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Introduction
Given the availability of high-throughput genomic sequencing 
technologies, it is possible to measure biological activity on 
samples in a relatively unbiased and global scale. In such set-
tings, a very common statistical task has been to find genes 
that are differentially expressed between two experimental 
conditions. The simplest example is to find genes that are up- 
or down-regulated in cancerous tissue relative to healthy tis-
sue. The standard approach has been to perform a hypothesis 
test at each location of the genome measured by the technol-
ogy. If this involves thousands or millions of locations, then it 
is obvious that there is an inherent multiple testing problem. 
There has been an extensive literature on statistical assessment 
of differential expression in genomic studies (eg, Ge et al.1). 
In addition, there has been intensive research done recently 
on multiple comparison procedures that control the false dis-
covery rate (FDR) that was popularized by Benjamini and 

Hochberg (B–H).2 These authors have argued that since FDR 
is a more liberal error criterion than the classical familywise 
error rate (FWER), control of FDR will lead to more rejec-
tions of null hypotheses in the multiple testing setting. Scien-
tifically, this corresponds to selecting the significant molecules 
and is thought to be a useful screening device to identify puta-
tive candidate biomarkers.

In most of these studies, differential expression is tested 
using a test for difference in mean expression; the most com-
monly used procedure is the two-sample t-test. A more inter-
esting pattern of differential expression was observed by 
Tomlins et al.3 They identified a gene fusion event in pros-
tate cancer between two transcription factor genes, ERG and 
ETV1. One line of evidence that led to this observation was 
that for these genes, only a fraction of samples in one group 
were overexpressed relative to those in the other group; 
the remaining samples showed no evidence of differential 
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expression. Tomlins et al.3 developed a ranking method known  
as COPA (cancer outlier profile analysis) for calculating out-
lier scores using gene expression data. While their approach 
did not attempt to assign any measure of significance to the 
gene scores, Tibshirani and Hastie4 and Wu5 have shown that 
significance can be assigned using modifications of two-sample 
t-tests. Ghosh and Chinnaiyan6 synthesized these proposals 
into a model-based framework for analysis and proposed more 
non-parametric procedures. These methods all assumed that the 
statistics of interest were continuous. For data such as those that 
arise from next-generation sequencing technologies, the meth-
ods in the current paper apply if one uses summary measures 
such as fragments per kilobase of exon per million fragments 
mapped (FKPM). On the other hand, if the measurements and 
corresponding statistics used are discrete, then one could apply 
the work of Ghosh.7,8 A related proposal, and the one that we 
will compare in our simulation studies, is based on entropy that 
was proposed by Kadota et al.9 and is abbreviated as ROKU.

All the procedures in the previous paragraph assume that 
there exist a priori information about samples (eg, healthy ver-
sus diseased tissue). It is not as obvious what should be done 
in the case when no such labels exist. Here, we will revisit the 
modeling framework of Ghosh and Chinnaiyan6 and develop 
new extensions that deal with the absence of group labels. We 
explore testing approaches based on the C(α) (C-alpha) prin-
ciple. This was originally described by Neyman and Scott10 
and applied to a problem of rare variant detection by Neale 
et al.11 There, the underlying probability model is based on 
binomial distribution. For the case of gene expression data 
that is described in the current paper, it will be seen that the 
C(α) testing procedure poses unique challenges.

Consideration of the C(α) principle will motivate three 
test statistics, one based on kurtosis, one based on skewness, 
and the last one based on a combination of skewness and kur-
tosis. Recall that skewness is defined as the third moment 
of a distribution, while kurtosis is the fourth moment of the 
distribution. These have been proposed earlier by D’Agostino 
et al.12 We will compare their performance on simulated data 
in the Simulation Studies section.

Methods
Mixture modeling. We begin by initially considering the 

genome-wide expression model of Ghosh and Chinnaiyan.6 
The data consist of (Ygi,Zi), where Ygi is the expression mea-
surement for the gth gene on the ith subject, and Zi is a binary 
indicator taking values 0 and 1, i = 1,…,n, g = 1,…,G. In  
practice, G will be typically much larger than n. The model 
considered by Ghosh and Chinnaiyan6 was the following:
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where F0g and F1g denote the gene-specific distribution func-
tions for the expression in the non-differential and differentially 

expressed genes, and π0g denotes the proportion of samples 
that show no differential expression for gene g.

Ghosh and Chinnaiyan6 found several insights from 
model (1). First, many differential expression proposals, 
reviewed in Ge et al,1 can be used to test the null hypoth-
esis that π0g = 1. In addition, with the exception of the pro-
cedures in Ghosh and Chinnaiyan,6 most of the procedures 
were optimal in settings where F0g has a parametric form, but 
in fact, this was not necessary. In Ghosh and Chinnaiyan,6 
non-parametric methods for outlier detection were developed 
and shown to be quite competitive and sometimes superior to 
previous proposals for the problem.

All of this development has presumed the existence of Z 
for the samples. We term this supervised outlier profile analysis, 
the Z serving as a class label. However, in many instances,  
Z is not available. One example would be if one only had access 
to the “-omics” data without it being linked to the appropri-
ate clinical outcomes. In this case, we can no longer specify 
a model such as (1) because we are unable to condition on Z. 
However, supposing that we integrate out Z from the model, 
we get the following model:

 0 1
ind ( ) ( ),gi g g gY F y c F y+∼  (2)

where cg = (1 − π0g)(1 − P(Zi = 0)). This is again a two-group 
mixture model. As described in Ghosh and Chinnaiyan,6  
a key issue in fitting mixture models of the type (1) and (2) is 
identifiability of the model using observed data. Identifiability 
means that given the observed data (here, Ygi), we can esti-
mate the parameters in the model. For our setting, we cannot 
estimate cg, F0g, and F1g without making further parametric 
assumptions on the form of F0g and F1g. Thus, we assume here 
that F0g and F1g correspond to cumulative distribution func-
tions from the normal distribution.

This argument started by presuming two subtypes 
(defined by Z = 0 and Z = 1). Extending this argument theo-
retically in the situation of infinite subtypes leads to a model 
of Ygi as
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where Fk(y, θ, σ) denotes a normal (θ, σ2) cdf:
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Phrased within this framework, outlier detection for gene 
g boils down to detection of more than one subtype in model (3).  
Equivalently, the hypothesis testing problem becomes the 
following:

H0: there exists no subtypes for gene g.
In contrast, the alternative hypothesis states that 

there exists at least one subtype. Note that in the modeling 
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framework of Ghosh and Chinnaiyan,6 the alternative is that 
there are two subtypes. We proceed here with a generalization 
to infinite subtypes. While this is a theoretical assumption 
and does not conform to reality, we use this device to motivate 
the proposed testing procedures in the paper.

c(α) testing. Based on model (3), the null hypothesis 
H0 corresponds to testing for no heterogeneity relative to a 
one-component normal distribution versus the alternative 
of greater overdispersion. For this setting, a long-standing 
approach to hypothesis testing in this problem is the C(α) 
tests, which date back to Neyman and Scott.10 This class of 
tests can be motivated in several ways, a survey of which can 
be found in Chapter 4 of Lindsay.13 A recent application of 
C(α) testing was applied to testing for rare variant effects using 
genotype case–control data in Neale et al.11 In that problem, 
the C(α) testing was done based on a binomial model for the 
data. Mathematically, the C(α) testing procedures correspond 
to calculating the overdispersion score, defined as the second 
derivative of the probability density of the data divided by the 
density. This calculation is done assuming the null hypothesis 
of one component. The test takes a very simple form, com-
paring the sample variance to the model-predicted variance 
for a single binomial distribution. This result extends more 
generally to one-parameter distributions from the exponential 
family of distributions. An advantage of C(α) tests is that it 
does not require specification of a probability density function 
under the alternative hypothesis; hence, we might expect it to 
have good power properties over a wide range of alternatives.

For the normal distributions that comprise model (3), 
this fact no longer holds. This is because of the presence of 
the mean and variance parameter for each normal distribu-
tion. We show in the Appendix that the form of the C(α) test 
in the normal distribution case is zero if derivatives are taken 
with respect to µ. By contrast, if derivatives are taken with 
respect to σ, where µ is treated as a nuisance parameter, we 
provide the form of the C(α) statistic in the Appendix. As is 
seen there, the form is relatively complicated.

As discussed in Lindsay,13 one intuitive explanation 
behind the C(α) test is that it is constructed using first- 
derivative information. The complicated form of the C(α) test 
in the Appendix suggests the use of estimates of high-order 
moments. In this article, we consider three tests. The first is 
based on skewness, defined as the standardized third moment 
of the distribution. The second is based on kurtosis, defined 
as the standardized fourth moment of the distribution. The 
third test combines information of skewness and kurtosis and 
is called the K2 test; a review of the three tests can be found 
in D’Agostino et al.12 The evidence for using these high-order 
moments can also be an indirect consequence of the discus-
sion in p. 73 of Lindsay,13 who describes the behavior for a 
C(α) test in the normal case to depend on the third and fourth 
moments of the mixing distribution.

Each of these statistics is applied for every single gene in 
the dataset to calculate a set of G gene-specific test statistics. 

To adjust for multiplicity, we will compute P-values corre-
sponding to each statistic and perform an adjustment for mul-
tiple comparisons based on the q-value approach of Storey and 
Tibshirani.14

bivariate extension. In many settings, the analyst will 
have available multiplatform “-omics” data on the same sub-
jects. As a concrete example, we consider copy number and 
gene expression data so that data from two platforms exist on 
the same set of samples. Recently, Phillips and Ghosh15 dis-
cussed a bivariate extension of the B–H procedure that can 
accommodate data from two platforms. They did not consider 
the proposed test statistics; their algorithm required P-values 
from the two platforms separately as input. For the sake of 
completeness, we provide an overview of this two-dimen-
sional modeling approach; the interested reader is referred to 
Phillips and Ghosh15 for more details.

The starting point is the observation that the B–H pro-
cedure has a natural interpretation in terms of spacings.16 In 
particular, the B–H procedure can be interpreted as compar-
ing the empirical average of the spacings relative to its theo-
retical expected value, scaled by the FDR. To extend this to a 
two-dimensional setting, we need a two-dimensional notion 
of spacings. Jiménez and Yukich17 argued eloquently for the 
Voronoi tessellation as one possible extension. A Voronoi 
tessellation is a partition of the plane generated by an input 
set of two-dimensional points. In general terms, the tessel-
lation creates a cell around each input consisting of the set 
of all points closer to that input than to any other. The basic 
properties of such a tessellation are described by Okabe et al.18 
In the setting of two-dimensional vectors in the unit square, 
the Voronoi tessellation partitions the unit square. For each 
p-vector, Pi, the tessellation creates a cell, Ci, consisting of 
all points closer to Pi than to any other p-vector. An illustra-
tion of tessellation for our sample set of points is presented in 
Figure 1. Voronoi cells have many desirable properties that 
extend the idea of spacings into the plane. Their area and 
shape reflect the relative positioning of the input points. For 
example, clusters of inputs will have smaller cell areas than 
uniformly distributed inputs. Similarly, if the inputs have cor-
related components, there will be an increased concentration 
along the diagonal of the unit square. The Voronoi cells of the 
inputs close to this diagonal will be smaller than the cells of 
inputs near the edge of the clustering. In addition, there exists 
attendant software packages for computing Voronoi tessella-
tions.19 Our procedure uses the areas of the Voronoi cells gen-
erated by the set of p-vectors as a means to account for their 
relative positions in the unit square. If p-vectors are associ-
ated with an alternative hypothesis (and thus present evidence 
against the null), we expect them to cluster near the origin. It 
is this clustering at the origin that we hope to detect with our 
algorithm, as we expect to see very small cell areas associated 
with these clustered p-vectors.

Details of the algorithm can be found in Phillips and 
Ghosh.15 As recommended by them, we will select the 
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sum ordering scheme for identifying molecules that show 
significant outlier expression in both platforms. We also note 
that too much clustering of the P-values near the origin poses 
computational challenges for the procedure of Phillips and 
Ghosh15 and is observed in one of the analyses performed in 
the prostate cancer data analysis that is described in the Real 
Data Example: Prostate Cancer section.

simulation studies. To assess the performance of skew-
ness, kurtosis and K2 tests, we first conducted simulation 
studies using biologically relevant parameters. We studied two 
situations. In the first situation, all outlier genes were assumed 
to be only overexpressed in a few tissues. In the second situ-
ation, each outlier gene was both induced and repressed in a 
few tissue types. In all simulations, we generated gene expres-
sion measurements for a total of N genes across T tissue types. 
We allowed for n0 genes to have non-preferential expression 
pattern across tissues and n1 genes to have tissue preferential 
expression pattern (N = n0 + n1). For the n0 genes that are not 
differentially expressed, we took the baseline gene expression 
to be distributed as normal, which is denoted by N ( , ).µ σ0 0

2

In the situation where outlier genes are only induced in a 
few tissues, we considered n1 genes to be induced in pt number 
of tissues. These n1 genes had a distribution of N ( , )µ σ1 1

2  in 
the induced tissues and a baseline distribution of N ( , )µ σ0 0

2  
in other tissues. We compared the performance of the pro-
posed methodology to the entropy-based approach by Kadota 
et al.9 using area under the receiver operating characteristic 
(ROC) curve (AUC). In term of performance, an AUC value 
close to 1 indicates good performance, whereas an AUC value 
of 0.5 indicates poor performance. The simulation results are 
shown in Figure 2.

Figure 2 shows that all three moment-based methods 
perform better than the entropy-based approach. Among the 

moment-based methods, the test based on skewness performs 
the best, while the K2 test performs better than the kurtosis 
test when the false-positive rate (FPR) is low.

Next, we simulated the situation where each outlier gene 
is induced and repressed in a few tissues. We generated the 
baseline distribution for n0 genes as described above. Each 
of the n1 outlier genes had a distribution of N ( , )µ σ1 1

2  in pt 
tissues, a distribution of 2

1 1(– , )N µ σ  in other pt tissues, and 
a baseline distribution in T − 2 × pt tissues. Figure 3 shows 
that the entropy method performs better with larger µ1 and 
pt, while for smaller µ1 and pt, the kurtosis test performs the 
best. The reduced performance of skewness is expected as the 
simulated outlier genes have symmetrical distribution.

In practice, of course, the true data-generating distri-
bution is unknown to the analyst. Thus, we would recom-
mend the use of the K2 test that combines information on 
skewness and kurtosis, as its performance seemed to be quite 
competitive with the best method for any simulation setting. 
An open question that is beyond the scope of the current 
paper is the possibility of constructing data-adaptive weights 
that can be used to combine the skewness and kurtosis tests 
in a powerful manner.

Finally, we did a simulation in which we compared super-
vised methods such as in Ghosh and Chinnaiyan6 to the unsu-
pervised methods developed here. In particular, we compared 
the B–H approach from Ghosh and Chinnaiyan, which we 
termed GOBH, to the various methods. Note that GOBH is a 
supervised algorithm that requires that the samples are labeled 
as diseased samples and non-diseased samples. The proposed 
kurtosis, skewness, and K2 tests as well as the entropy-based 
method (ROKU) are unsupervised models. One would expect 
that the supervised methods (with labels) outperform the 
unsupervised methods in general, because a strong hint (ie, the  
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figure 1. an example of Voronoi tessellation using 200 simulated, two-dimensional data points on the unit square.
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class labels) is given to the supervised method. However, if the 
labels are not informative, one would expect the supervised 
methods to perform worse than the unsupervised methods. 
We performed simulation analyses using the GOBH algo-
rithm with correct sample labels (GOBH) and with shuffled 
sample labels (GOBH-shuffle). We use the same settings as 
in Figure 2A but for the purpose of comparisons, we plot 
everything separately in Figure 4. The results show that the 
supervised method (GOBH) with correct labels consistently 
outperforms other methods. However, with shuffled class 
labels, the supervised method (GOBH-shuffle) shows variable 
performance with average AUC around 0.5 and is worse than 
the unsupervised methods.

real data example: prostate cancer. The real data exam-
ple features data from copy number and transcript mRNA 
microarrays, some of which are analyzed in Kim et al.20 We 
have data on 7534 genes of 47 subjects, 18 of whom have 
prostate cancer. We show the results of the analysis using the 

K2 test; similar results were found using the other two meth-
ods. We did an initial analysis using all 47 samples; however, 
no statistically significant genes were found using the pro-
cedure of Phillips and Ghosh.15 This appeared to be because 
of big differences in expression patterns between the cancer 
and non-cancer cases. The differences then revealed that the 
P-values were all clustered near the origin. This rendered the 
procedure of Phillips and Ghosh15 to be numerically unstable, 
as was alluded to in the bivariate extension section.

Next, we performed an analysis of the cancer samples 
only. The goal was to identify genes that show extreme het-
erogeneity across the cancer subjects, which might be puta-
tive cancer biomarkers. First, we applied the analysis with 
the gene expression only. This is shown in Figure 4. Based 
on the q-value analysis, we selected 490 genes as significant 
using an FDR cutoff of 0.05. The q-value analysis estimated 
about 20% of the genes to show significant expression based 
on outlier transcript profiles. Next, we repeated the analysis 
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figure 2. Comparison of aUCs from different simulations. simulations were carried out with the same set of parameters as in figure 1 (n0 = n1 = 5000, 
µ0 = 0, σ 0

2 = 1,  µ1 = 3, σ1
2 = 1,  pt = 4), except for that in panel (A) different µ1 and in panel (b) different pt were used. Values for µ1 and pt are shown on 

the x-axis of each panel. the aUC values are averaged over 10 simulations.
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using copy number by itself, as shown in Figure 5. There are 
many more significant genes that are found using the copy 
number expression data. About 45% of the genes are called 
statistically significant using the q-value method. This mir-
rors what was seen in Kim et al.20 using a supervised statis-
tic. If we were to intersect the results of the individual copy 
number and gene expression analyses, we would find that 
190 genes have an estimated FDR that is less than 0.05 for 
both platforms.

Next, we show the results of the joint copy number and 
gene expression analyses using the points in the lower left-corner 
of Figure 5 corresponding to genes, which will be of interest as 
they show signal both on the copy number and on the transcript 
mRNA scale. Applying the procedure of Phillips and Ghosh15 
identifies 734 genes as significantly expressed at an FDR of 
0.05. Note that using the information jointly from copy num-
ber and transcript mRNA levels using the method of Phillips 
and Ghosh15 leads to almost four times as many rejections as 
the intersection analysis.

Enrichment analysis of the selected genes using DAVID21 
found pathways such as the cell-cycle pathway, the D4-GDI 
signaling pathway, and various metabolic pathways as being 
statistically overrepresented among the selected genes.

discussion
In this article, we have explored extensions of outlier detection 
methods in an unsupervised manner. In particular, we found 
that the C(α) test cannot be used directly here as the way it was 
for rare variants. However, its application highlights the use of 
tests for high-order moments as a means of identifying signal in 
high-throughput genomic data. This complements the work of 
other authors who have proposed using variability to determine 
what genes are significantly expressed in high-dimensional data 
(eg, Refs. 22 and 23). While most of the work has focused on 
the analysis end, power/sample size considerations are impor-
tant as well. We have conducted preliminary work that suggests 
that the proposed methods will have reasonable power for the 
most existing datasets, but further study is warranted.
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figure 3. a comparison of aUCs from different simulations. simulations were carried out with the same set of parameters as in figure 2. In panel (A), 
different µ1 and in panel (b), different pt were used. Values for µ1 and pt are shown on the x-axis of each panel. note that outlier genes are actually 
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figure 2a.
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figure 5. output from q-value function in R for gene expression data using the K2 test. There are 7534 genes on the plot, and statistics were computed 
using 18 samples.

The real data example was instructive in that careful 
selection of samples was needed for application of the statis-
tic. In particular, using all 47 subjects yielded no statistically 
significant results. This was because of the fact that there were 
tremendous differences in average measurement intensity for 
cancer samples and non-cancer samples. With respect to the 

outlier analysis being considered here, one can view the cancer 
labels as a confounder. The presence of a confounder can bias 
the null distribution of the gene-specific test statistics.24

We also point out that the tests proposed here are in line 
with the “tumor subtyping” paradigm that exists in much of 
cancer research these days. One practical way these methods 
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might help cancer researchers discover novel subtypes and 
related molecular signatures. However, issues would exist as 
to the choice of the classifier as well as calibration of the esti-
mated classifier and proper accounting of the variable selec-
tion step. This is beyond the scope of the current manuscript.

As pointed out by a referee, the proposed methods are 
not able to identify the number of subpopulations but are able 
only to test their presence. An important problem inferentially 
is to determine the number of subpopulations. A preliminary 
strategy that we tried and had some success was to filter genes 
that were statistically significant for kurtosis but not for skew-
ness. However, the operating characteristics of such a strategy 
remain unknown and deserve further exploration.

Other open questions arise from this work. First, it would 
be interesting to develop data-adaptive weights to combine 
information from the skewness and kurtosis estimators in a 
natural manner. Second, we plan to develop pathway-based 
approaches for unsupervised outlier detection. Finally, it 
would be desirable to extend the work of Phillips and Ghosh15 
to accommodate more than one platform as many studies, such 
as the Cancer Genome Atlas (http://tcga.cancer.gov), are col-
lecting multiple types of “-omics” data on matched samples. 
These extensions are all currently under investigation.

Appendix
derivations of c(α) test for N(µ, σ2) distribution. 

Assume we have a random sample X1,…,Xn from a normal 
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figure 6. output from q-value function in R for copy number expression data using the K2 test. There are 7534 genes on the plot, and statistics were 
computed using 18 samples.
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figure 7. a plot of the P-values from the K2 test for copy number 
expression (horizontal axis) and from the K2 test for transcript mRNA 
expression (vertical axis). there are 7534 genes on the plot, and 
statistics were computed using 18 samples. the axes have been 
transformed using −log10(P-value).

could be used is the following. First, gene-wise tests based 
on the proposed method could be conducted on the tumor 
samples, and then supervised clustering or classification could 
be continued based on the identified significant genes. This 
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distribution with mean µ and variance σ2. First, we treat µ as 
the parameter of interest and σ as a nuisance parameter. Using 
exponential family theory, the C(α) test statistic is given by
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We now treat µ as the nuisance parameter and σ as the 
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X  is the mean of the sample, and σ̂  is the standard devia-
tion. Under the null hypothesis, W is distributed as N(0, 1).
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