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A B S T R A C T

Investigating neurophysiological markers linked to impulsivity in individuals with gambling and 
methamphetamine addiction using resting-state EEG data offers valuable insights into the un
derlying neurophysiological mechanisms associated with impulsivity in individuals with addic
tion. This study aims to use resting-state EEG to explore the connection between various types of 
addiction and different aspects of impulsivity. Participants from the methamphetamine, 
gambling, and healthy control groups (abbreviation: MA, GB, HC) underwent EEG recordings and 
completed measures of impulsivity. Group differences in trait scores and behavioral tendencies 
were analyzed. Abnormal connections with node linkage and importance changes were analyzed 
through the resting-state EEG power spectral and network analyses. Further, relationships be
tween impulsivity scores and connectivity differences in groups were explored through correla
tion analysis. Finally, these abnormal connections related to impulsivity were tested for their 
effect of distinguishing individuals with addiction from healthy controls through the ROC anal
ysis. Results revealed that GB displayed the highest trait impulsivity on the overall score, while 
MA exhibited greater attentional impulsivity. Variations in behavioral impulsivity were reflected 
in response times. Resting-state EEG analysis showed higher beta power in GB. Specific channel 
pairs demonstrated abnormal connections and altered connectivity patterns in the beta band, 
with MA displaying a less efficient network compared to GB. Correlation analyses uncovered 
associations between impulsivity scores and connectivity, which were influenced by group dif
ferences. Furthermore, resting-state EEG connections effectively differentiated individuals with 
addiction from healthy controls. Overall, this study contributes valuable insights into the neural 
mechanisms of addiction-related impulsivity, emphasizing the potential of resting-state EEG 
connections as an important neurophysiological correlate.
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1. Introduction

Addiction is a complex and multifaceted disorder that has been the subject of extensive research. Understanding the underlying 
neural mechanisms of addiction is crucial for developing effective prevention and treatment strategies. Behavioral addiction and 
substance addiction are two common types of addiction that have distinct but overlapping neural pathways and mechanisms [1,2]. 
Behavioral addiction encompasses compulsive behaviors like gaming addiction that do not rely on substance consumption, whereas 
substance addiction involves the compulsive use of drugs or alcohol. The fundamental symptoms and impulsive behaviors seen in both 
behavioral and substance addictions are similar, such as withdrawal, tolerance, craving, and impaired behavioral regulation [3,4]. 
Neurologically, both behavioral addiction and substance addiction share similarities in their underlying mechanisms. Research has 
shown that both types of addiction involve the desensitization of reward circuits, which dampens the ability to feel pleasure and 
motivation for everyday activities [5]. It also involves the weakening of brain regions involved in decision-making and self-regulation, 
leading to repeated relapse [6]. These dysregulations lead to heightened neurological and behavioral similarities in individuals with 
addiction, regardless of whether it is behavioral or substance-related. However, there are essential distinctions in their possible 
mechanisms on the brain. The potential difference between behavioral addiction and substance addiction lies in the neurochemical 
systems involved [2,7]. Substance addiction often consists of the activation of the brain’s reward pathway, primarily driven by the 
release of neurotransmitters such as dopamine [8]. Behavioral addiction, on the other hand, may also involve alterations in the reward 
pathway but may rely on different neurotransmitter systems or neural circuits [8,9]. Hence, the neurobiological markers and neural 
networks in addiction are essential for understanding the similarities and differences between behavioral addiction and substance 
addiction.

Impulsivity is considered a core feature of addiction and plays a significant role in the development, maintenance, and treatment 
response of addictive behaviors [10–13]. It refers to a tendency to act on immediate urges or desires without considering the potential 
long-term consequences. In the context of substance addiction, impulsivity can drive individuals to seek out drugs or alcohol as a 
means of instant gratification despite being aware of the potential long-term adverse consequences [12]. Similarly, in behavioral 
addiction, impulsivity can lead individuals to engage in excessive and compulsive behaviors, disregarding the adverse effects on their 
well-being and personal relationships [14]. There are two main domains in impulsivity: trait impulsivity, which refers to general 
measures of impulsivity, and behavioral impulsivity, which refers to specific facets of impulsivity linked to emotional states [15,16]. 
Trait impulsivity represents a consistent characteristic that indicates an individual’s overall inclination towards impulsive behavior 
and thinking in different situations. It can make individuals more susceptible to initiating and continuing the use of addictive sub
stances or engaging in addictive behaviors [11,12]. On the other hand, behavioral impulsivity is manifested in the actual engagement 
in impulsive acts, such as consuming a substance on a whim or indulging in a gambeling session driven by an immediate desire for 
excitement [17]. It demonstrates the difficulty in controlling these impulsive actions, particularly at that specific time, highlighting 
their temporary nature. Both types of impulsivity are relevant to the development of addiction, while behavioral impulsivity might 
have a more direct expression in addictive episodes [18]. This illustrates that interventions focused on altering behavioral impulsivity 
or addressing trait impulsivity may have different effects [16]. Therefore, it is important to explore various aspects of impulsivity in 
studying and comprehending its connections with addiction in order to offer improved recommendations for intervention.

Research has shown impulsivity is associated with alterations in brain regions involved in decision-making and self-control. In both 
substance addiction and behavioral addiction, there is evidence of hyperactivity in the orbitofrontal cortex and the striatum, which are 
critical areas involved in reward processing and decision-making [19–21]. This hyperactivity may contribute to the strong desire for 
immediate rewards and the inability to resist impulsive behavior. However, there are also some differences in the neural correlates of 
impulsivity between substance addiction and behavioral addiction. For example, in substance addiction, there is evidence of reduced 
gray matter volume in the prefrontal cortex, which is associated with impaired decision-making and self-control, and it more likely 
explains the trait impulsivity in substance abusers [11,22]. On the other hand, in behavioral addiction, such as gaming addiction, the 
prefrontal cortex seems to be more intact, suggesting that other areas of the brain, such as the insula and striatum, may play a more 
prominent role in behavioral impulsivity and addictive behaviors [23]. Overall, impulsivity is a complex trait encompassing various 
facets and is associated with alterations in brain regions. Attention to the interplay between impulsivity and addiction underscores the 
importance of understanding the neural mechanisms that contribute to these behaviors and seeking precise intervention.

There have been several systematic reviews of neuroimaging studies investigating impulsivity and inhibitory control in people with 
addictions [21,24–26]. Functional magnetic resonance imaging (fMRI) studies reveal altered brain activity in the prefrontal cortex, 
orbitofrontal cortex, anterior cingulate cortex, and striatum, correlating with a higher tendency towards impulsive behaviors [24,27]. 
Positron emission tomography (PET) studies track neurotransmitter systems and show disruptions in dopaminergic pathways may 
underlie impulsive decision-making and substance-seeking behaviors [27]. Electroencephalography (EEG) studies highlight atypical 
patterns of brainwave activity, such as reduced P300 amplitudes, indicating diminished inhibitory control mechanisms in addicted 
individuals [24,28]. These findings highlight the commonalities between behavioral addiction and substance addiction in terms of 
altered neural processes. However, few studies utilized resting-state EEG to explore the parallelisms and divergencies. Resting-state 
EEG is a cost-effective and non-invasive method that allows for research on individuals with addiction. This technique directly 
measures brain activity and can detect abnormalities in functional connectivity commonly seen in addiction. Furthermore, it is 
well-suited for investigating trait impulsivity due to its ability to detect rapid neural oscillations and transient connectivity patterns 
that are not influenced by specific tasks or stimuli [29,30]. Recently, studies found that EEG network analysis could reveal abnormal 
brain networks associated with impulsivity in individuals with addiction [29,31]. Irregular brain networks such as the 
cortico-striatal-thalamo-cortical loops disrupt the functional connectivity between areas responsible for processing rewards, con
trolling cognition, and biasing attention [31]. Utilizing graph theory can facilitate a thorough analysis of the neurobiological networks 
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in individuals with addiction [32]. This method enables the recognition of important areas involved in processing and communication 
within intricate networks and provides several types of analyses to compare brain networks. Resting-state EEG combined with psy
chological features and impulsivity network analysis methods have demonstrated effective classification of behavioral and substance 
addiction [33]. Therefore, the neurobiological basis of addiction can be better understood through the application of resting-state EEG 
and network analysis techniques.

In sum, a considerable amount of research suggests that impulsivity plays a crucial role in addiction; however, there is limited 
evidence exploring the specific relationship between different forms of addiction and various facets of impulsivity, as well as their 
corresponding complex neural network. This study differentiated trait and behavioral impulsivity in individuals with behavioral and 
substance addictions compared to non-addicted individuals and utilizes resting-state EEG measures and network analyses to inves
tigate brain activity patterns. To be noted, this study targeted gambling and methamphetamine addictions as they represent two 
significant types of addiction. Gambling addiction is a behavioral addiction marked by an uncontrollable desire to gamble, resulting in 
substantial personal, financial, and social repercussions. Methamphetamine addiction is explained as a persistent, recurring disorder 
characterized by compulsive drug seeking and usage despite harmful consequences. The goal is to uncover the parallelisms and di
vergencies between these addictions and the neurophysiological correlates associated with impulsivity.

2. Material and methods

2.1. Participants

Participants for the study were recruited from two specialized centers in Shanghai that cater to individuals with addiction dis
orders: individuals with gambling addiction were recruited from the Profit Center for Treating Gambling Addiction. Individuals 
diagnosed with methamphetamine addiction were recruited from a Mandatory Center for Substance Abuse and Addiction. Inclusion 
criteria for the participants with addiction disorders included a diagnosis of gambling or methamphetamine addiction, as per DSM-5 
criteria, which was confirmed by two psychiatrists; an age range of 25–50 years; at least a fundamental level of education and the 
ability to write and comprehend text. Exclusion criteria for these participants included the presence of co-occurring mental health 
conditions such as depression or compulsive disorder. Moreover, all participants underwent a screening process to ensure they did not 
have any history of head injury, neurological disorders, or other medical conditions that may affect brain function. A control group 
with no behavioral addiction or substance use disorder history was chosen from the general population of Shanghai. Screening pro
cedures were performed to confirm study eligibility, and participants had to be male and aged between 25 and 50 to ensure that 
observed differences could be attributed to addiction disorders rather than confounding variables such as age, sex, education, or other 
mental health conditions. The research enlisted 100 participants in total. The gambling addiction (GB) group comprised 30 in
dividuals, the methamphetamine addiction (MA) group included 40 individuals, and the health-control (HC) group consisted of 30 
individuals without addiction disorders.

2.2. Procedures

The process is illustrated in Fig. 1. Throughout the study, individuals were interviewed to gather demographic information and 
details on their history of addiction. Information was collected on age, education level, duration of addiction, and frequency of 
substance use or gambling activity. Following this, participants completed assessments for trait impulsivity before proceeding to a 
behavioral task designed to measure their impulsive behavior. After completing the behavioral tasks, participants underwent resting- 
state EEG recordings.

Fig. 1. Contents of the study and the analytic process.
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2.3. Impulsivity measures and analysis

2.3.1. Barratt impulsiveness scale-11 (BIS-11)
The study assessed both trait and behavioral impulsivity in participants with addiction disorders and the control group. Barratt 

impulsiveness scale-11 (BIS-11) in Chinese was used to measure trait impulsivity, which captures individual differences in tendencies 
towards impulsive behavior [34,35]. This questionnaire includes subscales for attentional, motor, and nonplanning impulsivity. 
Attentional impulsiveness refers to difficulties in concentrating or focusing attention and making quick decisions. Motor impulsiveness 
focuses on acting spontaneously without considering consequences. Non-planning impulsiveness characterizes a lack of 
future-oriented thinking and a preference for living in the moment without planning. These measures provide an assessment of 
different facets of impulsivity, aiding researchers in understanding impulsive behaviors in individuals with addiction disorders 
compared to control groups. Participants were asked to rate statements on a 5-point Likert scale (30 items), ranging from "rar
ely/never" to "almost always/always", indicating how well each statement described them. Higher total scores of these subscales 
indicate higher levels of impulsivity. To examine differences, we utilized one-way ANOVAs to compare group differences for 
continuous variables. Post-hoc comparisons were analyzed with t-tests, correcting using the false discovery rate (FDR) method.

2.3.2. Balloon Analogue Risk Task
Behavioral impulsivity was measured using the Balloon Analogue Risk Task [36]. The BART involves decision-making regarding 

the inflation of virtual balloons to accumulate points with the inherent risk of losing potential points if the balloon bursts. Behavioral 
impulsivity within this task can be gauged by several outcomes. Number of burst balloons is an indicator of risk-taking behavior, as 
more bursts may reflect a tendency to take greater risks. Average reaction times for pumps may show how quickly participants make 
the decision to pump the balloon. Faster reaction times may imply less deliberation before taking action. Adjusted average pump is a 
more nuanced measure, adjusted for the risk of explosion, reflecting the average number of pumps participants make on balloons that 
did not burst. These different metrics derived from the BART allow researchers to obtain a multifaceted view of impulsivity and 
risk-taking behavior in participants. Group differences were analyzed similarly to the previous measures.

2.4. EEG data acquisition and analysis

2.4.1. EEG recording
During EEG recording, participants were instructed to sit quietly with their eyes closed for 5 min and their eyes opened for another 

5 min. Their resting-state EEG data was recorded using a 64-channel electroencephalography system (BrainProduct, Germany). The 
EEG cap was positioned according to the international 10–20 system, and electrode impedance was kept below 10 kΩ. The EEG was 
sampled continuously at a sampling frequency of 1000 Hz.

2.4.2. EEG preprocessing
The raw EEG data was preprocessed and analyzed using MATLAB and EEGLAB toolbox. First, the raw EEG data was checked for any 

artifacts or noise. Any noisy channels or segments containing artifacts were identified, corrected, or removed. Next, the data was 
resampled to 250 Hz to ensure consistency and compatibility with further analysis. After resampling, the data underwent a band-pass 
filter to remove unwanted frequencies. This band-pass filter ranged from 1 Hz to 50 Hz to preserve the relevant EEG frequencies and 
eliminate unwanted noise. Additionally, eye movement artifacts were removed using an independent component analysis algorithm. 
Following the artifact removal, the EEG data was re-referenced using a reference electrode standardization technique to improve the 
accuracy and reliability of the data. After preprocessing, the 5-min rest EEG data was segmented into epochs of 3 s to capture relevant 
brain activity patterns. Finally, the epochs were visually inspected to ensure data quality and consistency before further analysis. Once 
the preprocessing steps were completed, the resting-state EEG data was ready for analysis. In our study, eye-close and eye-open 
conditions were separately analyzed to investigate the differences in brain activity during rest. We categorized the channels into 
six regions included: (1) frontal, (2) central, (3) parietal, (4) occipital, (5) left-temporal, and (6) right-temporal.

2.4.3. EEG analysis
Power spectrum analysis was conducted to examine the frequency characteristics of the resting-state EEG data. The power spectrum 

analysis involved calculating the EEG data’s power spectral density to determine power distribution across different frequency bands. 
Relative power is a measure used in EEG studies to quantify the contribution of a specific frequency band to the overall electrical 
activity recorded. It is calculated by dividing the power spectrum density of a frequency band by the total power spectrum density 
across all frequency bands. This value is then typically expressed as a percentage, representing the fraction of total brain oscillations 
accounted for by that frequency band at a given time. For instance, a higher relative alpha power means that a greater proportion of the 
overall EEG activity is composed of alpha waves, which is relevant for indicating states of relaxation and alertness in individuals. By 
quantifying the EEG activity in this way, researchers can identify patterns that might relate to specific cognitive processes or path
ological conditions. The relative power of specific frequency bands in this study included theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 
Hz), and gamma (30–50Hz) [37,38]. All analyses were performed using MATLAB scripts based on the FieldTrip toolbox (http://www. 
fieldtriptoolbox.org/). A standard "mtfft" routine with a hanning window was utilized for the analysis. Epochs for relative (%) power 
were calculated by applying a fast Fourier transform to each frequency band. A one-way ANOVA was conducted to examine group 
differences in the averaged relative power for the power spectrum. Between-condition comparisons were analyzed using cluster-based 
permutation tests. Monte Carlo p-values were computed based on 1000 permutations, and clusters were defined as neighboring 
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electrodes with p < 0.05, controlling for multiple spatial comparisons (p < 0.025, two-tailed test). The electrodes were grouped into six 
scalp regions referred to in the previous study for statistical comparison [39]. The representative electrodes from each region were 
taken for analysis, as shown in Fig. 2. A repeated measure factorial ANOVA was used for region-level analysis, with each frequency 
band within regions (frontal, central, parietal, temporal, occipital) as a within-subject factor. The partial eta squared (η2

p) was reported 
to measure effect size in the context of ANOVA tests. It indicates the proportion of total variability in the data attributed to a specific 
factor or interaction after considering other factors in the model.

Connectivity analysis was performed at the sensor level across specific frequency ranges to investigate the interactions among 
different scalp regions. This type of analysis involves computing coherence or spectral coherence measures, which assess the level of 
synchronization between pairs of electrodes. These measures offer insights into the functional connectivity of the brain and can reveal 
communication patterns and information exchange between distinct brain areas. Unlike power measures, this analysis indicates how 
different neural populations operate temporally correlated or synchronized. These measures are often related to the fact that greater 
coherence or connectivity may exist within brain region on that frequency band of higher power. By conducting connectivity analysis, 
we can uncover crucial information about the functional communication and coordination between different brain regions and fre
quency bands, contributing to a comprehensive understanding of the differences in brain activity patterns among the groups under 
study [40]. In our study, we used the Weighted Phase Lag Index (WPLI) to assess connectivity at the sensor level. The WPLI is a 
connectivity metric measuring the phase lag consistency between electrode pairs. It considers the asymmetry of the phase differences. 
It provides a more accurate connectivity estimate than other measures, such as coherence or phase locking value [41]. Network-based 
statistics (NBS) can be employed to identify distinct patterns of brain functional connectivity among the three groups [42]. This 
statistical method utilizes a permutation-based approach to minimize the chance of false discoveries and effectively reduces the 
family-wise error rate associated with multiple tests. Additionally, permutation tests based on threshold-free cluster enhancement 
were used to compare functional connectivity among the three groups. This analysis allowed us to identify significant differences in 
functional connectivity patterns between individuals with addiction and controls.

Furthermore, network analysis could examine the organization and properties of the brain networks identified through connec
tivity analysis, and graph theory-based network analysis can characterize the brain networks. Graph theory-based network analysis is a 
powerful approach to studying the organization of brain networks. It allows us to quantify various network measures such as node 
degree, clustering coefficient, and path length, which provide insights into the brain network’s efficiency, resilience, and integration 
[43]. In our study, we constructed a functional connectivity matrix based on the weighted phase lag index for the interested frequency 
band across the time window, which was then used to build a graph representation of the brain network with each electrode corre
sponding to a node and the connectivity between electrodes corresponds to edges in the network. Node-wise, edgewise, and 
network-wise analyses were conducted to explore the characteristics and properties of the brain networks using the Minimum 
spanning tree (MST), which can be obtained using Prim’s algorithm or Kruskal’s algorithm [44]. We sorted all the weighted links in the 
WPLI matrix from highest to lowest. Then, we gradually added these links, starting with the heaviest ones while ensuring no loops were 
formed until all nodes were incorporated. Finally, some MST network characteristics were quantified.

Node degree centrality (Deg) refers to the number of edges connected to a node. Betweenness centrality (BC) measures the node’s 
importance as a "hub" within the network by calculating the fraction of all shortest paths that pass through that node [45]. For our 
analysis, we calculated Deg and BC for each node separately. Other parameters of network organizations are included. Assortativity 
refers to the tendency of nodes in a network to form connections with other nodes that have similar characteristics or degrees [46]. 

Fig. 2. EEG Spectrum Power Analysis Across Frequency Bands for each group. The power spectral density was analyzed across all brain regions 
during eye-closed (Panel A) and eye-open (Panel B) conditions. The relative powers for specific frequency bands such as theta (4–8 Hz), alpha (8–13 
Hz), beta (13–30 Hz), and gamma (30–50 Hz) were included in the plot. Comparable high-power distributions of alpha frequencies were observed 
across all groups in the eye-closed condition.
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Modularity measures how a network is divided into communities, where nodes within a community have dense connections and sparse 
connections to nodes in other communities [47]. Small-world describes networks with high clustering and short average path lengths, 
which allows for efficient local and global communication [48]. Clustering relates to the propensity of nodes to form closely inter
connected groups or clusters, quantifying the level of connectivity within a cluster compared to outside it [49,50]. This approach 
enables us to pinpoint the most vital connections within the brain network and assess its topological characteristics. These parameters 
were computed using the Brain Connectivity Toolbox (BCT, https://sites.google.com/site/bctnet/). Group comparisons of global MST 
measures were conducted using a one-way ANOVA. The network characteristics averaged across epochs, and participants at the 
interested frequency band were compared between groups using Bonferroni correction for multiple comparisons. Regions with sig
nificant differences based on Degree and Betweenness Centrality were explored. Also, hub locations were identified based on each 
group’s highest BC and Deg values.

To investigate the connection between functional connectivity, network measures, and impulsive characteristics, we utilized 
Pearson’s correlation coefficient to find the links between addiction- and impulsivity-related topological properties. Additionally, 
linear regression was employed to examine the influence of group differences on these associations. Receiver operating characteristic 
curves (ROCs) analysis was performed to evaluate the accuracy of network metrics in predicting specific types of addiction. This 
method is commonly used to illustrate the relationship between sensitivity and specificity, with the area under the curve representing 
diagnostic capability in prediction.

3. Results

Table 1 presents the primary characters for participants of different groups (MA, GB, HC) and provides relevant statistical measures 
for various variables, such as mean and standard deviation (SD). The actions of trait impulsivity among the groups were statistically 
significantly different in the subscales and total scores with the max p values of 0.027. The GB group had the highest BIS Total score 
(83.10 ± 13.01), and the HC had the lowest, while the MA group had the highest mean BIS Cognition score (29.28 ± 4.41). However, 
the disparities in behavioral impulsivity were only evident in the response times and not observed in BART.

3.1. Power spectral difference

One person each from the MA and GB groups and two from the HC group were excluded due to data quality issues. Additionally, one 
participant of the HC group was omitted as they displayed power values that strayed beyond the standard deviation for the mean across 
the three groups. The group-average power spectral density (PSD) plot in Fig. 2 (Group MA: N = 39; Group GB: N = 29; Group HC: N =
27). It shows the frequency components of the EEG signals recorded during eye-close and eye-open conditions across all brain regions. 
We observed notable distinctions between the two states, particularly in the alpha frequency. Therefore, we conducted a comparative 
analysis of group differences for the two conditions. The cluster-based multiple comparison correction identified significant variations 
among the three groups solely in the beta band on the eye-close condition (shown in S1). Therefore, an ANOVA test was conducted for 
the average power of 20–30 Hz across the channels and groups. There was a significant interactive effect between the brain region and 
groups (F (5,94) = 2.892, p = 0.013, η2

p = 0.030), and the most significant group-level difference existed in the parietal region. As 
showed in Fig. 3, the GB group showed the highest beta power and was significantly different from that of HC (t = 2.270, p = 0.027), 
but it was not substantially different from that of MA. The most significant group-level difference in beta power between MA and HC 
existed in the central region but was insignificant (t = 1.855, p = 0.127). Due to most of the observed differences in the beta band in 
different brain areas, subsequent network analysis will mainly focus on this frequency band.

Table 1 
Basic characteristics of different groups.

Items Group F P-value

MA (n = 40) GB (n = 30) HC (n = 30)

Demographics Age 34.35 (±7.52) 32.74 (±4.52) 35.11 (±7.66) 0.523 0.595
Education level 11.72 (±2.76) 12.18 (±4.77) 11.07 (±2.99) 0.827 0.441

Addiction 
History

Lasting years 7.46 (±5.84) 5.58 (±4.47) ​ ​ ​
Frequency (weekly) 2.25 (±1.13) 2.03 (±1.27) ​ ​ ​
Craving level (0–10) 2.25 (±2.64) 3.33 (±3.90) ​ ​ ​

BIS-11 scales Attentional impulsivity 29.28 (±4.41) 21.69 (±5.88) 23.22 (±9.71) 12.923 <0.001
Motor impulsivity 20.64 (±3.36) 26.87 (±6.05) 25.63 (±10.55) 7.973 <0.001
Non-planning impulsivity 26.38 (±4.91) 23.21 (±3.72) 25.81 (±5.70) 4.354 0.027
Total score 76.31 (±7.68) 83.10 (±13.01) 74.67 (±9.00) 4.829 0.004

Task performance Reaction time 0.40 (±0.14) 0.39 (±0.18) 0.65 (±0.39) 10.145 <0.001
Burst number 50.95 (±11.05) 45.21 (±14.82) 49.81 (±12.30) 1.795 0.172
Adjusted pumps 11.04 (±3.65) 10.19 (±5.47) 10.71 (±3.26) 0.336 0.716

Table Note: All variables were considered to be continuous and represented as "Mean (±SD)". The specific coding method was explained in sections 
2.2. and 2.3. The abbreviations are defined as follows: MA, methamphetamine; GB, gamble disorder; HC, healthy controls; SD, standard deviation; 
BIS, Barrat impulsiveness scale.
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3.2. Brain network differences

Edgewise analysis investigates the links between various brain regions and offers valuable insights into the communication and 
integration patterns among them. For the edgewise analysis, we employed NBS, a statistical tool that looks for a particular design or set 
of edges that differentiate the functional connectivity of the brain. Fig. 4 shows the group-level network with the absolute value of 
WPLI above 0.03, where each link denoted the synchronization and values between two corresponding channels. The significant 
connectivity among the three groups tested by NBS with a F-value threshold of ten was C3-P5, FC1-TP10, FC3-AF8, Oz-POz, P3-F5, and 
P3-TP10. The result of the post hoc comparison for WPLI with each channel pair is illustrated in Fig. 5. Except the difference in Oz-POz 
channel pair between GB and HC was insignificant (tGB-HC = − 0.195, p = 0.846), these significant differences of C3-P5, FC1-TP10, FC3- 
AF8, P3-F5, and P3-TP10 channel pairs showed abnormal connections in groups with addiction compared to the HC group, and the 
minest p value was 0.014. The connection between C3-P5 and P3-TP10 seemed to be more positively connected in the addictive group 
while negatively connected in HC. Inversely, FC1-TP10, FC3-AF8, and P3-F5 were more likely to be more positively connected in HC 
while negatively connected in the addictive group.

In a nodewise analysis, each node’s degree and betweenness centrality (BC) was calculated in a graph. Both measures offer valuable 
insights into the structure and function of a network and aid in identifying significant nodes or subgroups within the network. Spe
cifically, degree represents the number of edges directly linked to a node. In contrast, BC represents the significance of a node in 
connecting different parts of the network by identifying how often it appears on the shortest path between two nodes in the network. 

Fig. 3. Beta-band power distribution across six regions of 3 groups. These sensors were grouped into six regions, according to Kamarajan et al. The 
regions included frontal, central, parietal, occipital, left-temporal, and right-temporal (Panel A). Power spectral density analysis was conducted to 
examine the average power of the beta frequency band (20–30 Hz) across different brain regions. Violin and box plots of beta power for each group 
and each region were filled with different colors (Panel B). Asterisks placed above the corresponding regions indicate statistical significance (p <
0.05; FDR-corrected) among the three groups. EEG power was calculated by squaring the amplitude of the EEG signal in a specific frequency band 
and transforming it into decibels (DB).

Fig. 4. The weighted network topography of three groups in the delta band (Panel A). Each link represents the channel connection indexed by the 
absolute value of WPLI. The color gradient on the downside of the map illustrated connection strength, progressing from blue (above 0.03) to yellow 
(above 0.09) to indicate a phase synchronization. Significant edges between groups were identified using network-based statistics and denoted with 
a yellow line (Panel B).
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Fig. 5. Edgewise differences between the three groups. Violin and box plots of the connections for each group were filled with different colors. The 
strips’ colors corresponded to the brain regions of channel pairs. The positive values of WPLI often indicate phase synchronization between two 
signals and that one signal is lagging behind the other. In contrast, a negative phase difference indicates that one signal leads the other, and zero 
indicates that they are in phase. Asterisks above the corresponding conditions indicate statistical significance (p < 0.05; FDR-corrected).

Fig. 6. Visualization of degree (Panel A) and betweenness centrality (BC; Panel B) for each group and the significantly different positions. In the 
illustration, circles of varying sizes and colors represent the values and brain regions corresponding to the degree and BC for each electrode site.
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The degree and BC values for each electrode site are displayed in Fig. 6 using circles with different sizes and colors indicating the 
corresponding values and positions. The results from degree and BC analyses reveal a similar trend that the MA group and GB group 
demonstrated subtle changes compared to the HC group, including a substantial decrease in node linkage at the frontal lobe around Fpz 
and F4 and a decrease in node importance at central and left parietal lobe. Based on the statistical analysis, the nodes demonstrated 
significant differences among the three groups, as marked in the right panel of Fig. 6.

Network-wise analysis was conducted to obtain a holistic understanding of the structure and operation of the brain network. As 
depicted in Fig. 7, only parameters such as global efficiency (MA vs. GB: t = − 2.635, p = 0.011), betweenness centrality (MaxBC, MA vs 
GB: t = − 2.004, p = 0.049), and functional connectivity of left hemisphere (FC_l, MA vs HC: t = − 2.069, p = 0.043) were significantly 
different among three groups. However, statistical analysis revealed no significant differences in other metrics of network organiza
tions. The global efficiency is the average of the inverse shortest path length and is inversely related to the characteristic path length. 
The MA group exhibited a less efficient network than the GB group. MaxBC of MA existed at the left temporal and parietal lobe, while 
that of the GB group existed at the left frontal lobe. Considering the highest value of MaxBC is deemed critical to maintaining efficient 
communication between the different parts of the network, these indexes’ values were lower in the MA group, suggesting some brain 
regions have an inefficient structure. Although the deals of FC_g, a measure of the overall strength of connectivity in the left brain 
network, were found to be quite similar across all conditions, the left-hemisphere FC of MA was sightly significantly higher than HC; 
these could emphasize the existence of abnormal connection in MA group.

3.3. Relationships between addiction-related network characteristics and impulsivity

Relationships between addiction-related network characteristics and impulsivity were further examined using Pearson’s correla
tion analysis. All the significant differences presented among the three groups were tested with impulsivity, and the detailed results 
were shown in S2. Herein, Fig. 8 presented the only statistically significant results. As a result, there is only a negative correlation 
between impulsivity scores (summed from the BIS-11 scale) and connectivity between the left central lobe (FC3) and the right frontal 
lobe (AF8). Specifically, higher impulsivity scores were associated with robust negative phase synchronization connectivity between 
the left central lobe and right frontal lobe. In particular, the relationship was moderated by the group factor. The GB group, compared 
to the HC group, showed a stronger negative correlation between impulsivity scores and connectivity between the left central lobe and 
right frontal lobe (Estimate = − 63.113, SD = 26.795, t = − 2.355, p = 0.0211). In contrast, the MA group was not different from the HC 
group. Moreover, Pearson’s correlation analysis revealed a significant positive correlation between BART calculated by the behavior 
Pearson’s and connectivity between the left central lobe (C3) and the left parietal lobe (P5). Results suggested that individuals with 
higher levels of impulsivity, as measured by the BART task, exhibit increased positive phase synchronization connectivity between the 
left central lobe and the left parietal lobe. Similarly, the group significantly moderated this relationship. The GB group displayed a 
higher positive correlation level than the HC group (Estimate = 84.472, SD = 21.403, t = 3.947, p < 0.001), whereas the MA group did 

Fig. 7. The difference in network structure among the three groups. The network structure was characterized by assortativity, modularity, small- 
worldness, clustering, path length, maximum betweenness centrality, and global functional connectivity (FC_g) as well as the right hemisphere 
(FC_r) and the left hemisphere (FC_l). Significant findings are indicated with asterisks denoting statistical significance (p < 0.05; FDR-corrected).
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not exhibit this pattern. Since there was no significant correlation between impulsivity and MST parameters, our results showed that 
individuals with higher levels of impulsivity, as measured by the BIS-11 scale and BART task, may show abnormal brain phase syn
chronization in network connectivity without affecting network organization. It is important to note that these findings specifically 

Fig. 8. The significant correlation between network characteristics and impulsivity. The plot illustrates each individual in the study, with the x-axis 
representing the EEG signal amplitude at FC3_AF8(Panel A) or C3_P5(Panel B) and the y-axis depicting impulsivity scores. The regression line is 
fitted to the data as a visual aid to emphasize the overall trend in their relationship. Shaded regions around the regression line indicate confidence 
intervals. Additionally, the Pearson correlation coefficient is presented on this plot to quantify the strength and direction of any linear relationship 
between these connected variables within this cohort.

Fig. 9. ROCs of connections for the classification of individuals with specific addictions from healthy controls. In this graph, the diagonal reference 
line represents the performance of a random classifier, and points above this line indicate better-than-random classification. The shaded ribbon 
surrounding the ROC curve represents the confidence interval. A critical point, denoted by a marked point on the curve, corresponds to a specific 
threshold chosen based on the analysis. The legend color indicates the ROC curve for each pair, and the associated Area Under the Curve (AUC) 
value quantifies the classifier’s overall performance.
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relate to the beta frequency range.
The study used ROC analysis to investigate if the beta power network connectivity associated with impulsivity could identify and 

distinguish different types of addiction (shown in Fig. 9). Both the FC3_AF8 and C3_P5 connections showed an AUC above 0.699 (p =
0.012) for identifying individuals with addictions versus those without, but their role in discrimination was not confirmed.

4. Discussion

This study was the initial attempt to analyze the features of resting-state EEG activity in individuals with gambling disorders and 
methamphetamine addictions together, as opposed to a control group. The aim was to identify shared neurophysiological indicators 
for addiction associated with impulsivity. Consistent with the theoretical hypothesis, the GB groups displayed the most remarkable 
trait and behavioral impulsivity compared to the MA and HC groups. In contrast, the MA groups showed significantly higher scores in 
impulsivity of cognition and planning than HC but did not exhibit behavioral differences. Further, the group-level resting-state EEG 
activities were only significant on the eye-close beta band power condition. These results indicate abnormalities in brain activities in 
individuals with gambling disorders and methamphetamine addiction, specifically related to the eye close beta band. Interestingly, our 
results revealed some findings about the aberrant brain network of people with addiction and its relationship with impulsivity. We 
observed an inverse relationship between trait impulsivity scores and connectivity from the left central to right frontal lobes, with 
higher impulsivity linked to more robust negative phase synchronization. In addition, a clear association was found between current 
impulsivity scores and connectivity from the left central to the left parietal lobes, highlighting increased positive phase synchroni
zation in individuals with higher impulsivity ratings, particularly within the GB group. In short, individuals with higher levels of 
impulsivity exhibit abnormal brain phase synchronization in network connectivity, specifically in the beta frequency range. These 
findings support previous research that implicates brain networks involved in impulsivity and addiction and highlight the potential of 
resting-state EEG as a neurophysiological marker for impulsivity in individuals with addiction.

4.1. Increased beta power in people with an addiction compared to the control group

The increased beta power in people with an addiction could be indicative of hyperexcitability in the brain, as seen in several other 
psychiatric disorders characterized by impulsivity and hyperarousal. This finding of increased beta activity aligns with previous 
research [51–53]. It supports the notion that individuals with addictive behaviors, such as gambling disorders and methamphetamine 
addiction, may exhibit hyperexcitability in the brain, potentially contributing to impulsive behavior and addiction [54,55]. The beta 
band is related to arousal and is thought to be involved in higher-order cognitive processes, including decision-making, attention, and 
response inhibition. Pathological enhancement of beta-band activity can lead to an abnormal persistence of the status quo and a 
deterioration of flexible behavioral and cognitive control [56]. The increase in beta power in individuals with addiction further un
derscores the role of the beta frequency band in the context of impulsivity [55,57]. However, the results of the relationship varied 
depending on the specific type of addiction. A study reviewing EEG studies on psychiatric disorders, including a part of addiction, 
concluded the patterns of power change within particular frequency bands and an increase in beta power for opioid and alcohol 
addiction, indicating higher levels of cognitive processing and alertness. In gambling disorder, the aberrant beta activity correlated to a 
lack of impulsive control, such as the clinical symptom severity [58]. Our findings support previous research indicating abnormal beta 
activity in addiction. Mainly, in our study, increased beta power in the parietal lobe of the GB group was the dominant difference. At 
the same time, no significant findings were observed in other frequency bands or region. It may indicated increased beta power could 
represent an aberrant activation pattern within these networks reflecting the impulsive decision-making and reward-seeking behaviors 
typically present in behavioral addictions. Although the exact relationship between beta power and addiction may vary depending on 
the specific type of addiction or clinical symptoms, there is consistent evidence suggesting that increased beta activity may be the 
critical EEG power spectrum related to addiction.

4.2. Altered topological connectivity of people with an addiction in resting-state EEG

On the condition of eye-close and resting-state EEG acquisition, our study found that individuals with addictive behaviors exhibit 
altered topological connectivity. Specifically, the connection between central and parietal lobes seemed to be more positively con
nected in the addictive group while negatively connected in HC. Inversely, the connections of the frontal lobes with other lobes were 
more likely to be more positively connected in HC while negatively connected in the addictive group. These suggest that individuals 
with addiction may have disrupted neural networks and altered communication between different brain regions, particularly in the 
frontal central and parietal lobes. Referred to prior results, frontal cortex dysfunction is linked to deficits in decision-making, 
behavioral inhibition, and attentional biases toward drug use, which can contribute to the development and persistence of addic
tion behavior [59]. Similarly, in pathological gambling, frontal lobe dysfunction is associated with decision-making and behavioral 
inhibition deficits. Parietal and central lobe dysfunction, on the other hand, has been linked to impairments in cognitive control and 
attentional processes. A related study that supports this idea analyzed the significant changes in the effective brain networks of 
heroin-abstinent individuals. The results showed that the parietal region was a dominant hub of the abnormally weaker causal 
pathways. Furthermore, communication between these lobes is essential as a default mode network (DMN) component. Based on 
previous research, MA-dependent individuals showed disruptions in DMN, anchored in the medial prefrontal cortex (mPFC) and 
posterior cingulate cortex (PCC) [60]. These areas are reported to be responsible for compromised cognitive function and obsessive 
rumination about drugs in addictive disorders. These findings from EEG and fMRI all suggest that individuals with addiction may 
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exhibit abnormalities in brain networks, particularly in the frontal, central, and parietal lobes, which may contribute to deficits in 
decision-making, behavioral inhibition, and attentional processes in individuals with addiction.

Furthermore, we conducted the nodal analysis to examine individual nodes or brain regions’ overall activity and communication 
patterns. Nodal research investigates different brain regions’ specific functions and activities based on the hypothesis that the human 
brain is a dynamically interconnected functional system with an optimal balance between local specialization and global integration 
[61]. This balance allows for efficient information processing and communication between different brain regions. By comparing the 
topological parameters of substance and behavioral addiction with HC during eye-close resting, our study found an inclination that the 
addict group demonstrated a substantial decrease in node linkage at the frontal lobe and a decrease in node importance at the central 
and left parietal lobes. Especially concerning the general functional connectivity of the left hemisphere, a significant distinction is 
observed between the MA and HC groups, which is not apparent in the GB and HC groups. In line with the functional MRI activation 
results in cognitive processes, the resting-state EEG findings also bolster the idea that individuals with addiction display abnormal left 
brain functioning, which contributes to factors associated with craving and addiction. Still, the differences between the GB and MA 
groups extended beyond surface-level characteristics, encompassing intrinsic attributes of networks such as efficiency and maxBC. The 
brain’s central hub in the GB group is located in the left frontal lobe, while the temporal and parietal lobes are crucial for the MA group. 
These results were in line with our previous study, which found that brain network dynamics in the MA group displayed different 
microstate patterns compared to the HC group and observed hyperactivation of the superior temporal and parietal area in the MA 
group [62].

In sum, these findings indicate that behavioral and substance addiction may have different functional connectivity and abnormal 
nodal characteristics in distinct brain regions, especially in the frontal and parietal lobes. Notably, we found insignificance in 
comparing the person with an addiction and HC groups regarding global topological parameters related to the network structures. This 
implies that overall network organization is preserved in our cohort during eye-close resting. Nonetheless, certain discoveries from 
studies comparing addicted and non-addicted individuals offer variations in particular brain regions and connectivity patterns. The 
general structural organization of brain networks seems to resemble a more random configuration with reduced efficiency [29,63]. 
Therefore, more research is necessary to gain a deeper understanding of the intricate neural mechanisms associated with addiction and 
how they influence brain networks.

4.3. Correlation between impulsivity and atypical brain network characteristics of people with addiction

Correlation findings can serve as an explanation of the connection between impulsivity and changes in brain organization. Our 
results indicated a significant positive correlation between impulsivity scores and abnormal connection between left frontal, central, 
and parietal lobes in individuals with addiction. Subjects from GB displayed a more robust connection between impulsivity and brain 
networks, encompassing trait and behavioral impulsivity. Moreover, ROC analysis investigated the potential of beta power network 
connectivity associated with impulsivity in recognizing and differentiating different types of addiction. Findings revealed that both the 
FC3_AF8 and C3_P5 connections showed a greater AUC in distinguishing individuals with addictions from those without, as opposed to 
discriminating between addictive types. It is conceivable that the connection between FC3 and AF8 may have greater significance in 
MA, whereas the link between C3 and P5 could be more influential in both types of addiction, underscoring the impact of left- 
hemisphere connectivity between central lobes and parietal lobes. FC3_AF8 and C3_P5 connections show promise as biomarkers for 
addiction identification; however, these findings must be contextualized as the AUC values derived from our study are based on a 
specific sample and specific conditions (rest-state beta-band power). Therefore, these values might not be generalizable across 
different populations or under different neural recording conditions, such as during cognitive tasks or other frequency bands, which 
may engage different neural circuits. Overall, the correlation between impulsivity and atypical brain network characteristics in in
dividuals with addiction suggests that impulsivity may play a role in the changes observed in brain organization and connectivity.

Referred to previous research, both forms of impulsivity are related to neural activities within the brain’s reward and control 
systems. Trait impulsivity is viewed as an enduring aspect of one’s personality that is linked to variances in brain structure and 
function, such as variations in the volume of gray matter in the frontal and parietal regions [64–66]. It also might include variations in 
connectivity within the networks responsible for self-regulation, decision-making, and behavioral control. Alternatively, behavioral 
impulsivity has been associated with abnormalities in their connection with the ventral striatum and anterior prefrontal cortex, two 
areas that are involved in mediating reward and maintaining attention to salient stimuli [67]. In summary, behavioral impulsivity is 
contextually driven. It can be observed as a dynamic process within specific brain regions during decision-making tasks. In contrast, 
trait impulsivity is a broader dispositional factor that may emerge from more widespread differences in brain function and structure.

Understanding the neural distinctions between trait and behavioral impulsivity has significant implications for understanding 
addiction’s underlying mechanisms and tailoring effective treatments. The prefrontal cortex reductions relating more closely to trait 
impulsivity could underlie the long-term patterns of impulsive behavior seen in individuals with substance addictions. Hence, stra
tegies for substance addiction treatment may include cognitive rehabilitation to improve self-control and decision-making for those 
with deficits in the prefrontal cortex. For behavioral addiction, behavioral impulsivity may play a more prominent role, especially GB. 
This indicates that their behavioral intervention should focus on modifying reward processing and decision-making patterns, as well as 
enduring personality traits.

Furthermore, these neural correlates may explain why certain individuals may be more prone to developing addiction. A clinical 
study found that dysregulated neural connectivity in EEG-based functional connectivity networks and heightened impulsivity coex
isted in individuals with alcohol use disorder [68]. Furthermore, a study using resting-state fMRI data found differences in whole-brain 
network organization across the impulsivity spectrum, with highly impulsive individuals showing isolation of regulatory structures 
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from subcortical structures associated with appetitive drive [69]. These findings underscore how impulsivity, often observed among 
individuals grappling with addiction issues, may be tied to atypical characteristics of brain networks. Therefore, future studies should 
investigate the longitudinal trajectory of impulsivity and its relationship to changes in brain networks over time, as well as explore 
potential causal relationships between impulsivity and atypical brain network characteristics in individuals with addiction.

4.4. Limitations

Our study has several limitations. First, the sample size was relatively limited, which may restrict the applicability of our findings. 
Therefore, it is important to interpret the correlation and brain network results with caution due to these constraints. Furthermore, our 
conclusions should be viewed as preliminary. The correlations identified between impulsivity and the connections FC3_AF8 and C3_P5, 
along with their respective AUC values, should not be seen as definitive but rather suggestive of a pattern that warrants further 
investigation. Future studies should seek to incorporate larger and more diverse sample sizes in order to enhance the dependability and 
generalizability of these findings. Accomplishing this would not only validate the observed patterns but also advance our compre
hension of the intricate connection between brain network characteristics, impulsivity, and various forms of addiction. Second, the 
study design was cross-sectional, which makes it difficult to establish causality and determine the direction of the observed re
lationships. Third, our study relied on resting-state EEG data, which provides information about brain activity but does not directly 
measure structural connectivity. These limitations highlight the need for future research with larger sample sizes, longitudinal designs, 
and a combination of different assessment measures (including neuroimaging techniques) to explore further the relationship between 
impulsivity and brain network characteristics in individuals with addiction.

4.5. Conclusions and practical implications

In conclusion, our study provides evidence that individuals with addiction display abnormal brain networks associated with 
impulsivity. These findings suggest that impulsivity may be a critical factor in the development and maintenance of addiction and that 
targeting these irregular brain networks could be a potential. The correlation findings between impulsivity and atypical brain network 
characteristics in individuals with addiction provide valuable insight into the intricate relationship between psychological traits and 
neurological attributes. These call for further investigations into these associations’ causal pathways and developmental trajectories. 
Moreover, future research should consider other analyses to explore additional potential information revealed from rest-state EEG or 
combining advanced neuroimaging techniques to elucidate these abnormal brain networks’ structural and functional connectivity.
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