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ABSTRACT: This research combines industrial engineering
principles with chemical process modeling to explore the capture
of CO2 from natural gas under cryogenic conditions. The study
specifically investigates the Solid−Vapor (S−V) phase equilibrium
in a methane−carbon dioxide (CH4−CO2) system. The study
employs Response Surface Methodology (RSM) to develop a
robust model for predicting phase behavior in industrial gas
separation processes. The model is validated using experimental
data, offering enhanced operational insights into cryogenic CO2
capture in industrial applications. The developed RSM model is
particularly valuable as it can predict the mole fractions of methane
and CO2 at various temperatures and pressures in the solid−vapor
region of phase equilibrium, where limited experimental data make
it difficult to estimate these components accurately. The key contribution of this study is to validate the RSM model’s available
experimental data, and the model can further be used to predict the process conditions at which high methane composition (yCH4)
can be achieved. The developed model showed good agreement when the results were compared with previous experimental studies.
The utilization of chemical engineering data to forecast previously unknown conditions in gas separation processes broadens the
scope of industrial process optimization in this work.

1. INTRODUCTION
The primary problem of the modern era is producing a large
amount of CO2 during energy production from fossil fuels that is
not sustainable and viable from environmental and health
perspectives.1 Natural gas emits less carbon dioxide than other
fuels synthesized from petroleum, and it is typically considered a
cleaner fuel than other fossil fuels. Although this improves its
greenhouse effect performance, it may not be completely
contaminant-free.2,3 Before cleaning, natural gas contains several
contaminants, including CO2, H2S, N2, etc. Before utilizing
natural gas as a fuel, it must be cleaned of its various impurities.4

One of themain pollutants in natural gas is CO2, which lowers its
energy content and turns acidic and corrosive when in contact
with water, damaging pipelines and equipment. CO2 can harden
in LNG processing plants, clogging pipelines, and impeding
shipment. As a result, one of the challenging issues with gas
separation is the removal of CO2 from natural gas.5,6

Compared to other natural gas processing methods, including
membrane, adsorption, and absorption, cryogenic separation is a
promising option due to its environmentally friendly operation,
as no harmful chemicals are involved during separation. As a
viable method for removing CO2, cryogenic separation has been
recognized for many years. However, extensive research into this

method was widely believed to be unfeasible due to the large
cooling duty.7 However, recent studies in cryogenic separation
have demonstrated that this method can be competitive with
alternative technologies with energy integration and careful
adjustment of process parameters.7−12

Cryogenic could be the first choice due to its advantages, i.e., it
is environmentally friendly, has physical separation without any
harmful solvents, and is applicable for a large range of
compositions of natural gas with CO2.

13,14 However, many
challenges still exist because it requires a substantial cooling
duty.15 Achieving the low temperatures necessary for efficient
phase separation requires significant energy requirements, often
leading to an expensive process. This energy-intensive process
also escalates operational costs and complicates the economic
viability of cryogenic methods.16 Furthermore, the cryogenic
process infrastructure must endure severe thermal conditions,
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necessitating advanced materials and precision control mecha-
nisms and elevating the initial capital outlay and maintenance
complexity. The need for precise control of thermodynamic
parameters highlights the importance of strict design and
operational standards. These factors collectively highlight the
imperative for innovative research to enhance the energy
efficiency of cryogenic CO2 capture processes and align them
with the overarching objectives of sustainable development in
natural gas processing.17,18

Cryogenic separation is categorized into three main fields
based on the different separation mechanisms by Khurram et al.,
which are (i) Conventional, (ii) Nonconventional, and (iii)
Hybrid.19 However, one thing common in all three technologies
is the involvement of high pressure and low temperature, which
needs to be carefully tuned to reduce energy consumption and
make it a strong competitor with other technologies.7,20.
Conventional cryogenic separation comprises cryogenic dis-
tillation, in which separation occurs in the liquid−Vapor (L-V)
region of phase equilibria. This field of research is well
established, and a good amount of data is available. Nonconven-
tional separation involves separation in the solid−vapor region
of phase equilibria, which is also the scope of this study. The
hybrid is the combination of conventional and nonconventional
in which separation occurs in the solid−liquid−vapor (S-L-V)
region.

Nonconventional cryogenic separation suffers from the
shortage of experimental data in the literature that addresses
the quantitative study of CO2 solidification, which is essential
information for choosing the best process parameters. Addi-
tionally, most of the predicted data is generated from process
simulators or other thermodynamic models;21,22 the reliability
of these simulators is not fully established and hinges on the
precise application of both the thermodynamic models and the
experimental data. Furthermore, certain thermodynamic models
may incur substantial computational demands due to their
analytical complexity. The efficacy of process simulators is still
debatable and depends on their proper application to
experimental data and thermodynamic models. On the other
hand, thermodynamic models require longer calculation times
due to their analytical complexity.23

Recently, Ali et al. developed ANN-based techniques to
predict the phase behavior of CO2 and CH4 systems with various
temperatures and pressures.24 Despite the promising results, the
temperature range was constrained and did not include the
whole phase equilibrium region due to the restricted amount of
available experimental data.

Based on the limited availability of data, developing a simple
yet accurate technique to predict phase behavior is necessary.
RSM could be a good choice, because it is straightforward and
reasonable. Response Surface Methodology (RSM) is used in
this work to accurately predict phase behavior over a wide range
of pressures and temperatures. Regarding the predictive
modeling of the methane-carbon dioxide solid−vapor phase
equilibrium, RSM is more straightforward and streamlined than
process simulators and intricate thermodynamicmodels, making
it easier to optimize process parameters with fewer experimental
runs.25 RSM can generate precise models with fewer
experimental data.26 It can play a crucial role in cryogenic
separation, especially in cases where obtaining comprehensive
experimental data is often challenging.27. The efficiency of the
RSM in model development, requiring fewer experiments,
addresses the challenges posed by resource-intensive and
technically demanding cryogenic experiments.

The cryogenic systems stay at optimal throughout various
possible operational situations because of the robust and
resilient nature of the designs created by RSM, which also
considers process variability and uncertainties. In cryogenic
separation, where even small differences in the temperature or
pressure parameters can result in major variations in process
efficiency and product quality, it is imperative to retain this
robustness.

This study uses RSM to predict the phase behavior of CH4
and CO2 binary systems for a wide temperature and pressure
range. Moreover, the optimum conditions were investigated to
separate these two components, with minimum methane losses
and maximum CO2 capture. This study could help design an S−
V-based cryogenic separation system for naturally efficient gas
purification with minimum energy requirements.

2. METHODOLOGY
The experimental data used to develop themodel was from cited
literature.24,28 The design of the experiment was employed to
generate the relation between the input and output parameters.
Figure 1 illustrates the qualitative phase equilibrium of a CO2−

CH4 binary mixture at a constant composition under varying
pressure and temperature conditions. The area under inves-
tigation in this study is vapor−solid, as shown in Figure 1. As per
the phase rule, a system with one degree of freedom (F = 1) is
termed univariant and is depicted as lines on a phase diagram,
while a system with two degrees of freedom (F = 2) is bivariant,
represented by areas on the diagram. Figure 1 illustrates that the
solid phase consists of pure CO2 in the vapor−solid region. This
is supported by Donnelly and Katz, who noted that the melting
point of the solid in this region aligns with the melting point of
CO2, confirming its purity. In the liquid−solid region, partial
dissolution of solidified CO2 occurs in the liquid phase. Lastly,
the solid−solid region indicates that the solidified CO2 remains
stable and that the liquid phase will eventually solidify under
sufficiently extreme conditions.

This study examines the effect of temperature and pressure
(input parameters) interaction on the composition of CH4 in the
vapor phase (yCH4) by using DoE and face-centered central
composite design (CCD). Table 1 shows the input parameters
and the response. The empirical correction between input and
responses was developed using RSM. It is a well-known
modeling method for developing the relationship between
inputs and responses. It investigates the effect of the most and
least dominant elements on the response, making it an effective
tool for modeling and optimization.25

Figure 1. General phase diagram for methane and carbon dioxide at
constant composition across pressure and temperature conditions.
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3. RESULTS AND DISCUSSION
3.1. Model Development. Table 1 summarizes the CCD

matrix, design details, factors, and responses. Equation 1 shows a
second-order quadratic polynomial regression model that links
the response, yCH4, with interactions between the pressure and
temperature.

P T PT

P T

yCH 0.04083 0.03434 0.00029

0.00028 0.000128 1.213
4

2 2

= +

(1)

In eq 1, P and T represent the pressure and temperature,
respectively.

ANOVA was utilized for the quadratic polynomial model to
assess the significance of the model and its constituent factors.
This statistical method generated values for degrees of freedom,
sum of squares, and mean squares for each factor. A factor is
deemed significant within the 95% confidence interval set by the
RSM if either (1) its F-value is substantial or (2) its associated p-
value is below the threshold of 0.05; factors not meeting these
criteria are considered insignificant. The detailed ANOVA
findings are presented in Table 2.

The ANOVA results indicate a model of high significance,
underscored by a model F-value of 61.07. Such an F-value,
corresponding to a model P-value of 0.0007, implies a negligible
0.07% probability that this result could arise from random data
variation, affirming the model’s substantial explanatory power.
Significance levels, as determined by P-values, reveal that factors
with values below 0.0500 significantly impact the dependent
variable. Specifically, pressure (A), temperature (B), their
interaction (AB), and the quadratic term for temperature (B2)

significantly contribute to the model. In contrast, P-values
exceeding 0.1000, such as the P-value for the quadratic term of
pressure (A2), suggest nonsignificant contributions.

The identified nonsignificant terms, excluding those required
for the hierarchical integrity of the model, hint at the possibility
of refining themodel. Themodel’s simplicity and interpretability
could be enhanced by eliminating these terms without
diminishing its explanatory strength. The ANOVA substantiates
that the model effectively delineates the relationship between
the dependent variable and the independent factors�pressure
and temperature�both individually and interactively. The
substantial F-value coupled with the low P-values for pivotal
model terms corroborates the model’s robustness. Moreover,
the nonsignificant quadratic term for pressure (A2) indicates an
opportunity to streamline the model for increased efficiency.

The statistical metrics indicate a strong regression model with
a standard deviation of 0.0209 and a coefficient of variation of
2.37%, reflecting a high precision and low relative variability
(Table 3). The R-squared value of 0.987 suggests that the model

explains 98.7% of the variability in the response variable, with an
adjusted R-squared of 0.971 accounting for the number of
predictors. The predicted R-squared of 0.857 indicates that the
model is expected to predict new data well, and an adequacy
precision ratio of 24.10 confirms the model’s capability to
distinguish between signal and noise. These values collectively
suggest that the model is accurate and reliable for prediction.
3.2. Model Adequacy Tests. The developed model is

subjected to adequacy tests using several tests. The first test is a
normal probability plot of externally studentized residuals, a
diagnostic tool used in regression analysis to assess the normality
of the residuals (Figure 2). It is evident from the figure that the
majority of the data points closely align with the reference line in
the normal probability plot, indicating the residuals’ conformity
to a normal distribution. This alignment is particularly strong in
the central region of the plot, which is the most critical area for
assessing the normality. The minor deviations observed at the
tails are typical in statistical data and do not significantly detract
from the overall normal distribution of the residuals.

The externally studentized residuals are plotted against the
values that the developed regression model predicted in Figure
3. A fundamental assumption in regression analysis known as
homoscedasticity is tested using this kind of plot: whether the
residuals or the discrepancies between observed and projected
values exhibit consistent variance over the range of predictions.
The plot indicates that the residuals form no particular pattern,
scattered randomly around the zero line. Given that the variance
of the residuals appears to be constant for all projected values,
this random dispersion shows that our model satisfies the
homoscedasticity requirement.

The regression model is stable and reliable throughout a wide
range of predictions, as demonstrated by the constant residual

Table 1. DoE Table of Inputs and Responsea

Sr. No. Pressure (bar) T (°C) yCH4 (%)

1 30 −63 0.832
2 10 −63 0.601
3 10 −100 0.982
4 20 −81.5 0.92
5 20 −81.5 0.927
6 20 −100 0.987
7 30 −100 1
8 10 −81.5 0.853
9 20 −63 0.78

10 30 −81.5 0.948
aAdapted with permission from ref 28. Copyright 1959 The Author.

Table 2. Analysis of Variance (ANOVA) for the Relationship
Between Pressure and Temperature on the Response
Variable

Source
Sum of
squares df

Mean
squares F values P values

Model 0.1338 5 0.0267 61.07 0.0007
A-Pressure 0.0194 1 0.0194 44.48 0.0026
B-Temperature 0.0947 1 0.0947 216.2 0.0001
AB 0.0115 1 0.0115 26.37 0.0068
A2 0.0019 1 0.0019 4.368 0.1048
B2 0.0048 1 0.0048 11.09 0.0290
Residual 0.0017 4 0.0004 61.07
Lack of Fit 0.0017 3 0.0005 44.48
Pure Error 0 1 0
Cor Total 0.1355 9

Table 3. Summary of Regression Model Diagnostics and Fit
Statistics

Standard Deviation 0.0209
Mean 0.8835
C.V. % 2.37
R2 0.9871
Adjusted R2 0.9709
Predicted R2 0.8570
Adequate precision 24.0964
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spread in this figure, which supports the model’s application to
further predictive tasks. This plot’s lack of patterns or trends
indicates that the model fits the data well.

A run chart of the externally studentized residuals for each
observation in the regression analysis is shown in Figure 4,
plotted against the run number. This kind of chart helps see
trends over time or in the sequence of the runs, which may point
to possible model issues like nonrandom errors or trends related
to time. Ideally, the residuals should be dispersed randomly
around the zero line and should not exhibit any systematic
patterns pointing to a possible flaw in the model’s assumptions.
The plot indicates no discernible pattern or trend in the
residuals’ oscillations above and below the zero line, indicating
that neither time nor run order contradicts the model’s
assumptions.

As expected from a well-fitting regression model, the lack of
patterns in Figure 4 shows that the residuals are independent
and identically distributed. This absence of seasonality or trend
indicates that the model correctly represents the underlying
process, hence confirming the model’s predictive validity for
new observations.

Figure 5 illustrates a Cook’s distance plot employed to detect
influential observations in the regressionmodel. Cook’s distance

measures the effect of deleting a single observation. Points with a
Cook’s distance larger than 1 (as indicated by the horizontal red
line) are typically considered influential.

In this graph, the horizontal axis represents the run number,
which corresponds to each data point in the analysis, and the
vertical axis denotes the Cook’s distance for each of these points.
Most data points lie below the threshold, indicating that they do
not influence the model’s parameters. However, a few points

Figure 2. Normal probability plot of externally studentized residuals.

Figure 3. Externally studentized residuals vs predicted values.

Figure 4.Run chart of externally studentized residuals across sequential
runs.

Figure 5.Cook’s distance vs run number to identify influential points in
the regression model.
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above the threshold suggest that those particular runs have a
more substantial influence on the model and may warrant
further investigation.

Identifying these points is crucial, because their exclusion
from the model could significantly alter the results. The figure
indicates that while most data points do not excessively
influence the model, a select few could be pivotal and thus
merit closer scrutiny in the context of the model’s robustness
and the reliability of its predictions.

Figure 6 provides a scatter plot comparing the predicted
values from the regression model to the actual observed values.

The proximity of the data points to the diagonal line indicates
the model’s predictive accuracy. The closer the points lie to this
line, the more accurate the model’s predictions are.

In this case, the data points are generally close to the line,
suggesting that the model’s predictions agree with the actual
values. This demonstrates the model’s effectiveness in capturing
the underlying relationship between the studied variables. The
plot confirms its capacity to predict the response variable
accurately. Such a plot is essential for evaluating the model’s
performance and identifying systematic deviations between the
predicted and actual values.

Figure 7 shows the 3D surface plots among the temperature,
pressure, and CH4 composition in a vapor phase. Surface plots
are the best representation of graphs that show the combined
effect of input parameters and response. It can be observed from
Figure 4 that at high temperatures and low pressure, the quantity
of methane in vapor was minimal. While at low temperature and
high pressure, it was the maximum. The surface color gradient,
ranging from green at lower values to red at higher values,
represents the increase in the methane mole fraction with
changes in temperature and pressure. This type of visualization
is crucial for identifying the combined effect of the two
independent variables on the response variable. The overlay of
the surface’s experimental data points (red dots) allows for
direct comparison between the model’s predictions and
observed values.

The plot helps assess the adequacy of the model in capturing
the nonlinear relationships and interaction effects between the

temperature and pressure on methane production. It serves not
only as a tool for model validation but also as a guide for
optimizing the conditions to achieve the desired outcomes in
methane production. The minimum quantity at low pressure
and high temperature is due to the very low liquefaction point of
methane, which is around −160 °C.
3.3. Model Validation. The model’s predictive accuracy

was further evaluated using additional experimental data
presented in Figure 8. In Figure 8a, the scatter plot compares
the experimental data from Xiong et al.29 and the predicted
values obtained from RSM. Compared to the experimental
results, the coefficient of determination R2 = 0.9501
demonstrates a significant correlation and high predicted
accuracy for the RSM.

Figure 8b compares the experimental findings fromAgarwal et
al.30. With R2 = 0.9324, the results show a fair agreement
between the experimental and predicted data. Even though this
R2 is marginally lower than the one found using Xiong’s data.29,
the RSM has a significant predictive power. The charts show the
degree to which the RSM can predict the experimental results of
Xiong and Agarwal. The fair R2 values in both graphs
demonstrate the practical usability and dependability of the
RSM for the field prediction analysis.
3.4. Optimization Case Studies. Figure 9 illustrates the

modeled relationship between the temperature (B), pressure
(A), and the resulting methane mole fraction. The contour lines
represent methane concentration levels, with the color gradient
indicating increasing levels from blue (low) to red (high). The
plot is particularly useful for visualizing the optimal conditions
for maximizing methane production within the experimental
design space.

The limitations for optimizing methane production are listed
in Table 4. Temperature (B) ranges are −100 °C and −63 °C,
and pressure (A) is between 10 and 30 bar. Due to an equivalent
importance, a weighting of 3 indicates strong relevance in the
optimization process. The objective of the methane mole
fraction (yCH4) is to maximize it within the defined feasible
region with a specified range between 0.601% and 0.998%. The
constraints are equally weighted, indicating a balanced approach
to optimization where the pressure, temperature, and methane
concentration are all equally important. These parameters are
critical for guiding the optimization algorithm to find the most
productive conditions within specified ranges.

Figure 6. Validation of model using experimental data.

Figure 7. 3D surface plot showing the relationship between
temperature, pressure, and CH4 mole fraction.
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The optimization study explored two distinct case scenarios
to maximize the methane mole fraction (yCH4). In the first case
study, the temperature and pressure parameters were kept
within their specified ranges without exerting additional
influence on the outcomes. However, The second case study
focused onmaintaining the pressure within the designated range
while maximizing the temperature. This approach aimed to
achieve high-purity methane (CH4) with a minimum cooling
duty. These case studies were integral in determining the most
effective conditions for methane production optimization.

Figure 10 presents case study 1 (a) and case study 2 (b)
outcomes, depicted as ramp functions. Figure 10a demonstrates

that a high methane purity of 99.98% is achievable at the
conditions of −99.5 °C and 15.7 bar, with the temperature at its
lower boundary and the pressure at a moderate level. These
conditions favor applications requiring high methane purity,
such as in Liquefied Natural Gas (LNG) production. On the
other hand, case study 2 Figure 10b shows a lower methane
purity of 86.7% at −66.4 °C and 30 bar. This set of conditions
may be appropriate for scenarios in which a lower methane
purity is acceptable. Notably, the temperature in case study 2 is
close to the upper limit of the specified range, suggesting that
less cooling is required to achieve the desired methane purity.

■ CONCLUSION
The RSM-based model was developed to predict the phase
behavior of the CH4−CO2 binary system and the vapor
composition of CH4 in a cryogenic separator. The results
indicated increased methane vapor presence at lower temper-
atures and higher pressures with CO2 predominantly in the
liquid phase. Conversely, the opposite behavior was observed at
high temperatures and lower pressure. Two input parameters,
pressure and temperature, were selected to investigate their
effect on the CO2 capture efficiency. The pressure and
temperature ranges for the study were selected: 10 to 30 bar
and −63 to 100 °C. The model was validated using two different
sets of experimental data, and the agreement was good, with R2

values of 0.9501 and 0.9324. Lastly, the study examined two case
studies to determine the conditions for maximizing the methane
purity in a CH4−CO2 system, contributing to the broader
application of cryogenic technology for the capture of CO2 from
natural gas. In case study 1, the methane composition reaches
approximately 99.99% at a pressure of 15.7059 and a
temperature of −99.546. In contrast, in case study 2, the
composition is approximately 86.72% at a pressure of 30 and a
temperature of −66.3849. This work could help design an S−V-
based cryogenic separator that requires minimum energy.

Figure 8. Model validation using experimental data of (a) Xiong et al.29 and (b) Agarwal et al.30

Figure 9. Contour plot of methane mole fraction yCH4 (%).

Table 4. Constraints for Optimization

Name Goal Lower limit Upper limit Lower weight Upper weight Importance

Case study 1 pressure in range 10 30 1 1 3
temperature in range −100 −63 1 1 3
yCH4 maximize 0.601 1 1 1 3

Case study 2 pressure in range 10 30 1 1 3
temperature maximize −100 −63 1 1 3
yCH4 maximize 0.601 1 1 1 3
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