms show the distribution of
fluorescence intensity in the total cell population in the presence and absence of toxin. (C and D) Confocal
microscopy of Stx2-Alexa 488 (green) binding to nonpermeabilized (C) and permeabilized (D) control and mutant
HeLa Cas9 cells. Cells were also stained with DAPI and Alexa 568-phalloidin.
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participating in Golgi complex localization of precursor substrates or enzymes specif-
ically or by acting more generally as matrix proteins to ensure overall Golgi complex
integrity. To investigate the former possibility, we immunolabeled the A4GALT enzyme
in wt cells and in TM9SF2 and LAPTM4A cells. A4GALT maintained proper Golgi
complex localization in both mutant cell lines (Fig. 5B), suggesting that TM9SF2 and
LAPTM4A are not required either for the production or distribution of A4GALT. To
investigate if TM9SF2 and LAPTM4A might instead facilitate Gb3 trafficking by acting
more generally in Golgi complex integrity, we performed qualitative and quantitative

FIG 5 Subcellular localization of TM9SF2, LAPTM4A, and A4GALT in wt and mutant HeLa cells. (A) Confocal
immunofluorescence microscopy of HeLa cells stained with anti-TM9SF2 (green), anti-GM130 to label the Golgi
complex (pink) and DAPI. For LAPTM4A localization, HeLa cells were transfected with GFP-tagged LAPTM4A, which
was imaged directly after counterstaining as described above. (B) Confocal immunofluorescence microscopy of
control and mutant HeLa Cas9 cells labeled with anti-A4GALT antibody (pink), anti-58K to label the Golgi complex
(pink) and DAPI. GM130 and 58K stain similar populations of Golgi complex membranes and were used inter-
changeably to accommodate the primary antibodies of interest.
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image analysis of both cis-medial and trans-Golgi compartments. GM130 (a cis-medial
Golgi marker) appeared morphologically normal in the mutant cells (see Fig. S5A in the
supplemental material) and quantitative characterization of the trans-Golgi complex,
where the final step in Gb3 biosynthesis is thought to occur, did not reveal differences
in either the integrity (as measured by confocal z-stack nominal 2-dimensional area) or
localization (as measured by nuclear centroid displacement) of this subcompartment
(Fig. S5B and C). Further analyses will be required to identify the precise defect that
leads to glycosphingolipid deficiency in these mutants.

DISCUSSION

EHEC encodes two potent virulence factors that empower it to disrupt the colonic
epithelium during infection: (i) its T3SS, which enables intimate attachment of bacte-
ria as well as translocation of multiple effectors that disrupt epithelial cell processes,
and (ii) Stx, a potent translation inhibitor that triggers multiple stress responses in cells
within and outside the intestinal tract. These virulence factors were acquired by
horizontal transmission in distinct steps in the pathogen’s evolution (52) and are
generally thought of as functionally independent. However, our CRISPR/Cas9-based
screen for host mutants with reduced susceptibility to EHEC infection uncovered a
remarkable overlap in host factors that mediate the response to these bacterial
products. The screen for mutations enriched after infection with Stx� and T3SS� EHEC
identified numerous loci known to be associated with sphingolipid and glycosphingo-
lipid biosynthesis, in particular factors required for production of the Stx receptor Gb3,
as well as two loci (TM9SF2 and LAPTM4A) with largely undefined cellular roles that
were also required for toxin binding. Unexpectedly, mutants lacking these factors are
also less susceptible to cytotoxicity associated with EHEC’s T3SS. These mutations
interfered with early events associated with T3SS and Stx pathogenicity, markedly
reducing entry of T3SS effectors into host cells and binding of Stx. Although the means
by which these host loci and the processes associated with them are exploited by EHEC
are not fully understood, the convergence of Stx and T3SS onto overlapping targets
raises intriguing possibilities for design of therapeutic agents countering EHEC infec-
tion.

Previous studies of Stx and EHEC T3SS have characterized some of the pathways
through which these factors act upon host cells, such as the binding and retrograde
transport that enable Stx to reach its intracellular target, the stress responses induced
by Stx, the processes underlying formation of pedestals, and the targets and mecha-
nisms of effectors (53–56). Notably, our findings suggest that disruption of only a subset
of host genes provides protection against cytotoxicity when both virulence factors
are present. Interestingly, we identified loci that influence early steps within virulence
pathways, e.g., loci that are required for Stx binding to host cells or T3SS effector
translocation rather than loci that mediate toxin trafficking (e.g., clathrin, dynamin, and
SNX1/2) (18) or interact with translocated effectors (e.g., N-WASP, IRTKS, and IRSp53)
(56–58). Such proximal factors have also been identified in other genome-wide CRISPR
screens for host mutants resistant to cytotoxicity by other pathogens. For example, a
Yersinia RNA interference (RNAi) screen and our Vibrio parahaemolyticus CRISPR screen
yielded loci that reduced effector translocation (23, 44). For EHEC virulence factors,
disrupting early steps in their interactions with host cells may be particularly protective
because these virulence factors disrupt multiple cellular processes once internalized; for
example, inactivation of the host response to a single T3SS effector may still leave cells
vulnerable to the activity of other growth-interfering effectors.

Early steps in the interactions between host cells and EHEC’s virulence factors were
also likely identified in our screen because of the previously unrecognized overlap
between host factors utilized by T3SS and Stx at the start of their encounters with
epithelial cells. We found that mutants with disrupted synthesis of Gb3, which were
expected to be resistant to Stx-mediated growth inhibition, also exhibited an unex-
pected reduction in their sensitivity to T3SS-mediated cytotoxicity that was associated
with reduced translocation of Tir. A majority of these mutants also exhibited reduced
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susceptibility to EPEC infection, suggesting that common host processes may mediate
the actions of EHEC and EPEC’s related T3SS.

Although many mutants identified by our screen share the characteristic of lacking
Gb3, it is unlikely that this deficit is the sole factor underlying their resistance to T3SS.
Mutants lacking A4GALT, UGCG, TM9SF2, and LAPTM4A appear equally devoid of
extracellular Gb3 in assays of Stx binding; however, they exhibit various degrees of
resistance to ΔespZ EHEC. T3SS resistance is also not fully correlated with the extent to
which Tir translocation into these cells is reduced. These observations suggest that the
reduction in Gb3 levels is associated with additional cellular changes (e.g., in overall
sphingolipid homeostasis, membrane/lipid raft composition, or intracellular trafficking)
that also modulate the host response to EHEC infection.

The means by which mutations in TM9SF2 and LAPTM4A prevent accumulation of
Gb3 remain to be determined. We found that both proteins are localized within the
Golgi complex, raising the possibility that they modulate the activity, localization, or
transport of glycosphingolipid biosynthetic factors, which also occurs within this
organelle. TM9SF2 was previously found to regulate the localization of NDST1, a Golgi
complex-localized enzyme that catalyzes N-sulfation of heparan sulfate, and to be
required for accumulation of NDST1’s reaction product (28). TM9SF2 and the associated
heparan sulfate N-sulfation are important for host cell binding and entry by chikungu-
nya virus (CHIKV) virus (28); however, the absence of other hits associated with heparan
sulfate in our screen suggests that this phenotype is not related to our results. Minor
abnormalities in several other glycosylation pathways were also associated with
TM9SF2 disruption, but the underlying mechanism was not determined. We found that
TM9SF2 is not required for correct localization or accumulation of A4GALT, suggesting
that TM9SF2 may act prior to the terminal step of Gb3 synthesis. Similarly, LAPTM4A
mutation did not appear to modulate A4GALT production or localization. It is unclear
why previous studies have observed LAPTM4A in lysosomes and late endosomes rather
than the Golgi complex localization that we detected; further studies will be needed to
dissect the targeting and activity of LAPTM4A and its relationship to production of Gb3.
Protein annotation and studies in the mouse homologue (MTP) suggest LAPTM4A may
be involved in intracellular transport of nucleosides (59). Together with its Golgi
complex localization shown herein, LAPTM4A could be involved in transporting acti-
vated sugars to the Golgi complex lumen, to supply precursors for Gb3 biosynthesis.

Although EHEC is susceptible to common antibiotics, antibiotic treatment is gener-
ally contraindicated during EHEC infection, as antibiotics can increase production and
release of Stx, leading to the development of HUS (60). A variety of alternative therapies
have been proposed to counter the effects of toxin, including compounds that seques-
ter or neutralize toxin, block its binding to host cells, or disrupt toxin internalization,
processing, or intracellular activity (61). Their activity has largely been tested in toxin-
treated cell lines; a few have also been studied in animal models, but not in the context
of EHEC infection. Our results suggest that a subset of these compounds, namely, those
that alter production of Gb3, may reduce pathogenesis associated with T3SS as well as
Stx and thus may be particularly effective in countering EHEC infection. Further studies
of these and related compounds may enable identification of agents that counter host
susceptibility to translocation of EHEC’s T3SS effectors, as well as to the effects of Stx,
which could hold high therapeutic potential. Thus, our identification of host factors
related to both T3SS and Stx susceptibility provides guidance in prioritizing the
development of therapeutics aimed at countering EHEC pathogenesis.

MATERIALS AND METHODS
Bacterial strains, plasmids, and growth conditions. All plasmids used in this study are listed in

Table S3. Primers used in strain construction are shown in Table S1. Bacterial strains were cultured in LB
medium or on LB agar plates at 37°C unless otherwise specified. Antibiotics and supplements were used
at the following concentrations: carbenicillin, 50 �g/ml; ampicillin, 100 �g/ml; chloramphenicol, 20 �g/
ml; kanamycin, 50 �g/ml; streptomycin, 200 �g/ml; and IPTG (isopropyl-�-D-thiogalactopyranoside),
1 �g/ml. The EHEC ΔespZ deletion mutant was constructed by allelic exchange using a derivative of the
suicide vector pDM4 that included espZ-flanking sequences (62). Deletion of stx1, stx2, and escN was
performed using lambda red-mediated recombination (63).
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Eukaryotic cell lines and growth conditions. HT-29, HeLa, and 293T cells and their derivatives were
cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum.
Cells were grown at 37°C with 5% CO2 and routinely passaged at 70 to 80% confluence; medium was
replenished every 2 to 3 days.

Positive selection screen using the HT-29 CRISPR Avana libraries. The HT-29 libraries were con-
structed as described previously (23) using the Avana sgRNA library, which contains four sgRNAs targeting
each of the human protein-coding genes (26). For each library, two sets of 7 T225 flasks were seeded with
12.5 � 106 cells per flask and then incubated for 48 h. At the time of the screen, there were 175 � 106 cells
per experimental condition, corresponding to ~2,000� coverage per perturbation. Cells were at ~70%
confluence at the time of infection. One set of flasks served as an uninfected control; the second was infected
with the EHEC ΔespZ strain. Cells were harvested from the control at the time of infection.

For infection, the ΔespZ strain was grown overnight statically in LB medium to an optical density at
600 nm (OD600) of 0.6 and then centrifuged and resuspended at an OD600 of 0.5 in DMEM. HT-29 cells
were infected with EHEC ΔespZ at an MOI of 100 and incubated under standard culture conditions for
6 h, with a medium change at 3 h postinfection to remove nonadherent bacteria and prevent medium
acidification. At 6 h postinfection, cells were washed 3 times with 1� Dulbecco’s phosphate-buffered
saline (DPBS) to remove nonadherent bacteria and then replenished with fresh medium supplemented
with 1� antibiotic-antimycotic solution (ABAM) (Gibco medium containing 100 �g/ml streptomycin) and
gentamicin 100 �g/ml (“stop medium”). After overnight incubation, fresh stop medium was added to
each flask. Flasks were monitored daily by inverted light microscopy to monitor the recovery of survivor
cells. Upon reaching 70% confluence, the cells were trypsinized, pooled, and reseeded for the next round
of infection, always keeping a minimum number of 80 � 106 cells to maintain a coverage of at least
1,000�. The infection and selection procedure was repeated for the second, third, and fourth rounds of
infection. Additionally, a subset of cells from each population were used for preparation of genomic DNA.

Genomic DNA preparation, sequencing, and STARS analyses of screen results. Genomic DNA
(gDNA) was extracted from 100 � 106 input cells (uninfected) and after each round of infection with the
EHEC ΔespZ strain (rounds 1, 2, 3 and 4) using the Blood and Cell Culture DNA Maxi kit from Qiagen. The
gDNA was subjected to PCR to amplify guide RNA sequences as previously described (26). The read
counts were first normalized to reads per million under each condition by the following formula: reads
per sgRNA/total reads per condition � 106. Reads per million were then log2 transformed by first adding
1 to all values, in order to take the log of sgRNAs with zero reads. For analyses, the log2 fold change of
each sgRNA was determined relative to the input sample for each biological replicate (see Table S2 in the
supplemental material). The STARS algorithm for CRISPR-based genetic perturbation screens was used to
evaluate the rank and statistical significance of the candidate genes as described (26).

Construction of HT-29 Cas9 and HeLa cells with targeted gene disruptions. The sgRNA se-
quences used for construction of HT-29 Cas9 mutant cells are shown in Table S3 in the supplemental
material. All sgRNA oligonucleotide sequences were obtained from Integrated DNA Technologies, Inc.,
and cloned into the pLentiGuide-Puro plasmid as previously described (23). Briefly, 5 �g of plasmid
pLentiGuide-Puro was digested with BmsBI (Fermentas) and purified using the QIAquick gel extraction
kit. Each pair of oligonucleotides was annealed and phosphorylated with T4 PNK (NEB) in the presence
of 10� T4 DNA ligase buffer in a thermocycler with the following parameters: (i) incubation for 30 min
at 37°C, (ii) incubation at 95°C for 5 min with a ramp down to 25°C at 5°C per min. Oligonucleotides were
then diluted 1:200, and 1 �l of the diluted oligonucleotide mixture was ligated with 50 ng of BsmBI-
digested plasmid. Ligations were transformed into STBL3 bacteria, and transformed clones were checked
by PCR and DNA sequencing. sgRNAs cloned into pLentiGuide-Puro were transduced into HT-29 Cas9
cells as described below, and after 10 days of selection with puromycin (1 �g/ml), the extent of
disruption of the targeted gene was analyzed by immunoblotting for the corresponding gene product
or Sanger sequencing (Fig. S2C).

Lentivirus preparation and transductions. Lentiviral transductions were performed as previously
described (23). Briefly, all lentiviruses were made by transfecting 293T cells using TransIT-LT1 transfection
reagent, the lentiviral packaging plasmids psPAX2 and pCMV-VSVG, and the corresponding cargo
plasmid according to the manufacturer’s protocol. Forty-eight hours following transfection, 293T culture
supernatant was harvested, filtered through a 0.22-�m-pore filter, and added to target HT-29 or HeLa
cells grown to 70 to 80% confluence in 6-well plates; a second virus supernatant was harvested 72 h after
transfection and added to target cells. After addition of each virus supernatant to HT-29 cells, spin
infection was performed by adding 8 �g/ml Polybrene and spinning the 6-well plates at 1,600 � g for
2 h at 30°C; HT-29 cells were then returned to 37°C. Puromycin selection for positive transductants was
initiated the following day. For transduction of HeLa cells, spin infection was not performed.

Cell survival assays. For cell survival assays, 5 � 105 HT-29 cells were seeded into 6-well plates and
grown for 48 h in DMEM supplemented with 10% FBS. EHEC (or EPEC) strains for infections were
prepared as for the library infections described above. HT-29 cells were infected at an MOI of 100 (or with
uninoculated media in the case of mock infection), with medium changes and infection termination as
for library infection. Mock-infected cells were fed but not passaged during the outgrowth period.
Following infection and outgrowth for 1 or 5 days, cells were quantified by trypan blue (0.4%) exclusion
using a Countess II automated cell counter (Thermo Fisher Scientific). Cell survival after EPEC infection
was measured 4 h postinfection.

Stx cytotoxicity assay and measurement of Stx released during infection. HT-29 cells were
seeded at 1 � 106 cells/well the day before the assay. Cell monolayers were then exposed to a range of
concentrations of pure Stx1 or Stx2 holotoxins for 6 h. Cell survival was measured by trypan blue
exclusion as described above, and then the percentage of survival was calculated in comparison to HT-29
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controls that did not receive toxin treatment. Stx released during infection of HT-29 cells at 3 and 6 h was
measured by enzyme-linked immunosorbent assay (ELISA), as described previously (64).

Tir translocation assays. The Tir translocation assay was performed as previously described (45).
Briefly, HT-29 cells were plated at 1 � 105 cells/well in 96 wells and assayed at confluence. EHEC strains
harboring a Tir-CyaA fusion or CyaA vector control were grown in LB overnight and then diluted 1:100
in DMEM and grown to an OD600 of 0.6 with shaking at 37C. Cells were infected at an MOI of 100:1 for
90 min; cAMP was measured by ELISA using the Biotrack cAMP kit (Amersham) according to the
manufacturer’s instructions.

Immunoblot analyses. Mammalian cell lysates were prepared with radioimmunoprecipitation assay
(RIPA) buffer, and protein concentrations were determined using the bicinchoninic acid (BCA) protein
assay. Ten micrograms of protein lysate was mixed with NuPAGE LDS sample buffer (Invitrogen) with
50 mM dithiothreitol (DTT), separated by NuPAGE bis-Tris gel electrophoresis, and transferred to
nitrocellulose membranes. The antibodies and concentrations used are listed in Table S4 in the
supplemental material. Blots were developed with the SuperSignal West Pico ECL (enhanced chemilu-
minescence) kit, and imaging was performed on the Chemidoc Touch imaging system (Bio-Rad).

Immunofluorescence. HT-29 cells or HeLa cells were seeded in 12-well plates on 18-mm glass
coverslips or 4-well chambers (Mat-TEK). Cells were fixed with 2% paraformaldehyde (PFA) for 20 min at
room temperature, washed with 1� PBS 3 times, and then permeabilized with 0.1% Triton X-100 in PBS
for 30 min (except for cells stained for TM9SF2, which were subjected to combined fixation and
permeabilization in ice-cold methanol for 10 min). Cells were blocked in 5% normal goat serum in PBS
(blocking buffer) for 1 h, followed by overnight incubation with primary antibodies (Table S4) at 4°C. Cells
were then washed 3 times with PBS followed by incubation with fluorescently labeled secondary
antibody for 1 h at room temperature. Cells were counterstained with Alexa 568-phalloidin and DAPI
(4=,6-diamidino-2-phenylindole) for actin cytoskeleton and nuclei, respectively. For extracellular binding
of Alexa 488-tagged Stx, cells were not permeabilized; for intracellular binding, cells were permeabilized
and stained as described above.

LAPTM4A subcellular localization. HeLa Cas9 cells were plated on coverslips and transfected with
LAPTM4A-GFP (Origene) per the manufacturer’s protocol (Mirus). Twenty-four hours later, cells were
processed for immunofluorescence as described above. GFP was imaged directly without additional
signal amplification.

FAS. Fluorescent actin staining (FAS) assays were performed as described previously (65), with minor
modifications. Briefly, HT-29 cells were seeded at 1 � 106 cells/well in 4-well chambers in DMEM plus FBS.
Three days after confluence, cells were infected with EHEC strains expressing GFP at an MOI of 100 for
6 h, with a medium change after 3 h. After infection, cells were washed three times with PBS, fixed with
2% PFA, and permeabilized with 0.2% Triton X-100. Cells were then stained with Alexa 633-phalloidin and
DAPI for visualization of actin cytoskeleton and cell nuclei. Slides were mounted using Prolong Diamond
antifade and analyzed by confocal microscopy. The experiment was repeated at least 3 times, and
250 cells were counted in total. The percentage of infected cells was determined by analyzing at least
20 random fields across different experiments; numbers of pedestals were determined by counting AE
lesions in 100 infected cells. All comparisons were relative to HT-29 cells.

Lipid raft assay. For imaging of GFP-GPI, the indicated cells were split into 12-well glass bottom
plates (MatTek). One day later, cells were transfected with GFP-GPI using TransIT-LT1 reagent following
the manufacturer’s recommended protocol (Mirus). Twenty-four hours later, cells were washed and then
imaged in FluoroBrite-DMEM (Invitrogen), with live fields of single confocal slices of cell bottoms taken
for 1 min using 1-s exposures at 75% laser power. Region of interest (ROI) mean intensities (with ROI
drawn to avoid overlapping cell protrusions and saturated pixels) were calculated for each frame using
the Plot Z-axis profile function in ImageJ. More than 20 cells and at least 20 movies were analyzed for
each condition. Results are expressed as mean � standard error of the mean (SEM).

Golgi complex morphological analyses. Golgi complex integrity was assayed by calculation of the
mean distance between the manually defined weighted centroid of nucleus (as defined by DAPI staining)
and trans-Golgi network (as defined by TGN46 staining) and from the 2-dimensional area of manually
defined ROI of maximum-intensity projection of individual confocal slices of TGN46 staining. At least
20 cells were analyzed for each condition. Results are expressed as mean � SEM.

Shiga toxin labeling and flow cytometry (FACS). Shiga toxins 1 and 2 (holotoxins) were obtained
from Tufts Medical Center; cholera toxin was purchased from Sigma. All toxins were diluted in PBS and
labeled with an Alexa 488 or Alexa 647 microlabeling kit (Invitrogen) according to the manufacturer’s
instructions. For fluorescence-activated cell sorter (FACS) analysis of Stx binding, HT-29 cells were seeded
at 5 � 105 cells/well in 6-well plates, while HeLa cells were seeded at 2.5 � 105 cells/well and then
incubated for 24 h. Cell monolayers were washed 3 times with Earle’s balanced salt solution (EBSS),
trypsinized, resuspended in PBS with labeled Stx (10 nM) or CT (1 nM), and incubated on ice for 30 min.
Cells were then centrifuged, resuspended in FACS buffer (DPBS plus 10% FBS), and analyzed by flow
cytometry.

Statistical methods. Statistical analyses were carried out using a one-way analysis of variance
(ANOVA) with Dunnet’s postcorrection on GraphPad Prism5.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.01003-18.
FIG S1, PDF file, 0.5 MB.
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ADDENDUM IN PROOF
In an independent CRISPR screen, Songhai Tian and Min Dong also discovered that

LAPTM4A and TM9SF2 are required for Gb3 synthesis (S. Tian, K. Muneeruddin, M. Y.
Choi, L. Tao, R. H. Bhuiyan, Y. Ohmi, K. Furukawa, K. Furukawa, S. A. Shaffer, R. M. Adams,
and M. Dong, submitted for publication).

REFERENCES
1. Kaper JB, O’Brien ADO. 2014. Overview and historical perspectives.

Microbiol Spectr 2:1–9. https://doi.org/10.1128/microbiolspec.EHEC-0028
-2014.

2. Jarvis KG, Girón JA, Jerse AE, McDaniel TK, Donnenberg MS, Kaper JB.
1995. Enteropathogenic Escherichia coli contains a putative type III
secretion system necessary for the export of proteins involved in attach-
ing and effacing lesion formation. Proc Natl Acad Sci U S A 92:
7996 – 8000. https://doi.org/10.1073/pnas.92.17.7996.

3. Dettmar AK, Binder E, Greiner FR, Liebau MC, Kurschat CE, Jungraithmayr
TC, Saleem MA, Schmitt CP, Feifel E, Orth-Höller D, Kemper MJ, Pepys M,
Würzner R, Oh J. 2014. Protection of human podocytes from Shiga toxin
2-induced phosphorylation of mitogen-activated protein kinases and
apoptosis by human serum amyloid P component. Infect Immun 82:
1872–1879. https://doi.org/10.1128/IAI.01591-14.

4. Strockbine NA, Marques LR, Newland JW, Smith HW, Holmes RK, O’Brien
AD. 1986. Two toxin-converting phages from Escherichia coli O157:H7
strain 933 encode antigenically distinct toxins with similar biologic
activities. Infect Immun 53:135–140.

5. Kenny B, DeVinney R, Stein M, Reinscheid DJ, Frey EA, Finlay BB. 1997.
Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adher-
ence into mammalian cells. Cell 91:511–520. https://doi.org/10.1016/
S0092-8674(00)80437-7.

6. Jerse AE, Yu J, Tall BD, Kaper JB. 1990. A genetic locus of enteropatho-
genic Escherichia coli necessary for the production of attaching and
effacing lesions on tissue culture cells. Proc Natl Acad Sci U S A 87:
7839 –7843. https://doi.org/10.1073/pnas.87.20.7839.

7. Tzipori S, Gunzer F, Donnenberg MS, de Montigny L, Kaper JB, Donohue-
Rolfe A. 1995. The role of the eaeA gene in diarrhea and neurological
complications in a gnotobiotic piglet model of enterohemorrhagic Esch-
erichia coli infection. Infect Immun 63:3621–3627.

8. Ritchie JM, Thorpe CM, Rogers AB, Waldor MK. 2003. Critical roles for
stx2, eae, and tir in enterohemorrhagic Escherichia coli-induced diarrhea
and intestinal inflammation in infant rabbits. Infect Immun 71:
7129 –7139. https://doi.org/10.1128/IAI.71.12.7129-7139.2003.

9. Tobe T, Beatson SA, Taniguchi H, Abe H, Bailey CM, Fivian A, Younis R,
Matthews S, Marches O, Frankel G, Hayashi T, Pallen MJ. 2006. An
extensive repertoire of type III secretion effectors in Escherichia coli

O157 and the role of lambdoid phages in their dissemination. Proc Natl
Acad Sci U S A 103:14941–14946. https://doi.org/10.1073/pnas.06048
91103.

10. Stevens MP, Frankel GM. 2014. The locus of enterocyte effacement and
associated virulence factors of enterohemorrhagic Escherichia coli. Mi-
crobiol Spectr 2:EHEC-0007-2013. https://doi.org/10.1128/microbiolspec
.EHEC-0007-2013.

11. Santos AS, Finlay BB. 2015. Bringing down the host: enteropathogenic
and enterohaemorrhagic Escherichia coli effector-mediated subversion
of host innate immune pathways. Cell Microbiol 17:318 –332. https://doi
.org/10.1111/cmi.12412.

12. Mills E, Baruch K, Charpentier X, Kobi S, Rosenshine I. 2008. Real-time
analysis of effector translocation by the type III secretion system of
enteropathogenic Escherichia coli. Cell Host Microbe 3:104 –113. https://
doi.org/10.1016/j.chom.2007.11.007.

13. Berger CN, Crepin VF, Baruch K, Mousnier A, Rosenshine I, Frankel G.
2012. EspZ of enteropathogenic and enterohemorrhagic Escherichia coli
regulates type III secretion system protein translocation. mBio 3:e00137
-12. https://doi.org/10.1128/mBio.00317-12.

14. Steil D, Schepers CL, Pohlentz G, Legros N, Runde J, Humpf HU, Karch H,
Müthing J. 2015. Shiga toxin glycosphingolipid receptors of Vero-B4
kidney epithelial cells and their membrane microdomain lipid environ-
ment. J Lipid Res 56:2322–2336. https://doi.org/10.1194/jlr.M063040.

15. Zumbrun SD, Hanson L, Sinclair JF, Freedy J, Melton-Celsa AR, Rodriguez-
Canales J, Hanson JC, O’Brien AD. 2010. Human intestinal tissue and
cultured colonic cells contain globotriaosylceramide synthase mRNA
and the alternate Shiga toxin receptor globotetraosylceramide. Infect
Immun 78:4488 – 4499. https://doi.org/10.1128/IAI.00620-10.

16. Békássy ZD, Calderon Toledo C, Leoj G, Kristoffersson A, Leopold SR,
Perez MT, Karpman D. 2011. Intestinal damage in enterohemorrhagic
Escherichia coli infection. Pediatr Nephrol 26:2059 –2071. https://doi
.org/10.1007/s00467-010-1616-9.

17. Stone SM, Thorpe CM, Ahluwalia A, Rogers AB, Obata F, Vozenilek A,
Kolling GL, Kane AV, Magun BE, Jandhyala DM. 2012. Shiga toxin
2-induced intestinal pathology in infant rabbits is A-subunit dependent
and responsive to the tyrosine kinase and potential ZAK inhibitor ima-

Pacheco et al. ®

May/June 2018 Volume 9 Issue 3 e01003-18 mbio.asm.org 16

https://doi.org/10.1128/microbiolspec.EHEC-0028-2014
https://doi.org/10.1128/microbiolspec.EHEC-0028-2014
https://doi.org/10.1073/pnas.92.17.7996
https://doi.org/10.1128/IAI.01591-14
https://doi.org/10.1016/S0092-8674(00)80437-7
https://doi.org/10.1016/S0092-8674(00)80437-7
https://doi.org/10.1073/pnas.87.20.7839
https://doi.org/10.1128/IAI.71.12.7129-7139.2003
https://doi.org/10.1073/pnas.0604891103
https://doi.org/10.1073/pnas.0604891103
https://doi.org/10.1128/microbiolspec.EHEC-0007-2013
https://doi.org/10.1128/microbiolspec.EHEC-0007-2013
https://doi.org/10.1111/cmi.12412
https://doi.org/10.1111/cmi.12412
https://doi.org/10.1016/j.chom.2007.11.007
https://doi.org/10.1016/j.chom.2007.11.007
https://doi.org/10.1128/mBio.00317-12
https://doi.org/10.1194/jlr.M063040
https://doi.org/10.1128/IAI.00620-10
https://doi.org/10.1007/s00467-010-1616-9
https://doi.org/10.1007/s00467-010-1616-9
http://mbio.asm.org


tinib. Front Cell Infect Microbiol 2:135. https://doi.org/10.3389/fcimb
.2012.00135.

18. Johannes L, Römer W. 2010. Shiga toxins—from cell biology to biomed-
ical applications. Nat Rev Microbiol 8:105–116. https://doi.org/10.1038/
nrmicro2279.

19. Kouzel IU, Pohlentz G, Storck W, Radamm L, Hoffmann P, Bielaszewska
M, Bauwens A, Cichon C, Schmidt MA, Mormann M, Karch H, Müthing J.
2013. Association of Shiga toxin glycosphingolipid receptors with mem-
brane microdomains of toxin-sensitive lymphoid and myeloid cells. J
Lipid Res 54:692–710. https://doi.org/10.1194/jlr.M031781.

20. Tesh VL. 2013. Activation of cell stress response pathways by Shiga
toxins. Cell Microbiol 14:1–9. https://doi.org/10.1111/j.1462-5822.2011
.01684.x.

21. Smith WE, Kane AV, Campbell ST, Acheson DW, Cochran BH, Thorpe CM.
2003. Shiga toxin 1 triggers a ribotoxic stress response leading to p38
and JNK activation and induction of apoptosis in intestinal epithelial
cells. Infect Immun 71:1497–1504. https://doi.org/10.1128/IAI.71.3.1497
-1504.2003.

22. Jandhyala DM, Ahluwalia A, Schimmel JJ, Rogers AB, Leong JM, Thorpe
CM. 2016. Activation of the classical mitogen-activated protein kinases
is part of the Shiga toxin-induced ribotoxic stress response and may
contribute to Shiga toxin-induced inflammation. Infect Immun 84:
138 –148. https://doi.org/10.1128/IAI.00977-15.

23. Blondel CJ, Park JS, Hubbard TP, Pacheco AR, Kuehl CJ, Walsh MJ, Davis
BM, Gewurz BE, Doench JG, Waldor MK. 2016. CRISPR/Cas9 screens
reveal requirements for host cell sulfation and fucosylation in bacterial
type III secretion system-mediated cytotoxicity. Cell Host Microbe 20:
226 –237. https://doi.org/10.1016/j.chom.2016.06.010.

24. Tao L, Zhang J, Meraner P, Tovaglieri A, Wu X, Gerhard R, Zhang X,
Stallcup WB, Miao J, He X, Hurdle JG, Breault DT, Brass AL, Dong M. 2016.
Frizzled proteins are colonic epithelial receptors for C. difficile toxin B.
Nature 538:350 –355. https://doi.org/10.1038/nature19799.

25. Savidis G, McDougall WM, Meraner P, Perreira JM, Portmann JM, Trin-
cucci G, John SP, Aker AM, Renzette N, Robbins DR, Guo Z, Green S,
Kowalik TF, Brass AL. 2016. Identification of Zika virus and dengue virus
dependency factors using functional genomics. Cell Rep 16:232–246.
https://doi.org/10.1016/j.celrep.2016.06.028.

26. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF,
Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE.
2016. Optimized sgRNA design to maximize activity and minimize off-
target effects of CRISPR-Cas9. Nat Biotechnol 34:184 –191. https://doi
.org/10.1038/nbt.3437.

27. Yamaji T, Hanada K. 2015. Sphingolipid metabolism and interorganellar
transport: localization of sphingolipid enzymes and lipid transfer pro-
teins. Traffic 16:101–122. https://doi.org/10.1111/tra.12239.

28. Tanaka A, Tumkosit U, Nakamura S, Motooka D, Kishishita N, Priengprom
T, Sa-Ngasang A, Kinoshita T, Takeda N, Maeda Y. 2017. Genome-wide
screening uncovers the significance of N-sulfation of heparan sulfate as
a host cell factor for chikungunya virus infection. J Virol 91:e00432-17.
https://doi.org/10.1128/JVI.00432-17.

29. Perrin J, Mortier M, Jacomin AC, Viargues P, Thevenon D, Fauvarque MO.
2015. The nonaspanins TM9SF2 and TM9SF4 regulate the plasma mem-
brane localization and signalling activity of the peptidoglycan recogni-
tion protein PGRP-LC in Drosophila. J Innate Immun 7:37– 46. https://
doi.org/10.1159/000365112.

30. Perrin J, Le Coadic M, Vernay A, Dias M, Gopaldass N, Ouertatani-Sakouhi
H, Cosson P. 2015. TM9 family proteins control surface targeting of
glycine-rich transmembrane domains. J Cell Sci 128:2269 –2277. https://
doi.org/10.1242/jcs.164848.

31. Hogue DL, Nash C, Ling V, Hobman TC. 2002. Lysosome-associated
protein transmembrane 4 alpha (LAPTM4 alpha) requires two tandemly
arranged tyrosine-based signals for sorting to lysosomes. Biochem J
365:721–730. https://doi.org/10.1042/BJ20020205.

32. Grabner A, Brast S, Sucic S, Bierer S, Hirsch B, Pavenstädt H, Sitte HH,
Schlatter E, Ciarimboli G. 2011. LAPTM4A interacts with hOCT2 and
regulates its endocytotic recruitment. Cell Mol Life Sci 68:4079 – 4090.
https://doi.org/10.1007/s00018-011-0694-6.

33. Hogue DL, Kerby L, Ling V. 1999. A mammalian lysosomal membrane
protein confers multidrug resistance upon expression in Saccharomyces
cerevisiae. J Biol Chem 274:12877–12882. https://doi.org/10.1074/jbc
.274.18.12877.

34. Milkereit R, Rotin D. 2011. A role for the ubiquitin ligase Nedd4 in
membrane sorting of LAPTM4 proteins. PLoS One 6:e27478. https://doi
.org/10.1371/journal.pone.0027478.

35. Fleischmann KK, Pagel P, Schmid I, Roscher AA. 2014. RNAi-mediated si-
lencing of MLL-AF9 reveals leukemia-associated downstream targets and
processes. Mol Cancer 13:27. https://doi.org/10.1186/1476-4598-13-27.

36. Wei J, Yang P, Zhang T, Chen Z, Chen W, Wanglin L, He F, Wei F, Huang
D, Zhong J, Yang Z, Chen H, Hu H, Zeng S, Sun Z, Cao J. 2017.
Overexpression of transcription factor activating enhancer binding pro-
tein 4 (TFAP4) predicts poor prognosis for colorectal cancer patients. Exp
Ther Med 14:3057–3061. https://doi.org/10.3892/etm.2017.4875.

37. Thollet A, Vendrell JA, Payen L, Ghayad SE, Ben Larbi S, Grisard E, Collins
C, Villedieu M, Cohen PA. 2010. ZNF217 confers resistance to the pro-
apoptotic signals of paclitaxel and aberrant expression of Aurora-A in
breast cancer cells. Mol Cancer 9:291. https://doi.org/10.1186/1476-4598
-9-291.

38. Furukawa T, Sunamura M, Motoi F, Matsuno S, Horii A. 2003. Potential
tumor suppressive pathway involving DUSP6/MKP-3 in pancreatic can-
cer. Am J Pathol 162:1807–1815. https://doi.org/10.1016/S0002-9440(10)
64315-5.

39. Hayward RD, Cain RJ, McGhie EJ, Phillips N, Garner MJ, Koronakis V. 2005.
Cholesterol binding by the bacterial type III translocon is essential for
virulence effector delivery into mammalian cells. Mol Microbiol 56:
590 – 603. https://doi.org/10.1111/j.1365-2958.2005.04568.x.

40. Lafont F, Tran Van Nhieu G, Hanada K, Sansonetti P, Van Der Goot FG.
2002. Initial steps of Shigella infection depend on the cholesterol/
sphingolipid raft-mediated CD44 � IpaB interaction. EMBO J 21:
4449 – 4457. https://doi.org/10.1093/emboj/cdf457.

41. van der Goot FG, Tran van Nhieu G, Allaoui A, Sansonetti P, Lafont F.
2004. Rafts can trigger contact-mediated secretion of bacterial effectors
via a lipid-based mechanism. J Biol Chem 279:47792– 47798. https://doi
.org/10.1074/jbc.M406824200.

42. Kojima Y, Fukumoto S, Furukawa K, Okajima T, Wiels J, Yokoyama K,
Suzuki Y, Urano T, Ohta M, Furukawa K. 2000. Molecular cloning of
globotriaosylceramide/CD77 synthase, a glycosyltransferase that initi-
ates the synthesis of globo series glycosphingolipids. J Biol Chem 275:
15152–15156. https://doi.org/10.1074/jbc.M909620199.

43. Yamaji T, Hanada K. 2014. Establishment of HeLa cell mutants deficient
in sphingolipid-related genes using TALENs. PLoS One 9:e88124. https://
doi.org/10.1371/journal.pone.0088124.

44. Sheahan KL, Isberg RR. 2015. Identification of mammalian proteins that
collaborate with type III secretion system function: involvement of a
chemokine receptor in supporting translocon activity. mBio 6:e02023
-14. https://doi.org/10.1128/mBio.02023-14.

45. Crawford JA, Kaper JB. 2002. The N-terminus of enteropathogenic Esch-
erichia coli (EPEC) Tir mediates transport across bacterial and eukaryotic
cell membranes. Mol Microbiol 46:855– 868. https://doi.org/10.1046/j
.1365-2958.2002.03214.x.

46. Kaper JB, Nataro JP, Mobley HLT. 2004. Pathogenic Escherichia coli. Nat
Rev Microbiol 2:123–140. https://doi.org/10.1038/nrmicro818.

47. Kanack KJ, Crawford JA, Tatsuno I, Karmali MA, Kaper JB. 2005. SepZ/
EspZ is secreted and translocated into HeLa cells by the enteropatho-
genic Escherichia coli type III secretion system. Infect Immun 73:
4327– 4337. https://doi.org/10.1128/IAI.73.7.4327-4337.2005.

48. Hanashima T, Miyake M, Yahiro K, Iwamaru Y, Ando A, Morinaga N, Noda
M. 2008. Effect of Gb3 in lipid rafts in resistance to Shiga-like toxin of
mutant Vero cells. Microb Pathog 45:124 –133. https://doi.org/10.1016/
j.micpath.2008.04.004.

49. Legler DF, Doucey MA, Schneider P, Chapatte L, Bender FC, Bron C. 2005.
Differential insertion of GPI-anchored GFPs into lipid rafts of live cells.
FASEB J 19:73–75. https://doi.org/10.1096/fj.03-1338fje.

50. Saslowsky DE, te Welscher YM, Chinnapen DJ, Wagner JS, Wan J, Kern E,
Lencer WI. 2013. Ganglioside GM1-mediated transcytosis of cholera
toxin bypasses the retrograde pathway and depends on the structure of
the ceramide domain. J Biol Chem 288:25804 –25809. https://doi.org/10
.1074/jbc.M113.474957.

51. Baibakov B, Murtazina R, Elowsky C, Giardiello FM, Kovbasnjuk O. 2010.
Shiga toxin is transported into the nucleoli of intestinal epithelial cells
via a carrier-dependent process. Toxins 2:1318 –1335. https://doi.org/10
.3390/toxins2061318.

52. Sadiq SM, Hazen TH, Rasko DA, Eppinger M. 2014. EHEC genomics: past,
present, and future. Microbiol Spectr 2:EHEC-0020-2013. https://doi.org/
10.1128/microbiolspec.EHEC-0020-2013.

53. Sandvig K, van Deurs B. 1996. Endocytosis, intracellular transport, and
cytotoxic action of Shiga toxin and ricin. Physiol Rev 76:949 –966. https://
doi.org/10.1152/physrev.1996.76.4.949.

54. Lee SY, Lee MS, Cherla RP, Tesh VL. 2008. Shiga toxin 1 induces apoptosis

T3SS, Shiga Toxin, and Host Factors in EHEC Infection ®

May/June 2018 Volume 9 Issue 3 e01003-18 mbio.asm.org 17

https://doi.org/10.3389/fcimb.2012.00135
https://doi.org/10.3389/fcimb.2012.00135
https://doi.org/10.1038/nrmicro2279
https://doi.org/10.1038/nrmicro2279
https://doi.org/10.1194/jlr.M031781
https://doi.org/10.1111/j.1462-5822.2011.01684.x
https://doi.org/10.1111/j.1462-5822.2011.01684.x
https://doi.org/10.1128/IAI.71.3.1497-1504.2003
https://doi.org/10.1128/IAI.71.3.1497-1504.2003
https://doi.org/10.1128/IAI.00977-15
https://doi.org/10.1016/j.chom.2016.06.010
https://doi.org/10.1038/nature19799
https://doi.org/10.1016/j.celrep.2016.06.028
https://doi.org/10.1038/nbt.3437
https://doi.org/10.1038/nbt.3437
https://doi.org/10.1111/tra.12239
https://doi.org/10.1128/JVI.00432-17
https://doi.org/10.1159/000365112
https://doi.org/10.1159/000365112
https://doi.org/10.1242/jcs.164848
https://doi.org/10.1242/jcs.164848
https://doi.org/10.1042/BJ20020205
https://doi.org/10.1007/s00018-011-0694-6
https://doi.org/10.1074/jbc.274.18.12877
https://doi.org/10.1074/jbc.274.18.12877
https://doi.org/10.1371/journal.pone.0027478
https://doi.org/10.1371/journal.pone.0027478
https://doi.org/10.1186/1476-4598-13-27
https://doi.org/10.3892/etm.2017.4875
https://doi.org/10.1186/1476-4598-9-291
https://doi.org/10.1186/1476-4598-9-291
https://doi.org/10.1016/S0002-9440(10)64315-5
https://doi.org/10.1016/S0002-9440(10)64315-5
https://doi.org/10.1111/j.1365-2958.2005.04568.x
https://doi.org/10.1093/emboj/cdf457
https://doi.org/10.1074/jbc.M406824200
https://doi.org/10.1074/jbc.M406824200
https://doi.org/10.1074/jbc.M909620199
https://doi.org/10.1371/journal.pone.0088124
https://doi.org/10.1371/journal.pone.0088124
https://doi.org/10.1128/mBio.02023-14
https://doi.org/10.1046/j.1365-2958.2002.03214.x
https://doi.org/10.1046/j.1365-2958.2002.03214.x
https://doi.org/10.1038/nrmicro818
https://doi.org/10.1128/IAI.73.7.4327-4337.2005
https://doi.org/10.1016/j.micpath.2008.04.004
https://doi.org/10.1016/j.micpath.2008.04.004
https://doi.org/10.1096/fj.03-1338fje
https://doi.org/10.1074/jbc.M113.474957
https://doi.org/10.1074/jbc.M113.474957
https://doi.org/10.3390/toxins2061318
https://doi.org/10.3390/toxins2061318
https://doi.org/10.1128/microbiolspec.EHEC-0020-2013
https://doi.org/10.1128/microbiolspec.EHEC-0020-2013
https://doi.org/10.1152/physrev.1996.76.4.949
https://doi.org/10.1152/physrev.1996.76.4.949
http://mbio.asm.org


through the endoplasmic reticulum stress response in human mono-
cytic cells. Cell Microbiol 10:770–780. https://doi.org/10.1111/j.1462-5822
.2007.01083.x.

55. Cantarelli VV, Kodama T, Nijstad N, Abolghait SK, Nada S, Okada M, Iida
T, Honda T. 2007. Tyrosine phosphorylation controls cortactin binding to
two enterohaemorrhagic Escherichia coli effectors: Tir and EspFu/TccP.
Cell Microbiol 9:1782–1795. https://doi.org/10.1111/j.1462-5822.2007
.00913.x.

56. Vingadassalom D, Kazlauskas A, Skehan B, Cheng HC, Magoun L, Robbins
D, Rosen MK, Saksela K, Leong JM. 2009. Insulin receptor tyrosine kinase
substrate links the E. coli O157:H7 actin assembly effectors Tir and
EspF(U) during pedestal formation. Proc Natl Acad Sci U S A 106:
6754 – 6759. https://doi.org/10.1073/pnas.0809131106.

57. Campellone KG, Cheng HC, Robbins D, Siripala AD, McGhie EJ, Hayward
RD, Welch MD, Rosen MK, Koronakis V, Leong JM. 2008. Repetitive
N-WASP-binding elements of the enterohemorrhagic Escherichia coli
effector EspF(U) synergistically activate actin assembly. PLoS Pathog
4:e1000191. https://doi.org/10.1371/journal.ppat.1000191.

58. Weiss SM, Ladwein M, Schmidt D, Ehinger J, Lommel S, Städing K,
Beutling U, Disanza A, Frank R, Jänsch L, Scita G, Gunzer F, Rottner K,
Stradal TE. 2009. IRSp53 links the enterohemorrhagic E. coli effectors Tir
and EspFU for actin pedestal formation. Cell Host Microbe 5:244 –258.
https://doi.org/10.1016/j.chom.2009.02.003.

59. Cabrita MA, Hobman TC, Hogue DL, King KM, Cass CE. 1999. Mouse

transporter protein, a membrane protein that regulates cellular multi-
drug resistance, is localized to lysosomes. Cancer Res 59:4890 – 4897.

60. Pacheco AR, Sperandio V. 2012. Shiga toxin in enterohemorrhagic E. coli:
regulation and novel anti-virulence strategies. Front Cell Infect Microbiol
2:81. https://doi.org/10.3389/fcimb.2012.00081.

61. Kavaliauskiene S, Dyve Lingelem AB, Skotland T, Sandvig K. 2017. Pro-
tection against Shiga toxins. Toxins 9:1–25. https://doi.org/10.3390/
toxins9020044.

62. Zhou X, Gewurz BE, Ritchie JM, Takasaki K, Greenfeld H, Kieff E, Davis BM,
Waldor MK. 2013. A Vibrio parahaemolyticus T3SS effector mediates patho-
genesis by independently enabling intestinal colonization and inhibiting
TAK1 activation. Cell Rep 3:1690–1702. https://doi.org/10.1016/j.celrep
.2013.03.039.

63. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal
genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci
U S A 97:6640 – 6645. https://doi.org/10.1073/pnas.120163297.

64. Munera D, Ritchie JM, Hatzios SK, Bronson R, Fang G, Schadt EE, Davis
BM, Waldor MK. 2014. Autotransporters but not pAA are critical for
rabbit colonization by Shiga toxin-producing Escherichia coli O104:H4.
Nat Commun 5:3080. https://doi.org/10.1038/ncomms4080.

65. Knutton S, Baldwin T, Williams PH, McNeish AS. 1989. Actin accumula-
tion at sites of bacterial adhesion to tissue culture cells: basis of a new
diagnostic test for enteropathogenic and enterohemorrhagic Esche-
richia coli. Infect Immun 57:1290 –1298.

Pacheco et al. ®

May/June 2018 Volume 9 Issue 3 e01003-18 mbio.asm.org 18

https://doi.org/10.1111/j.1462-5822.2007.01083.x
https://doi.org/10.1111/j.1462-5822.2007.01083.x
https://doi.org/10.1111/j.1462-5822.2007.00913.x
https://doi.org/10.1111/j.1462-5822.2007.00913.x
https://doi.org/10.1073/pnas.0809131106
https://doi.org/10.1371/journal.ppat.1000191
https://doi.org/10.1016/j.chom.2009.02.003
https://doi.org/10.3389/fcimb.2012.00081
https://doi.org/10.3390/toxins9020044
https://doi.org/10.3390/toxins9020044
https://doi.org/10.1016/j.celrep.2013.03.039
https://doi.org/10.1016/j.celrep.2013.03.039
https://doi.org/10.1073/pnas.120163297
https://doi.org/10.1038/ncomms4080
http://mbio.asm.org

	RESULTS
	CRISPR/Cas9 screen for host factors conferring susceptibility to EHEC infection. 
	Sphingolipid biosynthesis facilitates T3SS killing. 
	LAPTM4A and TM9SF2 are required for Gb3 biosynthesis. 

	DISCUSSION
	MATERIALS AND METHODS
	Bacterial strains, plasmids, and growth conditions. 
	Eukaryotic cell lines and growth conditions. 
	Positive selection screen using the HT-29 CRISPR Avana libraries. 
	Genomic DNA preparation, sequencing, and STARS analyses of screen results. 
	Construction of HT-29 Cas9 and HeLa cells with targeted gene disruptions. 
	Lentivirus preparation and transductions. 
	Cell survival assays. 
	Stx cytotoxicity assay and measurement of Stx released during infection. 
	Tir translocation assays. 
	Immunoblot analyses. 
	Immunofluorescence. 
	LAPTM4A subcellular localization. 
	FAS. 
	Lipid raft assay. 
	Golgi complex morphological analyses. 
	Shiga toxin labeling and flow cytometry (FACS). 
	Statistical methods. 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	ADDENDUM IN PROOF
	REFERENCES

