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Segmentation and 3D reconstruction of the human atria is of crucial importance for

precise diagnosis and treatment of atrial fibrillation, themost common cardiac arrhythmia.

However, the current manual segmentation of the atria from medical images is a

time-consuming, labor-intensive, and error-prone process. The recent emergence of

artificial intelligence, particularly deep learning, provides an alternative solution to the

traditional methods that fail to accurately segment atrial structures from clinical images.

This has been illustrated during the recent 2018 Atrial Segmentation Challenge for which

most of the challengers developed deep learning approaches for atrial segmentation,

reaching high accuracy (>90% Dice score). However, as significant discrepancies exist

between the approaches developed, many important questions remain unanswered,

such as which deep learning architectures and methods to ensure reliability while

achieving the best performance. In this paper, we conduct an in-depth review of

the current state-of-the-art of deep learning approaches for atrial segmentation from

late gadolinium-enhanced MRIs, and provide critical insights for overcoming the main

hindrances faced in this task.

Keywords: atrial fibrillation, left atrium, machine learning, image segmentation, convolutional neural network,

LGE-MRI

INTRODUCTION

The ability to perform body imaging has been described as one of the most important revolutions
in medicine of the past 1,000 years for its contribution to medical prevention, diagnosis, and
prognosis (1). Since then, medical imaging has never ceased to improve, allowing cardiologists,
and researchers to assess heart size using chest x-rays (2), to evaluate heart mechanical work with
echocardiography imaging (3–5) and to accurately determine the heart’s dimensions using cardiac
magnetic resonance imaging (MRI) (6). Due to its good image quality, excellent soft-tissue contrast,
and absence of ionizing radiation, MRI has become the gold standard modality to precisely identify
patients’ cardiac structures and etiology, guiding diagnosis and therapy decisions (7).

Improvements of MRI techniques, particularly with the aid of contrast agents such as
gadolinium, led to the development of late gadolinium-enhanced MRI (LGE-MRI), allowing for
the detection of scar tissue located within the myocardium. This technique has been extensively
employed for clinical studies at Utah University (8–10) to analyze and understand the role of
fibrosis and underlying structures that sustain atrial fibrillation (AF), the most common cardiac
arrhythmia predicted to become a new epidemic in the coming decades (11, 12). They notably
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demonstrated the correlation between an increased amount of
fibrosis present in the left atrial (LA) wall and a poor outcome
of AF ablation (10). Over time, LGE-MRIs have become a
widely accepted technique of choice allowing the detection and
quantification of scar tissues located in the atrial wall.

The currently widely used clinical practice, including those
conducted at Utah University, to analyze atrial structures and
determine and quantify fibrosis distribution is by performing
manual segmentation of the LA chamber from LGE-MRIs.
However, the LA cavity represents a small volume (73
± 14.9 cm3), constrained by a thin atrial wall (2–3mm)
and comprised of complex anatomy (13–15). Moreover, the
anatomical structures surrounding the atria display similar
intensities that can mislead some segmentation algorithms (16)
(Figure 1). As a consequence, manual segmentation of the atrium
is a time-consuming, labor-intensive, and error-prone process
(8, 17, 18).

Before the advent of deep learning, researchers tried to
develop and improve automated approaches to alleviate the
burden of manual segmentation (19, 20). Earlier algorithms
proposed would require important manual tunings such as
thresholding methods or region growing approaches (21, 22).
Other methods were later developed to provide a higher degree
of automation using classifiers or clustering approaches such as
k-nearest-neighbor (23) or k-means clustering (24), respectively.
More recent methods, using statistical classifiers like support
vector machine (25), active shape model (26), or multi-atlases
(27) approaches, gained increasing interest for medical image
analysis and cardiac segmentation. Though many of these
approaches showed promising results, none presented enough
consistency to be implemented widely in clinical practice.

In recent years, the development of more powerful
computational hardware and the growth of clinical databases
enabled deep learning, a subset of artificial intelligence (AI)
(28–32) capable of automatic feature extraction and learning, to
achieve tremendous advances notably in image classification and
segmentation (33, 34). When applied to clinical images, deep
learning even surpassed human-level accuracies for the detection
of cancer on cervical images (35). Certain architectures employed
for deep learning have also been proven to be very effective when
applied to cardiac imaging. For example, Avendi et al. (36, 37)
used a three-stage approach combining convolutional neural
network (CNN), stacked encoder, and deformable models to
segment the left ventricle (and later the right ventricle) on a small
MRI dataset of 45 patients. On the other hand, Bai et al. (38) used
a large MRI dataset provided by the UK Biobank database to
develop their CNN for ventricular chamber assessment (volume,
mass, ejection fraction) and segmentation, obtaining accuracy
scores competing with human-level precision.

This increasing interest around deep learning can also be seen
in the number of participants using deep learning approaches for
the various challenges designed to promote the development of
more robust methods for cardiac image segmentation (39–41).
Atrial segmentation is becoming a matter of greater importance
and can highly benefit from the development of deep learning. As
an example, during the 2018 Atrial Segmentation Challenge, 15 of
the 17 published approaches used deep learning to segment the

LA cavity from LGE-MRI images, yielding high accuracy results
and outperforming conventional segmentation approaches (42).
The number is in sharp contrast with the previous atrial
segmentation challenge held in 2013, during which only one
approach used a learning algorithm (16). Thus, this growing
interest for deep learning in research challenges illustrates the
shift occurring in atrial segmentation and more broadly in
clinical imaging development, moving more and more toward
deep learning-based approaches that will revolutionize clinical
practice in the coming years.

In this paper, we aim to provide an analysis of the current
deep learning technique used for atrial segmentation on LGE-
MRIs. Firstly, we will describe some of the fundamental concepts
employed in deep learning for medical image segmentation.
Subsequently, we will detail the various deep learning approaches
addressing the main obstacles faced performing automated atrial
segmentation. Finally, we will conclude our review with an
outline of future developments for atrial segmentation using deep
learning and more broadly the future of AI in clinical practice.

CORE CONCEPTS OF DEEP LEARNING

Since Alan Turing published his article “Computing Machinery
and Intelligence” asking “Can machines think?” researchers have
thrived to comprehend, develop, and achieve AI (43, 44) although
today, after over 60 years, general AI is still not within reach.
Nevertheless, in recent years, the growth of computer processing
power and technologies has allowed researchers to develop
algorithms capable of learning proficiently through deep learning
using artificial neural networks (ANNs). As ANNs represent the
most popular structure to perform deep learning, this section will
describe the core concepts of ANNs and their various practical
use in medical imaging.

Artificial Neural Networks
Inspired by the biological neural networks found in the human
brain (45), an ANN represents a collection of connected and
tunable computational units, called artificial neurons, organized
in a layered structure comprising a network (Figure 2A). Each
neuron is a processing unit that can take multiple inputs. Each
input is multiplied by an adjustable parameter called weight. All
weighted inputs are summed together and passed through a non-
linear function to yield a single output (30). Neural networks can
address complex, highly non-linear problems due to the layered
and connected structure of ANNs. In particular, the introduction
of more advanced feature learning tools such as convolutional
layers, the improvement of large datasets and better activation
functions, e.g., ReLU, greatly helped the development of deep
learning for segmentation tasks.

The key attribute of an ANN lies in its ability to learn the
unique traits of a dataset by adjusting its weights accordingly
during a training process. Typically, the weights are randomly
initialized at the start of training. The training process can then be
described in three consecutive phases: (1) forward propagation,
(2) error calculation, and (3) back-propagation. In the forward
propagation stage, the input data (e.g., LGE-MRI image) is fed
to the network and flows through the different layers that extract
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FIGURE 1 | Main hindrances faced in LA segmentation from LGE-MRIs. (A) 3D representation of the complex anatomy of LA. (B) A typical 2D LGE-MRI extracted

along the green rectangle from A), annotated with the main hindrances (blurry boundaries, class imbalance, noisy background, and complex anatomy) encountered in

atrial segmentation. LGE-MRI, late gadolinium-enhanced magnetic resonance image; LA, left atrium; LAA, left atrial appendage; LSPV, left superior pulmonary vein;

LIPV, left inferior pulmonary vein; RSPV, right superior pulmonary vein; RIPV, right inferior pulmonary vein.

FIGURE 2 | Schematic representation of the layered structure of an Artificial Neural Network (ANN), each circle representing an artificial neuron (details in the insert).

(A) Each neuron receives inputs (X1, X2, X3), which are weighted (w1X1, w2X2, w3X3) and passed through an activation function f. (B) Architecture and details of one of

the most popular convolutional neural network: U-Net.

the characteristic traits of the data, to ultimately yield a prediction
(e.g., desired segmented image). The prediction is then compared
to a reference data (e.g., manually segmented image by experts),

called labeled data, and error is calculated using a dedicated
function (called loss function). Finally, the weights are modified
to minimize the estimated error, improving prediction accuracy.
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These three phases are repeated several times until the error
converges to a significant minimized value.

Different Tasks, Different Networks
Medical imaging encompasses a wide field of applications, and
different tasks can represent different aspects of a diagnosis.
Examples include the detection of an abnormal ECG signal, its
classification as AF (46), or even atrial segmentation for planning
for AF ablation (47). Therefore, each task requires a specific ANN
architecture to properly model the desired operator, as the inputs
and output can be drastically different depending on the nature
of the task to be performed.

The number, types, and connections of layers in an ANN
defines the network architecture. The CNN model is one of
the most widely employed architectures in image analysis.
CNN is a specific ANN architecture in which its hidden layers
comprise one or more convolutional layers. The convolutional
layers act as feature extractors from the input image, applying
different convolution kernels to the initial image to generate
feature maps containing meaningful information. Moreover, in
convolutional layers, each artificial neuron receives their inputs
from multiple neighboring neurons from the previous layer,
sharing their weights and keeping the most spatially relevant
information. This feature also allows a reduction in the number
of parameters to adjust and therefore lowers the computational
processing cost. Generally inserted in between sets of successive
convolutional layers are pooling layers that are used to reduce
the dimensionality of each generated feature map while retaining
the relevant information. This down-sampling of the feature
maps, typically by a factor of two, allows reduction of the
computational cost while enlarging the field of view for the later
convolutional layers.

For CNNs dedicated to image classification or detection, the
architectures usually incorporate a fully connected layer as an
end layer to summarize all information contained in the feature
maps into a unique final prediction (output). Furthermore, CNNs
can also be adapted for segmentation tasks by discarding the
final fully connected layer and incorporating up-convolution
layers in the network (35). These networks are called fully
convolutional networks (FCNs). Up-convolution layers allow up-
sampling of the feature maps to produce, in fine, output with
the same size as the original input size (48). Thus, FCNs using
up-convolution layers can perform pixel-wise prediction and
therefore image segmentation.

First proposed by Long et al. (33) for semantic segmentation,
the FCN architecture has been adapted and further extended
for medical imaging notably with U-Net, a U-shape architecture
(Figure 2B) developed for segmentation of histological images
(48). By using skip-connections between down-sampled feature
maps and up-sampled feature maps, the U-Net architecture
allows features forwarding between the encoding part and the
decoding part of the network, preventing singularities and
achieving higher accuracy (49–51). After winning the ISBI cell
tracking challenge in 2015, U-Net became the principal FCN
architecture for medical imaging segmentation. Other studies
further developed the U-shape architecture to use 3D images as

input to render the spatial resolution of anatomical structures
more accurately (52, 53).

ATRIAL SEGMENTATION USING
DEEP LEARNING

In this section, we provide a summary of the main difficulties
encountered in atrial segmentation and the state-of-the-art
deep learning approaches developed from LGE-MRIs to address
them. To this regard, many of the methods reviewed were
proposed for the MICCAI 2018 Atrial Segmentation Challenge
which represented a cornerstone for the development of deep
learning approaches for atrial segmentation from LGE-MRIs.
Firstly, we will analyze the main methods employed to address
class imbalance issues, a recurrent problem in segmentation of
small structures such as the LA. Secondly, we will review the
approaches developed to exploit image context providing more
information for semantic segmentation of the LA using multi-
scale strategies. Next, we will analyze the impact of loss function
selection regarding either volumetric segmentation or surface
segmentation. Finally, we will discuss the influence of the input
dimensionality (2D/3D) for atrial segmentation when dataset size
represents a significant shortcoming.

Multi-Stage CNN and Class Imbalance
One of the difficulties of atrial segmentation is that the atrial
cavity represents only a small fraction of the image volume
(∼0.7%) and therefore creates a severe class imbalance between
the over-represented background and the under-represented
atrial structures, impairing the learning process. To address this
issue, Vesal et al. (54) proposed to crop the input images from
the center of the image, using fixed coordinates, to substantially
remove the predominant background surrounding the LA. As
a result, the learning process was entirely focused on a smaller
region of interest (ROI), allowing better representation of the LA
features. Based on a similar principle, other researchers (55–57),
pushed this idea a step further by using a multi-CNN approach
for atrial segmentation (Figure 3A). In their approaches, two
consecutive networks were employed instead. The first CNN was
specially trained to localize the LA on each input, allowing to
subsequently crop out the unwanted background around the LA,
as a prior step to segmentation. Then, the second network was
dedicated to the segmentation task itself, focusing entirely on a
small patch of each image.

Despite following a similar idea, it is important to distinguish
these two methods. As the LA can show different positions
on LGE-MRIs, using fixed coordinates from the center
of the image to crop may result in unwanted cropping
of relevant LA pixels. On the other hand, by dynamically
centering the ROI on the LA for each input, multi-CNN
approaches ensured the conservation of the atrial structures,
cropping exclusively superfluous background pixels, and
consequently optimizing background isotropy for the
learning process.

To quantify the impact of each cropping approach, our recent
study has investigated the importance of cropping the input patch
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FIGURE 3 | Examples of top architectures developed for atrial segmentation from LGE-MRIs. (A) Multi-stage CNN architecture uses the first convolutional neural

network (CNN 1) to extract the region of interest (ROI) and the second convolution neural network (CNN 2) to perform the segmentation of the left atrium. (B) Pyramid

pooling architecture increases contextual information in the learning process. Pool, pooling layer; Conv, convolutional layer.

to the CNN either from the center of the image (image-centered)
or from the center of the LA (center of mass/centroid of the
atrium) using different patch sizes (ranging from 240 × 240 to
576 × 576) (58). When using center cropping of the image, we
did not observe any significant influence of the patch size on the
Dice score (92.03 vs. 91.95% Dice score for 240 × 240 and 512
× 512 image size, respectively). On the other hand, cropping the
images from the centroid of the LA using dynamic cropping, we
noticed a significant increase in the accuracy when using small
patches (240× 240) compared to large patches (576× 576) (Dice
score 92.86 vs. 92.26%, p < 0.01). The utilization of LA centroid-
centered patches allows the CNN to process a more condensed
region of the large LGE-MRI scan as the exact location of the LA

is known, reducing the class imbalance of each patch processed
by the network.

Multi-Scale Approaches and
Context Learning
Another problem that decreases segmentation performance and
limits the extraction of relevant cues during the training phase
is the inconsistency in the sizes of the LA anatomical structures
such as the pulmonary veins or the left atrial appendage seen in
LGE-MRIs from different patients.

He et al. (59) initially developed a pyramid pooling module, a
multi-scale pooling, intended to prevent object misclassification
by using image context information. By incorporatingmulti-scale
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pooling, the CNN could associate contextual features, delivering
more accurate classification. Based on this idea, Zhao et al. (60)
proposed PSPNet, a neural network with pyramid pooling which
incorporates object and image context to the learning process.
These two approaches were developed using large miscellaneous
datasets such as ImageNet (61), PASCAL VOC 2012 (62), or
ADE20K dataset (63), and the pyramid pooling exploiting the
context variability of the dataset, allowed to alleviate object miss-
classification or segmentation errors.

Inspired by He et al. (59) and the PSPNet developed by Zhao
et al. (60), Bian et al. (64) proposed a multi-scale 2D CNN using
spatial pyramid pooling to extract different scale features of the
training dataset (Figure 3B). Thus, by means of different pooling
kernel sizes and their combination, they proposed a CNN able to
learn different cue size and improve network robustness against
high shape variability usually encountered in clinical datasets.

However, the dataset employed for this approach (154
3D LGE-MRIs of the chest cavity) does not provide as
much contextual variability as the large image database
aforementioned, but rather displays the same object (the LA)
in the same anatomical context (the thoracic cavity), providing
only a few contextual variations to train on. Thus, arguably using
pyramid pooling module for LA segmentation in the chest cavity
might only show limited benefits from context learning.

Pyramid pooling also grants the ability to generate a fixed-
length vector on a fully connected layer for classification tasks.
This was illustrated by Chen et al. (65) using the pyramid pool
module to extract more information from the dataset and classify
the images between pre-/post-surgery, as they used a deeper
U-Net to segment the LA simultaneously.

Based on the similar idea of incorporating multi-scale
cues during the learning process, Vesal et al. (54) employed
dilated convolution layers (also called atrous convolution
layers) at the deepest level of their network. These convolution
layers use dilatation rates to enlarge their receptive fields,
allowing the network to learn different scale features
(66). However, at each convolution the receptive field of
each neuron is increased, therefore if not used wisely,
receptive fields can become larger than the input image,
resulting in a waste of memory while not improving the
learning process.

These approaches ensure the incorporation of shallow features
(spatial cues) and deep features (semantic cues) during the
learning process. Therefore, combining effective class imbalance
management with contextual cues could potentially improve
even more the current methods. However, cropping to the
smallest ROI possible using a first CNN of a two-stage approach,
like Xia et al. drastically reduces the image context shown to
the network. Therefore, the pyramid pooling module might not
be able to provide contextual cues from the LA surrounding
structures to improve the learning process. Moreover, during the
cropping process, the input image size is significantly reduced.
Thus, the use of dilated convolution for segmentation in the
second network of this strategy becomes almost obsolete as
the receptive fields would quickly grow larger than the input
image during the learning process. Thus, fusing these strategies,
although interesting, needs to be considered wisely.

Loss Function
The current main evaluation metrics employed in segmentation
task using deep learning is the Dice score, for which a higher
accuracy reflects almost exclusively a volume of pixel accurately
annotated rather than well-defined anatomy. Hence, most of the
deep learning approaches for segmentation employ pixel-wise
segmentation relying either on cross-entropy loss function or
dice loss function. However, these loss functions weigh more
volume over contours, which can impair the learning of accurate
boundaries in favor of a correct volume.

To improve boundary accuracy, several teams have developed
contour-oriented loss functions. For example, Jia et al. (67)
proposed a contour loss function (based on the pixel Euclidean
distance) that decreases when the contour gets nearer to the
reference contours of the label images during training, providing
spatial distance information to the learning process. In their
approach, they associated the dice function loss to obtain pixel-
wise information, and their contour loss function for spatial
information, achieving good shape consistency. In another
strategy, Yang et al. (57) also defined a composite loss function,
combining the overlap loss function (to reduce intersection
between foreground and background) and a novel loss function
called “focal positive loss” to guide the learning of voxel
specific threshold and emphasize the foreground, improving,
in fine, classification sensitivity. By recognizing ambiguous
boundary location and enforcing positive prediction, this novel
loss function improved the learning process and consequently
the final atrial segmentation. However, these approaches did
not obtain a better score then other approaches using more
conventional loss function (e.g., dice loss, cross-entropy loss).

Therefore, it would be interesting to investigate the impact of
a combined loss function allowing the network to learn from the
volume (cross-entropy loss function or dice loss function) and
from the contours of the LA. As segmentation tasks not only
rely on minimizing volume error but also relies on boundaries
accuracy (particularly for small structures). it is crucial to
consider these two major aspects to ensure the reliability of the
approach employed.

Spatial Context (2D vs. 3D)
Even if clinical datasets are becoming bigger and better with
the creation of centralized databases, for example, the UK
Biobank (with more than 90000 3D MRI scans) (68), most of
the current clinical databases available remain of humble size,
making it difficult for a CNN to provide robust generalized
solutions for segmentation. As an example, the current largest
LGE-MRI dataset with only 154 3D LGE-MRIs (which represent
nearly 9,000 2D images for training) appears relatively small
when compared to the hundreds of thousands of images used
for the major classification challenges for which the proposed
approaches reach outstanding accuracy (59, 69, 70).

Thus, in this race of performance, it is important to consider
how to make the best of the dataset employed. To this regard,
the choice of the image dimensions employed (2D and 3D)
approaches must be considered wisely. As 2D approaches need
considerably fewer trainable parameters to yield good results,
they are less gluttonous regarding memory consumption, and
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therefore require less time during the training process. Moreover,
2D approaches allow the processing of bigger batches of images
compared to 3D approaches, as they require less memory to be
processed. Therefore, 2D methods, using bigger batch size, help
reduce gradient fluctuation and lead to faster convergence during
the learning process. Additionally, 2D approaches can exploit
more efficiently small datasets, reducing the risk of overfitting as
the neural networks are fed with more images for the learning.

On the other hand, 3D approaches provide better spatial
representation, fully exploiting data dimensionality as well as
inter-slice continuity during training. This allows the network
to learn major spatial features to render a more accurate 3D
anatomy and yield, in fine, higher accuracy. Moreover, with
the ever improvement of GPU technology, the current memory
limitations will become of less importance in the near future;
therefore, 3D approaches will become easier to use. Furthermore,
as datasets are growing better and bigger, 3D approaches will be
able to rely on more data and become more and more prominent
in clinical imaging deep learning.

Nevertheless, relying on 2D images, Puybareau et al. (71)
tried to improve the spatial representation of their dataset
using a method called “pseudo-3D.” Their method employed
the generation of color images from the 2D grayscale images,
each slice being color expanded into the R, G, B space using
slice n-1, slice n and slice n+1, to generate a three-channel
image. This approach allows an improved spatial representation
and alleviates low contrast intensity between atrial tissues and
background and enrich the dataset. However, even if this
approach does not provide the expected spatial representation,
it can be a method of choice if resources are limited.

Following the multi-view approach developed by Mortazi
et al. (72), Chen et al. investigated the possibility to combine 2D
images and 3D representation (73). In their study, Chen et al.
extracted the 2D images for each anatomical view (axial, coronal,
and sagittal) from 100 3D LGE-MRIs. Then, they combined a
first encoder-decoder network using long short term memory
convolutional layers to preserve inter-slice correlation using
the axial view, and a second network to learn complementary
information from the sagittal and coronal views. Finally, the
outputs for each view of the network were fused to yield LA
and PV segmentation simultaneously. Using their approach,
they obtained 90.83% Dice score accuracy for PV and atrial
segmentation. Employing the same method, Yang et al. studied
the influence of dilated convolution to counter image resolution
variability encountered using a multi-view approach (74). Using
100 3D LGE-MRIs, they achieved 89.7% Dice score accuracy
underlining the necessity to investigate systematic parameters
tuning to obtain optimal performances on a task-specific basis.

In the present context, it is important to consider the trade-
off using either a 2D approach requiring less memory and
profiting more from the dataset (8,800 images rather than 154
3D LGE-MRIs) a 3D approach allowing more accurate spatial
representation at the cost of longer and more difficult training.
However, at the current stage, it is difficult to assess which
method yields systematically better results. For example, during
the 2018 Atrial Segmentation Challenge, the performances of
2D and 3D approaches remained very close (Table 1). Another

possibility is to use a multi-view approach combining 2D images
from different views to improve the spatial representation.
These methods require training each view separately before
combining the different output for the final prediction. While
interesting, these methods still need improvement to reach
the current state-of-the-art for atrial segmentation. Therefore,
further improvements need to be sought regarding the size of
the dataset, the number of approaches compared and the metrics
employed to be able to draw a better conclusion.

Evaluation Metrics

Another crucial point is to use metrics that provide a reliable
evaluation of the final output using deep learning. One of the
main scores employed is called Dice score and gauges the pixel-
wise similarity between the predicted segmentation and the
reference data. Dice score provides a good representation of the
specificity and the sensitivity of the model. However, Dice score
metric has some limitations as it only evaluates a percentage
of pixel accurately annotated neglecting contours and shapes of
organs that can be a critical part of diagnosis in clinical practice.
Other metrics providing distance measurements, such as mean
surface distance and Hausdorff maximum distance, are usually
employed to provide an alternative evaluation. Mean surface
distance estimates the average error (in mm) between the outer
surfaces of the reference data and the predicted segmentation.
Given the size and structure of LA, mean surface distance is
a meaningful tool to reliably assess the anatomical boundaries
of the predicted segmentation compared to the reference data.
Hausdorff maximum distance (in mm) represents the maximum
error between the surface of the predicted segmentation and
the surface of the reference data. Therefore, Hausdorff distance
indicates solely the distance at the worst part of the segmentation,
providing only partial information of the correctness of the
predicted segmentation. By combining mean surface distance
and Hausdorff distance, it is possible to evaluate the fidelity
of the boundaries of the segmented structures reliably. Finally,
a more clinical aspect of the predictions can be examined to
express the reliability of the approach by calculating volume error
or anteroposterior atrial diameter error when comparing the
segmented prediction with the reference image.

Atrial Wall and Scar Segmentation
While the deep learning methods for atrial cavity segmentation
on LGE-MRIs are effective, the more clinically relevant tasks,
such as LA wall and fibrosis (scar) segmentation, remain
challenging. For LA wall segmentation, several approaches have
been developed using traditional strategies such as multi-atlas
segmentation or graph-cuts method (83, 84). However, currently
no deep learning approaches have been proposed for direct LA
wall segmentation from LGE-MRI. Yang et al. (85) proposed a
hybrid approach combining multi-atlases and an unsupervised
sparse auto-encoders for LA scar segmentation. A multi-atlas
algorithm was used to segment the LA blood pool from the
LGE-MRIs. Then, this initial LA cavity segmentation was dilated
uniformly by 3mm to include the LA wall. Next, they used
a sparse auto-encoder to delineate and segment the fibrosis
from the atrial wall. They achieved 90 ± 0.12% Dice score
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TABLE 1 | Summary of deep learning approaches developed for the 2018 atrial segmentation challenge.

First Author Summary DC Architecture Pros/Cons

Xia et al. (56) 2 stage network (LA localization, LA segmentation), Dice loss 93.2 2x 3D U-Net Good class imbalance management, highest

performance/computationally expensive

Bian et al. (64) LA segmentation using, ResNet101, atrous convolutional

layers and pyramid pooling, online hard negative example

mining (objective function)

92.6 2D Pyramid Network Multi-scale representation/competitive training

can reinforce overfitting

Vesal et al. (54) LA segmentation using manual cropping, dilated convolution

at the deepest level of U-Net, combination of Dice loss and

cross-entropy loss function

92.6 3D U-Net Class imbalance management, new loss

function/Risk of loss of information using center

cropping

Li et al. (55) 2 stage network: 3D U-Net for detection, Hierarchical

Aggregation network (HAANet) for LA segmentation, Dice loss

92.3 3D U-Net + HAANet Class imbalance management/Slow and small

benefits from Hierarchical mechanism (0.4%)

Puybareau et al. (71) Assembly of three 2D gray-scale images to create RGB 2D

color image, transfer learning (VGG), multinomial loss function

for LA segmentation

92.3 VGG-Net Fast to train, pseudo-spatial

representation/pseudo spatial representation

not multi-view or 3D

Yang et al. (57) 2 stage approach: LA detection (Faster-RCNN), LA

segmentation (U-Net). Deep supervision, transfer learning.

Composite loss function: Overlap loss and Focal Positive loss

92.3 Faster-RCNN/3D U-Net Good ROI detection, composite loss function

/Recursive training with risk of overfitting

Chen et al. (73) LA segmentation and classification (pre/post-ablation) of

images, using cross-entropy and sigmoid loss function,

respectively

92.1 2D U-Net Fast to train (2D), interesting data augmentation

Jia et al. (67) 2 stage network (LA localization, LA segmentation), contour

loss

90.7 3D U-Net Contour loss/computationally expensive

Liu et al. (75) Manual center cropping, evaluation of 2 different networks

U-Net and FCN for LA segmentation, Dice loss

90.3 2D U-Net and FCN Quick (2D)/Native Unet/FCN

Borra et al. (76) Otsu’s algorithm for cropping, LA and pulmonary veins joined

segmentation, Dice loss

89.8 3D U-Net Otsu’s for cropping/computationally expensive

de Vente et al. (77) U-net for LA segmentation, Dice loss 89.7 2D U-Net Fast (2D)/Native Unet

Preetha et al. (78) Deep supervision (79) and U-Net for LA segmentation 88.8 2D U-Net Deep supervision, Fast (2D)/Native Unet

Qiao et al. (80) Multi-atlas selection and registration for LA segmentation 86.2 Multi-atlas Groupwise registration/Slow

prediction(multi-atlas)

Nuñez-Garcia et al. (81) Multi-atlas whole heart labeling and shape-based atlas

selection

85.9 Multi-atlas Registration using gobal-atlases, shape based

clustering/Difficulties do manage high variability

in small dataset

Savioli et al. (82) LA segmentation using V-Net and combination of mean

squared error and Dice loss

85.1 3D V-Net Composite loss function/computationally

expensive

DC, Dice Score; LA, Left Atrium.

for blood pool segmentation and 78 ± 0.08% Dice score for
fibrosis segmentation. In their subsequent study (86), by fine-
tuning the sparse auto-encoder parameters, the accuracy was
improved to 82 ± 0.05% Dice score for fibrosis segmentation.
While showing promising results, with these methods being only
developed and tested on 20 3D LGE MRIs, they remain untested
on larger datasets to assess their reliability against a broader range
of anatomical variabilities regarding LA structures and fibrosis.
Chen et al. (73) developed a CNN with an attention mechanism
(87) to highlight salient features (in this case, the enhanced pixels
of the scar tissues on LGE MRIs) and to force the model to
focus on the scars locations. With this approach, Chen et al.
obtained 77.64% Dice score for atrial scar segmentation using
100 3D LGE MRIs. This lower score (compared to that obtained
from LA cavity segmentation) is potentially due to the scarcity
of the LA scar pixels, which are small patches of inhomogeneous
enhanced pixels within the atrial wall, impairing the extraction of
meaningful features for fibrosis identification during the learning
process of the CNN.

While these methods require atrial wall segmentation to be
performed before fibrosis detection, Li et al. proposed a hybrid
approach using a graph-cuts framework combined with a multi-
scale CNN approach for direct scar identification (88). In their
approach, the LA and PV were initially delineated using a
multi-atlas segmentation method. Then fibrosis was segmented
and quantified using a graph-cut network in which two neural
networks were dedicated to predicting edge weights. The first
network was dedicated to predicting the probabilities of a node
belonging to scar or normal tissue, while the second network
was devoted to evaluate the connection between two nodes,
yielding, in fine, the fibrosis segmentation. By embedding the
CNN networks in the graph-cut framework, Li et al. obtained a
mean Dice score of 70.2% for scar tissue segmentation, showing
the possibility of effectively assessing LA fibrosis without the
need for prior wall segmentation. Thus, even if the two networks
employed did not directly perform the fibrosis segmentation
task, the CNNs contributed to the optimisation process refining
the graph-cut approach used in this study. However, these
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methods tended to find fibrotic tissue out of the atrial wall
boundaries regions, resulting in a drastic decrease in the final
scores. Hence, the current models remain insufficient to provide
anatomically accurate assessments allowing reliable fibrosis
quantification due to the low Dice scores obtained. Thus, these
approaches still require improvements to reach reliability and
clinical applicability.

DISCUSSION AND CONCLUSION

In this paper, we provided an in-depth analysis of the main
automatic approaches using deep learning for atrial cavity
segmentation from LGE-MRIs. Most of the proposed deep
learning approaches for atrial segmentation used FCNs, most
notably the very popular U-Net architecture. While U-Net
is widely used for medical image segmentation in many
disciplines (38, 89, 90), the discrepancy in the accuracy obtained
between different studies still presents inherent issues involved
in the generalized implementation of such architectures. By
presenting a normalized survey of U-Net for the task of
atrial segmentation, we showed the importance of proper class
imbalance management, appropriate features extraction process,
and meaningful loss function selection to yield precise and
accurate atrial segmentation.

The current leading approach for LA segmentation from
LGE-MRIs dataset involved a two-stage 3D CNN method which
reached a remarkable Dice accuracy of 93.2%, currently the best-
benchmarked performance using 100 3D LGE MRIs (42). In this
approach, the first network reduces class imbalance effectively
while optimizing background isotropy using dynamic cropping,
providing the second network with a targeted region for more
localized segmentation. Additionally, they employed extensive
data augmentation to enhance the generalization capability
of their approach. Finally, they employed a 3D approach
reinforcing the features’ spatial representation, allowing them
to obtain the current highest score for LA segmentation using
machine learning.

Small training datasets represent one of the main limitations
of clinical datasets as annotation and data gathering remains
difficult. For example, the current largest LGE-MRIs dataset only
contains 154 cases and therefore cannot effectively represent
human anatomical variability. In fact, in order to improve
performance, most of the developed approaches rely heavily
on data augmentation such as affine transformations, cropping
and scaling to virtually enlarge the dataset, also taking the
risk of introducing more artifacts in the dataset. Moreover, the
annotation process of anatomical structures is a complex and
tedious process, which can be seen in the inter/intra-observer
variability reported in several studies (38, 91). For example, atrial
structures such as the mitral valve are difficult to segment due to
the lack of clear anatomical border between LA and left ventricle.
Moreover, the PVs are a very thin structure and represent a
challenge for experts to distinguish from other structures on
poorly contrasted images, and current protocols for defining the
degree of extension of the PVs from the LA wall still remains
subjective. Thus, this labeling uncertainty leads to some label
variability in the dataset used, impairing the training process
and potentially misleading the deep learning algorithm for the

prediction process. However, despite all these difficulties the
study shows the success of deep learning approaches reaching
a high Dice score accuracy (>90% Dice score), showing the
importance of careful parameter selection and architecture
design for achieving the best performance (38).

In this study, we showed the potential of applying deep
learning to perform automatic segmentation of the LA directly
from clinical imaging data. The current accuracy of the
various approaches presented is promising for future clinical
implementation by providing highly accurate anatomical maps
of the LA. Additionally, multiple teams already proposed
auspicious solutions for fibrosis assessment using deep learning,
providing particularly valuable information for AF ablation
strategies that could highly benefit initial patient stratification,
diagnosis, prognosis, and potential guidance for an optimized
ablation strategy. Moreover, the ability to generate high fidelity
segmentations such as the LA opens the way for further
applications of deep learning to segment other anatomical
structures. For instance, high accuracy left atrial appendage
segmentation would provide crucial information for atrial
thrombosis risk assessment (92). Thus, practitioners would be
able to provide adapted treatment strategies on time, potentially
reducing the number of stroke accidents caused by migrating
atrial thrombus. Additionally, LA segmentation approaches
could also be applied to the RA, providing a better understanding
of the role of fibrotic extents spread through the RAmyocardium
notably in sinoatrial diseases (93).

Finally, it is important to underline the limitation of the
current metrics employed. As most of the segmentation tasks
rely on pixel-wise classification, Dice score proposes an efficient
way to determine the correctness of the overlapping prediction.
However, Dice score can be defined as a volumetric metric as it
weighs more generously toward an accurate volume over precise
anatomical delimitations. In clinical practice, Dice score and
volume accuracy are important for assessing LA dilatation, but
becomes irrelevant when assessing boundaries of fine structures
such as LA. Therefore, other metrics such as mean surface
distance representing the distance between the labeled surface
and the predicted surface should be considered to produce
better anatomical accuracy evaluation. The Hausdorff distance,
representing the maximum distance between two surfaces, can
also be used to evaluate the maximum error between prediction
and label, potentially guiding algorithms to minimize their
maximum error. Moreover, other limitations such as variations
in image quality and resolution or the introduction of image
artifacts intrinsic to scanner manufacturer have to be taken to
account for future clinical deployment. At the current stage, no
study has investigated the influence of LGE-MRI image quality
on the Dice score but empirically, the best image quality tends to
yield higher accuracy scores. However, in clinical practice image
quality can vary tremendously as cardiac motion, body fat, and
chest breathing motion, amongst others, can generate artifacts to
various degrees on the final images. Therefore, to provide good
generalization capacity, deep learning models have to be able to
extract meaningful features regardless of the quality of the image.
Similarly to the image quality issue, to obtain good generalization
capacity, a network should be trained with many images from
many different scanners. Thus, large multi-center datasets need
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to be built to ensure satisfying scanner variability and image
quality variability representation for the learning process. Finally,
it is crucial to promote deep models with efficient inherent
generalization capabilities, as different image resolutions can
represent a major difficulty for deep learning models using large
scale datasets. However, promising results were demonstrated
using pyramid pooling architecture ensuring extraction of multi-
scale features. Thus, at the current stage efforts remain to be
made to develop a deep learning model satisfying these criteria
for further clinical deployment.

With the development of computational hardware and the
general effort to enrich medical image databases, the effectiveness
of deep learning will only improve with time. Arguably, the
current trend would lead to improve all fields of clinical
practices as AI technologies become more widely developed and
implemented. Furthermore, the current flourishing of the deep
learning approaches in all areas of medical practice has already
breached out research. Despite initial professional reluctance,
AI technologies will become of major importance in the
near future.
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