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Sleep spindles are critical in characterizing sleep and have been associated with

cognitive function and pathophysiological assessment. Typically, their detection relies

on the subjective and time-consuming visual examination of electroencephalogram

(EEG) signal(s) by experts, and has led to large inter-rater variability as a result

of poor definition of sleep spindle characteristics. Hitherto, many algorithmic

spindle detectors inherently make signal stationarity assumptions (e.g., Fourier

transform-based approaches) which are inappropriate for EEG signals, and frequently

rely on additional information which may not be readily available in many practical

settings (e.g., more than one EEG channels, or prior hypnogram assessment). This

study proposes a novel signal processing methodology relying solely on a single EEG

channel, and provides objective, accurate means toward probabilistically assessing

the presence of sleep spindles in EEG signals. We use the intuitively appealing

continuous wavelet transform (CWT) with a Morlet basis function, identifying regions

of interest where the power of the CWT coefficients corresponding to the frequencies

of spindles (11–16Hz) is large. The potential for assessing the signal segment as

a spindle is refined using local weighted smoothing techniques. We evaluate our

findings on two databases: the MASS database comprising 19 healthy controls

and the DREAMS sleep spindle database comprising eight participants diagnosed

with various sleep pathologies. We demonstrate that we can replicate the experts’

sleep spindles assessment accurately in both databases (MASS database: sensitivity:

84%, specificity: 90%, false discovery rate 83%, DREAMS database: sensitivity: 76%,

specificity: 92%, false discovery rate: 67%), outperforming six competing automatic

sleep spindle detection algorithms in terms of correctly replicating the experts’

assessment of detected spindles.

Keywords: decision support tool, hypnogram, signal processing algorithms, sleep spindle, sleep structure
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Introduction

Sleep spindles are characteristic oscillatory patterns of brain
activity which can be visually detected in human electroen-
cephalography (EEG) signals. These transient patterns are
typically portrayed as nearly sinusoidal waxing and waning
waveforms with a characteristic frequency profile of 11–16Hz
[formerly this range was narrowed between 12 and 14Hz in the
Rechtschaffen and Kales criteria (Rechtschaffen and Kales, 1968),
and different research labs might use slightly different frequency
ranges] (Iber et al., 2007; Kryger et al., 2010). Interestingly,
although seep spindles exhibit substantially varying character-
istics (amplitude, duration, density) in the population, they are
fairly stable for individuals (Werth et al., 1997). Spindles are gen-
erated in the thalamus, and contemporary evidence suggests they
can be classified into slow spindles (11–13Hz) and fast spindles
(13–16Hz), which are believed to regulate different activation
patterns (DeGennaro and Ferrara, 2003).

The presence of sleep spindles is one of the hallmarks for
determining stage 2 (S2) in the hypnogram, which provides an
overall representation of sleep structure successively assigning
short signal segments (known as epochs, usually of 30 s dura-
tion) to one of five sleep stages (Iber et al., 2007). They have
been associated with various higher cognitive processes in par-
ticular memory (Tamminen et al., 2010), but also learning per-
formance (Schmidt et al., 2006) and skill performance (Astill
et al., 2015). Moreover, there is a growing body of research
literature highlighting their potential as biomarkers: a num-
ber of studies have reported clinically significant differences
in spindle characteristics for a range of neurological disorders
(Ferrarelli et al., 2007; Wamsley et al., 2012; Christensen et al.,
2014).

The gold standard for the determination of sleep spindles
has traditionally been achieved through visual inspection of the
EEG by sleep physiology experts. Despite the best attempts of
experts to standardize protocols, expert-based assessments rely
on expensive human resources, depend on the rater’s experi-
ence and level of expertise, are laborious and prone to errors
due to fatigue, and by nature cannot scale to handle very large
datasets. As with all cases where the gold standard is set by sub-
jective assessments of trained experts, there can always be an
argument that an automated algorithmic process could provide
an alternative, often sufficiently accurate, robust, scalable, replica-
ble, cost-effective, and objective mode to achieve the aim; indica-
tive studies highlighting these concepts include Grove andMeehl
(1996), Seshadrinathan et al. (2010), and Tsanas (2012) amongst
many others. At the very least, the development of algorithmic
tools can facilitate and expedite the work of trained experts par-
ticularly due to the sheer amount of the growing availability of
massive datasets.

There are several approaches that have been proposed to tackle
the problem of automatic sleep spindle detection. The majority
of the proposed algorithms rely on a time-frequency analysis.
In all cases, a major hurdle is the determination of appropriate
thresholds, which may need to be optimized for each individ-
ual. Unfortunately, it is difficult to define universally applicable
thresholds due to the large variability in spindle characteristics

amongst individuals (Werth et al., 1997). Frequently, the setting
of these thresholds for many algorithms require prior hypno-
gram assessment, and subsequent focusing only on stage 2 sleep
(Mölle et al., 2002;Wamsley et al., 2012) or Non Rapid EyeMove-
ment (NREM) sleep (Ferrarelli et al., 2007; Martin et al., 2013).
However, we argue that all these approaches are quite restrictive,
particularly because in practice we want to completely automate
the EEG signal processing task without requiring prior hypno-
gram assessment by experts. Detecting spindles might be the end
goal in one application, but could also be used to guide auto-
mated sleep staging assessment. Another generic approach for
many algorithms is attempting to determine the presence of spin-
dles by successively searching over pre-defined short windowed
EEG segments [typically 1 s, e.g., see Huupponen et al. (2007),
although some approaches rely on the detection of spindles in
the more traditional 30-s epochs used in hypnogram assessment].
A major limitation with this approach is that one needs to spec-
ify a small signal segment to assess whether a spindle occurred
within that segment and loosely approximate the spindle onset
and offset.

Recently Wendt et al. (2012) introduced a fusion approach
to detect spindles applying their sleep detection algorithm on
two EEG channels (central and occipital). However, spindles are
known to occur locally (Kryger et al., 2010) and hence there is no
guarantee that both the central and occipital deflections will iden-
tify the spindle; furthermore, this complicates the practical task
of spindle assessment by imposing the requirement that addi-
tional recordings are available (ideally a single channel would be
sufficient for detecting spindles locally). It should be noted that
localized sleep can occur, and therefore a single channel cannot
reveal the overall sleep structure for the entire brain. In practice
wewant to focus on specific brain areas, detecting spindles locally,
e.g., at the central regions where the spindle density is maximal
(Kryger et al., 2010); some interesting recent work has focused on
spindle propagation (O’Reilly and Nielsen, 2014b).

One of the simplest algorithmic approaches for detecting spin-
dles is to band-pass the EEG signal and assess the presence of
spindles by setting an appropriate (relative) threshold on the
amplitude of the band-passed version of the signal (Schimicek
et al., 1994), which is both sensible and remains topical to this
day at least as a benchmark. Similarly, the ubiquitous Fourier
Transform (FT) has been investigated in this application (Huup-
ponen et al., 2007). However, there are inherent limitations of the
FT in that it implicitly assumes a periodic signal, and also that it
requires a sufficiently adequate number of samples for the spec-
trum estimation; in practice this sets a minimum requirement
of about 1 s signal segment (Pardey et al., 1996). In turn, this
means that with FT it is fundamentally impossible to correctly
determine the spindle onset and offsets accurately as highlighted
previously. Wavelet analysis is particularly suitable for analyz-
ing non-stationary signals (such as the EEG), thus overcoming
certain shortcomings of the traditional spectral analysis with the
FT, and hence has justifiably attracted interest recently in the
spindle detection domain (Sitnikova et al., 2009; Wamsley et al.,
2012).

This study extends the methodology of recent approaches
using the Continuous Wavelet Transform (CWT) with Morlet
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basis functions (Sitnikova et al., 2009; Wamsley et al., 2012).
The Morlet wavelet has been widely used in many practical
applications because it has the desirable property that it mini-
mizes the product of the wavelet’s time and frequency spreads;
hence it optimizes the time-frequency resolution (Addison,
2002). The main novelty of this work lies in the processing of
the relative normalized power of the CWT coefficients to deter-
mine spindle candidates.Whereas previous studies computed the
moving average of the power of the CWT coefficients to detect
spindles directly, we first rank the CWT coefficients in terms of
their normalized power at each time instant. Then, we compute
the instantaneous ratio of the CWT coefficients falling within the
scale spindle range (corresponding to the standard 11–16Hz fre-
quency range) over the top 10 ranked CWT coefficients. This
ratio denotes the “instantaneous strength” of detecting a spindle,
which is subsequently processed with weighted moving average
methods to detect spindles. The proposed algorithm overcomes
several shortcomings of competing algorithms: (a) it does not
require processing successive small (e.g., 1 s) signal segments
which blur the determination of true onset and offset of spin-
dles (instead the algorithm works directly the entire signal), (b)
it does not require prior hypnogram assessment, (c) it uses a sin-
gle EEG lead. Moreover, using the proposed algorithm we can
determine the frequency variation contour as a function of time
within each spindle: these features may have clinical relevance,
a fact which is often overlooked by contemporary competing
approaches (for example, FT-based approaches cannot readily
provide this information).

Materials and Methods

This section summarizes the dataset used in this study, summa-
rizes some of the previously published algorithms against which
the new sleep spindle detection algorithm developed in this study
is benchmarked, and outlines the evaluation criteria for assessing
the performance of the algorithms.

Data
We used two publicly available databases in this
study.

The first database was collected during the DREAMS project
(Devuyst et al., 2011), which aimed to provide a platform to
assist assessment of automatic detection algorithms. The sleep
spindles database contains recordings from eight participants
with diverse sleep pathologies (dysomnia, restless legs syndrome,
insomnia, apnoea/hypopnoea syndrome). Two EOG channels
(P8-A1, P18-A1), three EEG channels (CZ-A1 or C3-A1, FP1-
A1, andO1-A1) and one submental EMG channel were recorded,
using a sampling frequency of 200Hz (six signals), 100Hz (one
signal), or 50Hz (one signal). A segment of 30min of a central
EEG channel (C3-A1 or Cz-A1) was extracted from each whole-
night recording, and two experts have independently anno-
tated the presence of sleep spindles. The second expert has only
annotated six out of the eight recordings, and has not pro-
vided the exact duration of the assessed spindles (hence, it was
all assigned to be 1 s in duration). Although the hypnograms
(according to standard Rechtschaffen and Kales criteria) were

available, these were not used in the assessment of the spindles
by the experts. The dataset along with additional information
is publicly available from: http://www.tcts.fpms.ac.be/∼devuyst/
Databases/DatabaseSpindles/.

The second database was collected as part of a large project
looking into sleep, the Montreal Archive of Sleep Studies (MASS)
(O’Reilly et al., 2014a). It contains overnight PSG recordings
from 19 healthy controls: specifically, electroencephalography
(EEG) montage of 19 channels, 4 electro-oculography (EOG),
electromyography (EMG), electrocardiography (ECG), and res-
piratory signals. The EEG signals were sampled at 256Hz. The
database was annotated independently by two experts for sleep
spindles. The second expert has only annotated 15 out of the 19
signals for sleep spindles. Hypnograms (according to standard
Rechtschaffen and Kales criteria) were also made available. For
further details see O’Reilly et al. (2014a). The dataset became
available to the authors of this study after the development of
the algorithms and the original submission of the manuscript;
we deliberately decided not to further fine-tune the original algo-
rithms developed using the DREAMS data to guide the sleep
spindle estimation process, in order not to bias the presented
findings in any way. The dataset can be accessed from: http://
www.ceams-carsm.ca/en/MASS.

In all cases, the EEG signals were resampled at 100Hz.

Methods
Before delving into the details of the sleep spindle detection algo-
rithms, it is useful to revisit the definition of spindles, and visu-
alize some examples annotated by experts in order to motivate
the subsequent algorithmic development. According to the latest
recommendation of the AASM Manual for the scoring of sleep,
a spindle is defined as “a train of distinct waves with frequency
11–16Hz (most commonly 12–14Hz) with a duration ≥0.5 s,
usually maximal in amplitude in the central derivations.” (Iber
et al., 2007). The spindle frequency range is nowadays generally
accepted to be 11–16Hz, but the range over which researchers
focus may vary slightly depending on the research lab, e.g.,
10.5–16Hz (Huupponen et al., 2007), or 12–15Hz (Ferrarelli
et al., 2007); the standard reference book “Principles of Sleep
Medicine” quotes the range 10–15Hz (Kryger et al., 2010). We
note there is no formal recommendation for the use of amplitude
thresholds to detect a spindle, although many researchers have
explicitly used amplitude criteria in their algorithmic implemen-
tations (Devuyst et al., 2011; Wamsley et al., 2012). Also, many
researchers have relaxed the requirement of the minimum spin-
dle duration, e.g., 0.4 s (Wamsley et al., 2012) or even as low
0.3 s instead (Warby et al., 2014). In practice, most spindles are
typically around 0.5–1.5 s (very occasionally might be over 2 s),
and typically most researchers impose a maximum length con-
straint (typically 3 s, e.g., Warby et al., 2014) in their algorithmic
approaches.

Sleep textbooks often depict sleep spindles as waxing and wan-
ing, nearly sinusoidal waveforms; however, in practice spindle
waveforms are markedly noisy, exhibiting diverse characteris-
tics. Figure 1 illustrates some spindles detected by experts for
the same signal in the DREAMS sleep spindle database (Devuyst
et al., 2011). It is striking that all these transient waveforms
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FIGURE 1 | Exemplary sleep spindles annotated by one of the experts

for one of the EEG signals in the DREAMS sleep spindles database

(the sampling frequency of the signal is 100Hz). We can visually

appreciate the wide variability of sleep spindle characteristics within the same

EEG signal. Both the original signal segment and the band-passed

(11–16Hz) version of the signal segment are presented to assist visualization.

The solid red line indicates the start of the spindle and the dashed line

indicates the end; the green lines indicate the envelope of the signal. In

practice, some experts use both the signal and the band-passed version of

the signal to assess the presence of spindles.

(stemming from the same EEG recording and being only a few
seconds or minutes apart) display such widely varying features
(for example compare the peak-to-peak amplitudes). Neverthe-
less, all these illustrative examples are considered true spin-
dles according to at least one of the two experts and set the
ground truth against which all automated sleep spindle detec-
tion algorithms are benchmarked. For each signal we also present
its band-passed version at the spindle frequency range. Fol-
lowing visual inspection of these plots, we can postulate that
amplitude may be a misleading criterion to assess automati-
cally the presence of spindles; on the other hand, the pres-
ence of the spindle appears to be more consistent when also
observing the band-pass version of the signals. This exploratory
step may assist in the motivation and understanding of the
sleep detection algorithms which are presented in the following
sections.

Contemporary Sleep Spindle Detection Algorithms
For simplicity and to conform to the terminology of Warby et al.
(2014) we will denote with ax each of the sleep spindle detection
algorithms used in this study, where the subscript indicates the
corresponding algorithm. In this section we summarize the six
spindle detection algorithms used inWarby et al. (2014) (denoted
here with a1–a6), and in the following section we will intro-
duce the new algorithmic approaches. These algorithms (occa-
sionally with slight modifications) have been widely used in a
number of studies, and therefore can be considered indicative
of the most popular contemporary approaches to automatically
detect sleep spindles. We used the Matlab implementations pro-
vided by Warby et al. (2014) for a1–a6 and the description of the
algorithms below follows their algorithmic modifications; hence
the described algorithms differ slightly in comparison to the
original algorithms. Our own algorithms were also implemented
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in Matlab, and are made freely available on Physionet (www.
physionet.org) and the first author’s website.

Algorithm a1, Bódizs’ average amplitude spectrum
The first algorithm, a1, is due to Bódizs et al. (2009), and attempts
to tackle the problem of intra-subject variability in terms of
EEG characteristics by incorporating subject-specific informa-
tion (hence building upon the findings of Werth et al. (1997)
that the variability of the spindle characteristics is low for each
individual). The algorithm detects spindles in customized fre-
quency ranges (identifying slow and fast spindles) using the aver-
age amplitude spectrum of NREM sleep using epochs of 4 s. The
decision to evaluate the presence of a spindle is based on the
amplitude threshold in each of the two band-pass regions for slow
spindles or fast spindles. The implementation by Warby et al.
(2014) used here requires both a central and an occipital EEG
channel.

Algorithm a2, Ferrarelli’s band pass and signal envelope
algorithm
The second algorithm, a2, was proposed by Ferrarelli et al. (2007)
and with slight modifications has been used in some recent stud-
ies, e.g., Astill et al. (2015). The algorithm applies a band-pass
filter (11–15Hz) to the NREM data (epochs), and the enve-
lope of the resulting signal is subsequently used. An amplitude
threshold (threshold1) is then set relative to the mean signal
amplitude (because different channels exhibit different amplitude
profiles). A spindle is marked by first detecting a local maximum
in the envelope of the filtered signal above threshold1, and its
duration is determined by identifying the preceding and follow-
ing instances when this amplitude falls below a lower threshold
(threshold2), i.e., detecting the nearest troughs below threshold2
(local minima). The slightly different versions of this type of algo-
rithm set threshold1 and threshold2 slightly differently than the
original algorithm, but the essential main idea remains the same.

Algorithm a3, Mölle’s band pass RMS overlapping

moving window
The third algorithm, a3, was described by Mölle et al. (2002).
This algorithm is also band-pass filtering the NREM data at
the spindle frequency range (12–15Hz), and subsequently com-
putes the Root Mean Squared (RMS) value of the filtered data
over a short-frame overlapping (50%) moving window of 100ms.
Then, spindles are determined only on the data from sleep stage
2 depending on whether the RMS value exceeds an amplitude
threshold (set at 1.5 times the standard deviation of the band-pass
filtered signal) and the duration is within the acceptable spindle
limits (0.3–3 s).

Algorithm a4, Martin’s band pass RMS percentile moving

window
The fourth algorithm, a4, by Martin et al. (2013) is conceptually
very similar to a3. It differs from a3 in terms of the spindle fre-
quency range used (11–15Hz) for the band-pass filter, the use
of a non-overlapping time window (25ms) to compute the RMS
values, and the threshold for detecting the spindle which is set to
be the 95th percentile of the RMS signal.

Algorithm a5, Wamsley’s CWTmoving average
The fifth algorithm, a5, was developed by Wamsley et al. (2012).
Contrary to the algorithms described so far, this algorithm is
based on the CWT, which has some desirable properties for ana-
lyzing EEG signals as discussed previously. The algorithm relies
on prior hypnogram assessment and attempts to detect spindles
during stage 2. The signal is transformed into the wavelet domain
using the complex Morlet wavelet basis function. The Morlet
scales corresponding approximately to the pseudo-frequencies of
interest (10–16Hz) were used, and the moving average of the
coefficients using a 100ms sliding window was computed; when
it exceeded a threshold for a minimum of 0.3 s a spindle was reg-
istered. The threshold was set using only the amplitude of epochs
assessed as stage 2 by experts.

Algorithm a6, Wendt’s two-channel band pass and signal

envelope combination
The sixth algorithm, a6, was developed by Wendt et al. (2012).
This algorithm is conceptually similar to a2, the main difference
is that the boundaries for the spindle detection are determined
using local extrema of the signal envelope and its rate of change,
whereas a2 relied on local minima. A further difference is that
both a central and an occipital EEG channels are used in the band
11–16Hz, and the spindle detection is a result of the combination
of the two different sets of envelopes.

Recently, Warby et al. (2014) applied the six algorithms
described so far in a large private database with sleep spindles
from 110 healthy controls, and reported that the best algorithm
in terms of accurately detecting spindles and minimizing false
detections was a5, closely followed by a4. We note that all six algo-
rithms described so far (a1–a6) rely on prior hypnogram assess-
ment, which was provided given that the sleep stages assessed
by experts was available for this database. We note that this fact
effectively places competing algorithms which do not have access
to hypnogram information at a disadvantage when it comes to
direct algorithmic performance comparisons. The following new
algorithms (a7–a8) do not rely on prior sleep staging informa-
tion, but we aim to demonstrate that the new algorithms are
nevertheless very competitive.

Novel Sleep Spindle Detection Algorithms
We have already highlighted the intuitively appealing features of
the CWT for analyzing EEG signals due to its time-frequency
localization properties, and the fact that it does notmake assump-
tions regarding signal periodicity. Exploring the data by visual
inspection of the true spindles (see Figure 1) seems to indicate
that amplitude-based characteristics may be misleading (this is
also implicit in the AASM criteria where no amplitude recom-
mendation is made when assessing spindles); hence the primary
focus of the developed algorithms is on the frequency content
of the signal. Strictly speaking, we work directly with the CWT
scales which correspond to the (pseudo)frequencies of interest
(11–16Hz). We defined 131 Morlet scales with a resolution of
0.1 in the range 2–15 (corresponding pseudo-frequencies: 5.4–
40.6Hz), which led to 24 scales lying within the spindle scale
range. There is a non-linear mapping of the scales to their corre-
sponding pseudo-frequencies, which is a function of the wavelet
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basis function and the sampling frequency of the signal. For the
Morlet wavelet with a signal sampling frequency of 100Hz, the
scales of interest (spindle scale range) are 5.1–7.4.We used a lower
threshold of pseudo-frequency at 5.4Hz above which we try to
assess the probability of having a spindle so as to avoid challeng-
ing settings of spindles occurring on the background of large-
amplitude slow oscillations (the delta frequency range, 1–4Hz).
Conceptually the starting basis of the proposed algorithms is sim-
ilar to the study by Wamsley et al. (2012) (algorithm a5), who
subsequently thresholded the CWT coefficients at the spindle
frequency range using a moving average of 100ms sliding win-
dow. What distinguishes the algorithms proposed in this study
compared to previous algorithms using the CWT is the differ-
ent processing of the extracted Morlet CWT coefficients and the
fact that we do not rely on expert-based hypnogram (in particular
determining sleep stage 2) assessment.

Figure 2 presents a high-level flowchart of the two new algo-
rithms introduced in this study. All sleep spindle detection
algorithms developed in the research literature have some free
parameters (typically these are some thresholds, e.g., on ampli-
tude values). Similarly, the proposed algorithms in this study rely
on a number of free parameters which need to be optimized: the
chosen values were determined by testing on random subsam-
ples of the training data so that regions of relative stability were
found; exhaustive searches over the parameter space were not
possible due to the size of the data set. We deliberately decided
not to pursue rigorous optimization of these parameter values,
in order to avoid overfitting the characteristics in the DREAMS
database (effectively this would be training and testing on the
same data). It is likely that the parameter values chosen could
benefit from further refinement to optimize the outputs of the
proposed algorithms, but a larger database would be needed.

Algorithm a7, CWT instantaneous probabilistic estimate

with moving averaging
The algorithm a7, uses the following steps after the computation
of the CWT coefficients:

(a) Computes the normalized percentage power of the CWT
coefficients (henceforth referred to as normalized coeffi-
cients).

(b) Sorts the normalized coefficients in descending order at each
time instant and works on the top 10Morlet CWT scales cor-
responding to the top normalized coefficients (thus resulting
in a matrix of size number of signal samples× 10).

(c) Computes instantaneous probabilistic estimate of spindle
occurrence at the spindle scale range using the following
algorithmic expression:

P(si) =
1

L
·

T
∑

i= 1

(1./ 〈Mi〉)

where P(si) denotes the probability of having a spindle at a given
sample i, T is the cardinality of the top 10 scales correspond-
ing to the sorted top 10 CWT normalized coefficients at instant
i coinciding with the spindle scale range (i.e., for each sample i,
we find how many of the top 10 sorted scales corresponding to

the normalized coefficients match the scales in the spindle scale
range), 〈Mi〉 contains the positions of the detected scales inter-
secting with the spindle scale range in the 10-element vector and
the operator “./” denotes element-wise division. The value P(si)
effectively expresses the confidence that the sample i is part of
a spindle (the higher the value, the more likely this sample may
be part a spindle). The underlying concept is that if a sufficiently
large number of successive samples (corresponding to somemin-
imum time duration to be defined) have large probabilities denot-
ing spindles, then that sequence will be denoted as a spindle.
Effectively, we determine how many of the top 10 sorted scales
matched the spindle scale range, and weigh these scales based on
where they feature in the list with the instantaneous top 10 scales.
If none of the sorted top 10 scales overlapped with the spindle
scale range then P(si) is zero. L denotes a normalization constant

factor which was computed as L =
∑T

i= 1 (1./〈1 . . . 10〉).

(d) Now, we need to smooth the instantaneous P(si) estimates
based on their K neighbors

{

P(si−K/2) . . . P(si+K/2)
}

to determine whether some EEG segments (regions) of
arbitrary length within some duration boundaries (here
0.5–1.5 s) correspond to a spindle. Essentially, we have scales
corresponding to the spindle scale frequency and we want
to smooth neighboring regions to decide whether these are
above the minimum duration threshold (in practice we very
rarely have all consecutive samples in a spindle exhibit-
ing large proportion of the scales belonging to the spindle
scale range). Conceptually, this is similar to the concept that
Wamsley et al. (2012) used, smoothing the data using a mov-
ing average of 0.1 s. Similarly, we used a moving average filter
of 0.1 s to obtain the Psmooth(si).

(e) It is possible that certain P (si) < Psmooth(si) and we want
to encourage relative large values to maximize the probabil-
ity of detecting true spindles; hence we applied a final check:
Pfinal (si) = max∀i (Psmooth (si) ,P (si)).

(f) The candidate spindle instances (as a first pass) were detected
at those samples when Pfinal (si) > 0.3 (for as many succes-
sive samples as the threshold remains valid). We remark this
threshold (and all free parameters in this spindle detection
algorithm such as number of top scales to investigate and
K) were not rigorously optimized to avoid over-fitting the
database used in this study. Instead we have attempted to
determine “good” parameter values, which may be refined
if presented with additional databases which will assist in
properly optimizing the values of the free parameters.

(g) Finally, we need to group together regions which contain
series of samples with high probabilities of denoting spin-
dles. This was achieved using flags to denote if successive
regions containing candidate spindles would group in terms
of their proximity, average probabilistic estimate of having
a spindle in a region defined between samples (i1, . . . , i2)
{

P(si1 ) . . . P(si2 )
}

, and the duration of the candidate
spindle. Specifically, we grouped successive candidate spin-
dles in the following cases:

(i) The duration between successive spindles was less than
0.3 s, and both successive spindles exhibited average
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Input: Single-lead EEG (typically central EEG), sampling frequency

Output: Two-dimensional matrix with onset and offset of spindles (in terms of 

samples of the original EEG signal presented to the spindle detec"on algorithm)

EEG data

Apply con"nuous wavelet transform (CWT) with Morlet basis 

func"on, obtaining the normalized CWT coefficients

Sort the normalized CWT coefficients in descending order for

each "me instant; work only with the top 10 Morlet CWT 

scales corresponding to the top normalized coefficients

Compute instantaneous probabilis"c es"mates of spindle 

occurrence for each ith sample in the original EEG signal, P(s )

Process the instantaneous P(si) es"mates using local 

weigh"ng smoothing methods based on their K neighbors. 

Aim: determine if there are segments in the "me series which 

could be spindles, i.e. successive P(si) all above a probability 

threshold for a minimum period of "me (set to 0.3 seconds). 

The difference between the algorithms a7 and a8 is on how the 

local smoothing is performed

FIGURE 2 | Flowchart of the proposed algorithms in this study.

probabilistic strength above a threshold, i.e., both spin-

dles appeared to be very likely true spindles:
(

1
i2 − i1

·

∑i2
i= i1

P (si)
)

> 0.7, and the duration of both

successive spindles was at least 0.1 s (case: “strong”
spindles).

(ii) The duration between successive spindles was less than
0.3 s and both successive spindles exhibited average
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probabilistic strength:
(

1
i2 − i1

·
∑i2

i= i1
P (si)

)

> 0.6 and

both were at least 0.3 s long (case: “long spindles”).

Algorithm a8, CWT instantaneous probabilistic estimate
with distance and amplitude weighted averaging
The algorithm a8, is very similar to a7. The difference lies in how
we process the instantaneous probability spindle estimates P(si)
to affect neighboring P(sj) values. That is, the first steps (a)–(c)
are identical, and step (d) processes the computed P(si) using the
exponential weighted moving average concept (instead of mov-
ing average). The underlying idea is that we want to update P(si)
values depending on their neighboring P(sj) values as a weighted
function of their distances and a weighted function of their mag-
nitude (which is weighted exponentially to promote EEG regions
where instantaneous P(si) estimates are large). Specifically, step
(d) now becomes:

(d) We used smoothing over 0.2 s, linearly scaling the effect of
samples P(sj) on P(si) as a function of their distance from

P(si), i.e., {wt}
10
t=−10, t 6=0 =

1
|t| ·P(si+ t). In order to augment

the effect of large P(si) values (which denote great confidence
that the sample i is part of a spindle) we exponentiated these
values. Overall, conceptually it is similar to using an expo-
nential weighted moving average approach. Algorithmically
this is expressed as:

Psmooth (si) =









P (si) +
1

∑10
t=−10, t 6= 0 wt

·

10
∑

t=−10, t 6= 0

(

exp (P (si+ t)) − 1
)

. ∗ wt









where the notation ⌈·⌉ denotes that the value is upper
bounded to be 1, and the notation “.∗” denotes element wise
multiplication. The subsequent steps (e)–(g) are identical to
a7 to detect a spindle. We remark that a8 is by design heavily
weighting regions where there is a possibility of observing
a spindle, but these regions will likely contain many cases
which are not likely to be spindles.

Evaluation of Sleep Spindle Detection Algorithms
Both the DREAMS sleep spindles database and the MASS
database have been annotated by two experts. Given the large
inter-rater variability (e.g., for the DREAMS database the first
rater has marked 289 spindles whereas the second rater has
marked 409 spindles), there are two approaches to determine
the ground truth. One approach is to only consider cases where
both experts agree, an approach used previously for the DREAMS
database by other researchers (Devuyst et al., 2011; Nonclercq
et al., 2013). However, this biases the results, because one might
argue that cases where both experts agree may denote “eas-
ily detectable” spindles; hence in this study we used all assess-
ments by both experts, removing one of the double entries (in
those cases where both experts agreed, in the DREAMS database
we removed the assessment by the second expert because only

the first expert had also provided the duration of the assessed
spindle).

Each of the sleep spindle algorithms used in this study results
in estimates summarized in the formatN×2, whereN denotes the
number of detected spindles for each EEG signal: the first column
contains the estimated onset, and the second column the spin-
dle duration. This facilitates direct comparison with the ground
truth which is in the same format. In order to assess the perfor-
mance and fairly compare all algorithms, we used the following
commonly used metrics:

(a) True Positive Rate (TPR) (%), also known as sensitivity:
TPR= TP/(TP+ FN) (is the proportion of spindles assessed
by experts correctly identified by an algorithm, ideally we
want this to be 100%).

(b) True Negative Rate (TNR) (%), also known as specificity:
TNR = TN/(TN + FP) (is the proportion of non-spindles
assessed by experts correctly identified by an algorithm,
ideally we want this to be 100%).

Specificity is also the complement of the False Positive Rate
(FPR), defined as FPR = FP/(FP + TN): specificity = 100—
FPR.

(c) False Discovery Rate (FDR): FDR = FP/(TP+ FP).

(d) Cohen’s kappa coefficient, where: k =
TP+TN

N −Pr(e)

1−Pr(e)
, with

Pr (e) = TP+ FN
N · TP+ FP

N +
(

1− TP+ FN
N

)

·
(

1− TP+ FP
N

)

,

and N = TP + FP + TN + FN

Cohen’s kappa coefficient was originally developed to assess
inter-rater agreement, and some researchers suggest it takes into
account agreement between raters which could be attributed to
chance. Effectively, this implies that when raters are uncertain
they guess about their decision, which some researchers have
suggested is unlikely in many practical settings. Some of the
problems and limitations of Cohen’s kappa have been discussed
by Gwet (2008); we cautiously include it in this study because
some research papers published in the sleep spindle detection
literature have used it. We also used and put greater empha-
sis on the weighted kappa in this study because spindles are
rare events in the EEG signal and we wanted to weigh accord-
ingly for spindles correctly detected and spindles missed by the
spindle detection algorithms (that is, we set the weight for TP
and FN to be 10 times compared to the weight assigned to FP
and TN).

(e) Absolute difference in the onset timings between the ground
truth and the estimated onset.

where True Positive (TP) denotes agreement between the algo-
rithm and the ground truth about the detection of a spin-
dle, False Negative (FN) denotes a true spindle as assessed
by the experts which was missed by the algorithm, False
Positive (FP) when the algorithm detected a spindle that
was not assessed as a spindle by the experts, and True
Negative (TN) was defined as in Devuyst et al. (2011):
TN = signal duration in seconds− FP− TP− FN. We assess a
true positive when the absolute difference between the onset
of the ground truth and the estimated spindle onset by the
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algorithm is less than 0.5 s. Other studies have used different, less
stringent definitions to assess whether an algorithm has matched
the expert’s assessment in correctly detecting a spindle. Some
studies assess whether a spindle was detected within a sliding pre-
specified time-interval (epoch), e.g., Duman et al. (2009), how-
ever this does not assess directly the accuracy in determining the
spindle onset. Other studies, e.g., Nonclercq et al. (2013), con-
sider than an algorithm has correctly detected a spindle if there
was any overlap between the duration of the estimated spindle
and the true spindle duration. However, this may positively bias
sleep detection algorithms which provide spindle estimates with
large durations.

Results

Evaluation of the Spindle Detection Algorithms
on the DREAMS Sleep Spindles Database
Tables 1–3 summarize the performance of the sleep spindle
detection algorithms used in this study for each of the eight
signals. Ideally, a good algorithm exhibits large sensitivity and
specificity, and low false discovery rate.

We observe relatively large deviations in the performance of
the sleep spindle detection algorithms across the eight signals.
Overall, the new algorithm a7 exhibits large sensitivity and speci-
ficity. The more complicated new algorithm a8 can accurately

TABLE 1 | Sensitivity (%) of the spindle detection algorithms across the eight EEG signals (higher values indicate better performance).

Signal1 Signal2 Signal3 Signal4 Signal5 Signal6 Signal7 Signal8 Mean ± std

a1 70.6 56.6 53.3 40.6 45.6 78.6 27.8 75 56.0±17.8

a2 14 3.90 11.1 9.40 20.4 29.1 16.7 10.4 14.4±7.7

a3 86.7 68.8 84.4 42.2 95.1 91.5 77.8 75 77.7±16.8

a4 46.7 63.6 77.3 32.8 63.1 68.4 61.1 50 57.9±14.0

a5 12.5 49.4 84.4 31.3 15.5 64.1 55.6 47.9 45.1±24.4

a6 79.3 85.7 77.8 45.3 81.6 81.2 72.2 83.3 75.8±12.9

a7 84.4 80.5 73.3 65.6 70.9 66.7 88.9 77.1 75.9±8.3

a8 89 80.5 82.2 68.8 96.1 88 77.8 83.3 83.2 ± 8.2

The best performing algorithm for each case appears in bold.

TABLE 2 | Specificity (%) of the spindle detection algorithms across the eight EEG signals (higher values indicate better performance).

Signal1 Signal2 Signal3 Signal4 Signal5 Signal6 Signal7 Signal8 Mean ± std

a1 85 79.8 83.9 82.9 82.6 85.2 80.7 79.1 82.4±2.3

a2 99.6 100 99.6 98.8 99.2 99.4 98.9 99.1 99.3 ± 0.4

a3 91.1 97.6 75.1 92.7 88.5 77.8 89.1 39 81.4±18.7

a4 98.5 98.3 97 96.5 98.2 98.6 95.6 94.3 97.1±1.6

a5 99.8 99.2 96.1 96.3 99.6 98.8 97.1 96.1 97.9±1.6

a6 86.6 67 87 87.1 91.1 92.5 82 79.5 84.1±8.1

a7 94.6 93.4 94.5 87.3 95.5 97.3 94.1 78.1 91.8±6.3

a8 78.6 76.3 77.8 68.1 80.9 86.6 75.5 55.7 74.9±9.4

The best performing algorithm for each case appears in bold.

TABLE 3 | False discovery rate (%) of the spindle detection algorithms across the eight EEG signals (lower values indicate better performance).

Signal1 Signal2 Signal3 Signal4 Signal5 Signal6 Signal7 Signal8 Mean ± std

a1 72.3 89 92.2 91.9 86.3 73 98.6 91.1 86.8± 9.4

a2 26.9 0 58.3 77.8 38.2 22.7 87 75 48.2 ± 31.0

a3 56 44.2 92 82.4 66.7 77.7 93.3 96.7 76.1± 19.0

a4 28.4 38 60.5 74.4 32.3 23.1 87.6 80.6 53.1± 25.7

a5 19 25.5 64.2 76.5 27.3 21.9 83.9 74.7 49.1± 28.1

a6 67.6 89.6 86.7 88.5 64.3 57.2 96.1 90 80.0± 14.6

a7 44.1 64.6 74.4 84 51.3 37.1 86.9 91.2 66.7± 20.7

a8 74.6 86.8 91.3 92.6 76.6 68.6 96.9 95.1 85.3± 10.6

The best performing algorithm for each case appears in bold.
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detect more spindles than the competing approaches includ-
ing a7 (large sensitivity), at the cost of decreased specificity and
increased false discovery rate. We have also evaluated the abso-
lute difference in the onset timings between the ground truth
and the estimated onset: this was fairly consistent amongst the
algorithms with amean absolute difference in onset timings rang-
ing between 0.15 and 0.2 s and the standard deviation ranging
between 0.11 and 0.15 s. Overall, all algorithms performed simi-
larly with respect to correctly detecting onset spindle timing. We
have emphasized that Cohen’s kappa suffers from certain lim-
itations (Gwet, 2008) and we use it here cautiously simply to
facilitate comparisons with other studies in the research litera-
ture. Specifically the (unweighted) Cohen kappa was (mean ±

standard deviation): a1 = 0.15 ± 0.12, a2 = 0.19 ± 0.11, a3 =

0.29±0.22, a4 = 0.46±0.20, a5 = 0.37±0.19, a6 = 0.25±0.18,
a7 = 0.40± 0.20, a8 = 0.18± 0.14.

Evaluation of the Spindle Detection Algorithms
on the MASS Database
We have also evaluated the performance of all eight algorithms
in terms of correctly detecting the sleep spindles in the MASS
database. The results are summarized in Table 4. Interestingly,
the findings in terms of sensitivity, specificity, and FDR are sim-
ilar across the two databases used in this study. The algorithm
a7 outperforms the competing approaches in terms of sensi-
tivity whilst being very competitive in terms of specificity. As
indicated previously, we prefer the weighted Cohen kappa (see
Table 4) penalizing more severely missed true spindles compared
to false positives. Nevertheless, to facilitate direct comparisons
with the research literature the unweighted Cohen kappa for the
algorithms is also reported (mean ± standard deviation): a1 =

0.20±0.11, a2 = 0.22±0.04, a3 = 0.28±0.24, a4 = 0.51±0.13,
a5 = 0.38 ± 0.18, a6 = 0.37 ± 0.18, a7 = 0.24 ± 0.12,
a8 = 0.16± 0.09.

Algorithmic Comparisons with Results Reported
in the Research Literature
Many researchers have indicated that it is not easy to directly
compare the performance of different algorithms across stud-
ies because of the different criteria used to detect spindles and
assess the performance of the automated algorithms (Devuyst
et al., 2011; Nonclercq et al., 2013). Table 4 attempts to sum-
marize many of these published findings in the research litera-
ture as an indicative reference, but we emphasize these results
should be cautiously interpreted when comparing algorithms
unless they have been tested on the same database using iden-
tical criteria to assess performance. Table 5 summarizes the four
performance metrics in this study (sensitivity, specificity, FDR,
weighted Cohen’s kappa) in terms of percentile scores, thus
providing a good overview of the overall performance of each
algorithm (including their behavior at extremes).

Discussion

This study revisited the problem of accurate and automatic detec-
tion of sleep spindles using a single EEG channel. We reviewed
some indicative and widely used signal processing approaches

toward this aim, and highlighted some of the underlying prob-
lems. Two new signal processing approaches which are based on
the CWT with Morlet basis were proposed and demonstrated
to be very competitive against some commonly used algorithms
found in the research literature. Interestingly, there was no uni-
versally best algorithm for all signals, although a3, a6, and a7
appear to display relatively large sensitivity and specificity scores.
We found that the new algorithm a7 led to a range of 65.6–88.9%
sensitivity scores and a range of 78.1–97.3% specificity scores for
the DREAMS database, which compare favorably against com-
peting approaches. The new algorithm a8 exhibits higher sensi-
tivity and lower specificity in the DREAMS database, on average,
hence it might be more suitable primarily in cases where a human
expert will post-process the estimates to determine whether the
detected spindles correspond to true spindles. We re-iterate that
the DREAMS sleep spindles database used in this study suf-
fers from large inter-rater variability: the first rater has marked
289 spindles whereas the second rater has marked 409 spin-
dles. Hence, the inter-rater agreement is lower than the agree-
ment between raters reported in other studies (Huupponen et al.,
2007), which may suggest automatic detection of spindles in this
dataset may be challenging.

The original manuscript submission did not include theMASS
database and hence the development of the spindle detection
algorithm relied only on the DREAMS data. We have deliberately
refrained from any additional fine-tuning of a7 and a8 to optimize
performance in the MASS data, which might have potentially
improved our reported results on the MASS database. It is reas-
suring that the proposed algorithms work very well on the MASS
data, in particular a7. It is also encouraging to see that the results
of sensitivity, specificity, FDR and weighted Cohen’s kappa are
similar across the two databases (see Table 4) for all algorithms:
this inspires confidence regarding the objective merits of each
algorithm, and may be a good indicator of the performance of
the sleep spindle detection algorithms in new, unseen datasets.
It is possible that other studies relying on a single database to
develop and test their spindle detection algorithms might have
over-trained on that particular dataset, so we find the reported
findings on the MASS database (truly out-of-sample) to be par-
ticularly compelling. Table 5 provides an overall summary of
performance of the sleep spindle algorithms on both databases,
including extremes (i.e., the algorithms at their worst and at their
best) by reporting percentile values. We note that a7 in particu-
lar is very competitive across the entire range of the distribution
of performances, particularly for the MASS database (and inter-
estingly, exhibiting good performance even for the 5th and 25th
percentiles, i.e., it is fairly stable across individuals compared to
many of the competing algorithms).

For reference purposes we have summarized the findings of
multiple sleep spindle studies in the research literature inTable 4.
However, direct comparison of findings across studies in this
application is not straightforward for a number of reasons: (a)
many studies rely solely on data stemming from healthy con-
trols which are arguably easier to analyze than data from patho-
logical cohorts (or process EEG artifact-free data, whereas the
DREAMS sleep spindle database used here contains data from
various sleep disorders), (b) the criteria for identifying sleep
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TABLE 4 | Summary of automated spindle detection results in the research literature and in this study.

Study Spindle assessment Participants and data

collected

Database Algorithm

requires

hypnogram

Spindle detector TP

evaluation
Sensitivity Specificity FDR Weighted

(%) (%) (%) Cohen kappa

Schonwald et al.,

2006

81.2 81.2 N/R N/R 9 healthy adults, extracted

24 segments from each

subject using 20 s epochs,

removed epochs with

artifacts

Private

(N = 9)

Yes Second-by-second analysis

Huupponen et al.,

2007

70.0 98.6 32 N/R 12 healthy adults, entire

night recordings

Private

(N = 12)

Yes The absolute difference

between the detected

spindle onset and the

spindle onset determined by

the experts was less than

0.5 s.

Causa et al., 2010 88.2 89.7 11.9 N/R 56 healthy children

overnight recordings, 27

recordings used for training,

10 recordings for validation,

and 19 for testing

performance

Private

(N = 56)

No At least 75% spindle

duration overlap between

detected and expert

assessed spindle

Warby et al. (2014)

applying a1

74 81 89 N/R 110 healthy adults, (4min of

artifact-free stage 2 sleep

from 100 subjects and

∼38min of stage 2 sleep

from 10 subjects)

Private

(N = 110)

Yes At least 20% spindle

duration overlap between

detected and expert

assessed spindle

Warby et al. (2014)

applying a2

17 99 48 N/R See above entry Private

(N = 110)

Yes See above entry

Warby et al. (2014)

applying a3

71 81 89 N/R See above entry Private

(N = 110)

Yes See above entry

Warby et al. (2014)

applying a4

43 98 58 N/R See above entry Private

(N = 110)

Yes See above entry

Warby et al. (2014)

applying a5

33 99 44 N/R See above entry Private

(N = 110)

Yes See above entry

Warby et al. (2014)

applying a6

57 96 70 N/R See above entry Private

(N = 110)

Yes See above entry

Devuyst et al.,

2011

70.2 98.6 N/R N/R 8 diagnosed with various

sleep disorders (30min

segments), two raters for all

signals; one rater only for

two signals. Use only six

signals and only cases

where raters agree

DREAMS sleep

spindle database

(publicly available)

(N = 6)

No N/R

Nonclercq et al.,

2013

75.1 96.7 N/R N/R See above entry DREAMS

(N = 6)

No There is overlap between

the duration of the detected

spindle and the spindle

duration assessed by

experts

Present study a1 56.0 82.4 86.8 0.37 8 from various sleep

disorders (30min

segments), two raters for all

signals; one rater only for

two signals. Use all eight

signals including “difficult”

cases where raters do not

agree

DREAMS

(N = 8)

Yes The absolute difference

between the detected

spindle onset and the

spindle onset determined by

the experts was less than

0.5 s

Present study a2 14.4 99.3 48.2 0.17 See above entry DREAMS

(N = 8)

Yes See above entry

Present study a3 77.7 81.4 76.1 0.55 See above entry DREAMS

(N = 8)

Yes See above entry

(Continued)
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TABLE 4 | Continued

Study Spindle assessment Participants and data

collected

Database Algorithm

requires

hypnogram

Spindle detector TP

evaluation
Sensitivity Specificity FDR Weighted

(%) (%) (%) Cohen kappa

Present study a4 57.9 97.1 53.1 0.59 See above entry DREAMS

(N = 8)

Yes See above entry

Present study a5 45.1 97.9 49.1 0.47 See above entry DREAMS

(N = 8)

Yes See above entry

Present study a6 75.8 84.1 80.0 0.55 See above entry DREAMS

(N = 8)

Yes See above entry

Present study a7 75.9 91.8 66.7 0.66 See above entry DREAMS

(N = 8)

No See above entry

Present study a8 83.2 74.9 85.3 0.50 See above entry DREAMS

(N = 8)

No See above entry

Present study a1 65.5 85.1 82.7 0.46 19 overnight PSG from

healthy controls; two raters

for 15 signals, one rater for

four signals

MASS database

S2 (publicly

available)

(N = 19)

Yes See above entry

Present study a2 16.5 99.2 49.5 0.20 See above entry MASS

(N = 19)

Yes See above entry

Present study a3 73.5 78.2 75.3 0.46 See above entry MASS

(N = 19)

Yes See above entry

Present study a4 66.2 97.5 48.1 0.64 See above entry MASS

(N = 19)

Yes See above entry

Present study a5 41.3 98.8 45.3 0.43 See above entry MASS

(N = 19)

Yes See above entry

Present study a6 73.0 90.5 69.1 0.60 See above entry MASS

(N = 19)

Yes See above entry

Present study a7 83.8 90.2 82.6 0.64 See above entry MASS

(N = 19)

No See above entry

Present study a8 77.2 76.9 86.5 0.46 See above entry MASS

(N = 19)

No See above entry

Sensitivity (%) = TP/(TP + FN), Specificity (%) = TN/(TN + FP), False Discovery Rate (FDR) (%) = FP/(TP + FP). TP stands for true positive, TN for true negative, FP for false positive,

and FN for false negative. The last column briefly explains the method used to assess how the automatic sleep spindle detector was deemed to succeed in detecting the spindle as

registered by the experts. See Section Evaluation of Sleep Spindle Detection Algorithms for more details.

spindles are inconsistent, (c) different research teams use slightly
different definitions of spindles, (d) in some cases researchers
have only reported the detection accuracy but have not pro-
vided details about the number of erroneous detections, therefore
making comparison against some conservative approaches (algo-
rithms which aim to minimize the number of falsely reported
spindles) unfair. For all these reasons, probably the most efficient
and appropriate scientific approach is to apply multiple sleep
spindle detection algorithms across multiple datasets and directly
compare their performance. Causa et al. (2010) have reported
better sensitivity (88.2%) and specificity scores (89.7%) compared
to results in other studies (including the current study). However,
that study focused only on healthy children, and those findings
might not be generalizable to studies focusing on other cohorts
(healthy adults, and adults diagnosed with a sleep-related dis-
order). Two prior studies have focused on the DREAMS sleep
spindle database which facilitate comparison of findings: Devuyst
et al. (2011) reported sensitivity score 70.2% and specificity
score 98.6%. Likewise, Nonclercq et al. (2013) reported sensitiv-
ity scores ranging between 65.8 and 82.8% and specificity scores
ranging between 96.7 and 98.7% for the first six signals in the

database. However, we note that in both studies the authors used
as ground truth only those cases where the experts agreed on
the first six signals, which potentially biases the results (spin-
dles detected by either one of the raters are probably borderline
and more difficult to assess, but on the other hand are proba-
bly also more interesting). Similarly, the MASS database is a new
publicly available database and we anticipate future studies will
benchmark algorithms against this database.

Ideally, a sleep spindle detection algorithm should correctly
detect all true spindles without indicating the presence of addi-
tional (erroneous) spindles (an artifact or other class of event
erroneously considered to be spindle). In practice, there is a
tradeoff compromising betweenmaximizing the detection of true
spindles (true positive rate) and minimizing the false assessment
of EEG segments as spindles. Essentially this is the case with the
closely related algorithms a7 and a8 proposed in this study. The
algorithm a8 can typically correctly detect more spindles than a7
at the cost of increasing the number of falsely detected spindles
(increased false discovery rate). We note that a6 and a3 are sim-
ilarly more prone compared to competing algorithms to decide
that spindles have occurred in the EEG signal: this causes their
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TABLE 5 | Summary of statistics (percentiles) of the performance metrics of the spindle detection algorithms for the DREAMS and MASS databases.

Sensitivity (%) Specificity (%) FDR (%) Weighted Cohen kappa

5 25 50 75 95 5 25 50 75 95 5 25 50 75 95 5 25 50 75 95

a1 27.8 43.1 54.9 72.8 78.6 79.1 80.3 82.8 84.5 85.2 72.3 79.6 90 92.1 98.6 0.06 0.27 0.36 0.51 0.64

54.1 60.8 65.3 69.3 80.84 82.1 83.7 85.3 86.4 88.4 66.3 76.3 80.6 90.9 97.7 0.22 0.43 0.49 0.54 0.63

a2 3.9 9.9 12.6 18.6 29.1 98.8 99.0 99.3 99.6 100 0 24.8 48.3 76.4 87.0 0.05 0.13 0.15 0.23 0.32

10.9 13.0 14.6 17.5 30.1 98.9 98.9 99.2 99.4 99.6 33.8 41.8 43.9 64.2 67.0 0.12 0.15 0.18 0.20 0.39

a3 42.2 71.9 81.1 89.1 95.1 39 76.5 88.8 91.9 97.6 44.2 61.3 80 92.7 96.7 0.08 0.43 0.58 0.75 0.81

34.5 58.1 81.7 88.8 91.6 39.4 64.2 83.9 93.4 97.0 35.8 58.7 76.8 96 98.7 0 0.10 0.62 0.75 0.82

a4 32.8 48.4 62.1 66.0 77.3 94.3 96.1 97.6 98.4 98.6 23.1 30.4 49.2 77.5 87.6 0.36 0.49 0.61 0.69 0.77

41.2 56.2 64.8 77.6 96.2 95.7 97.2 97.6 98.2 98.7 23.5 33.2 43.7 64.4 88.5 0.40 0.58 0.68 0.73 0.82

a5 12.5 23.4 48.7 59.9 84.4 96.1 96.2 97.9 99.4 99.8 19.0 23.7 45.7 75.6 83.9 0.13 0.26 0.54 0.61 0.81

3.5 24.7 39.6 48.8 91.4 97.1 98.5 98.9 99.5 99.7 20.6 29.8 39.7 58.8 82.0 0.040 0.35 0.43 0.54 0.78

a6 45.3 75.0 80.3 82.5 85.7 67.0 80.8 86.8 89.1 92.5 57.2 65.9 87.6 89.8 96.1 0.32 0.40 0.55 0.70 0.75

52.4 69.8 72.7 76.0 92.79 76.7 85.9 92.8 95.2 97.4 45.7 55.6 66.1 80.7 97.0 0.23 0.60 0.65 0.69 0.74

a7 65.6 68.8 75.2 82.5 88.9 78.1 90.4 94.3 95.1 97.3 37.1 47.7 69.5 85.5 91.2 0.46 0.60 0.69 0.72 0.80

64.7 80.1 86.3 89.6 92.9 83.6 88.1 90.1 94.1 95.9 51.3 81.1 85.7 90.6 92.3 0.49 0.60 0.64 0.70 0.74

a8 68.8 79.2 82.8 88.5 96.1 55.7 71.8 77.1 79.8 86.6 68.6 75.6 89.1 93.9 96.9 0.26 0.29 0.50 0.70 0.74

65.1 72.7 79.3 82.2 87 67.6 72.6 76.2 81.1 86.5 71.0 83.0 86.8 92.2 97.6 0.24 0.36 0.49 0.58 0.63

The first row for each algorithm a1–a8 corresponds to the (5,25,50,75,95) percentiles in the DREAMS database, and the second row to the percentiles in the MASS database.

true positive rate to be generally higher at the cost of additional
false positives. O’Reilly and Nielsen (2014b) envisage that “most
probably, manual [sleep spindle] scoring will progress toward semi-
automation benefitting from further advances in signal process-
ing” an assertion we find plausible. In that sense, if sleep spindle
assessment is performed semi-automatically (prior assessment by
an algorithm and subsequent checking by an expert) it is ben-
eficial to correctly detect as many spindles as possible, even at
the cost of erroneously recording spindles (i.e., increasing sen-
sitivity at the cost of an increased false positive rate). There is
probably no universal solution to this problem, and the sensitiv-
ity trade-off might need to be a free parameter of sleep spindle
algorithms which could be appropriately adjusted by the operator
of the algorithm.

We remark that some of the sleep spindle detection algorithms
used in this study require more than a single-EEG channel to
detect spindles. For example, a1 and a6 require the use of an
additional EEG channel, and a1–a5 need to be presented with
the hypnogram assessment (moreover the algorithm a5 explic-
itly requires stage 2 assessments). We emphasize again that the
proposed algorithms in this study (a7 and a8) have minimal
requirements in terms of the input data in order to detect spin-
dles: a single EEG channel is sufficient. Therefore, we argue
that these new algorithms may be more readily deployable on
databases which have not been scored by experts prior to sleep
spindle estimation (no sleep staging requirement). Neverthe-
less, future studies could further explore whether the use of

additional EEG channels and/or hypnogram might increase the
sleep spindle detection accuracy.

A critical aspect for comparing algorithms in this applica-
tion is the definition of TP, TN, FP, FN. In some studies it is
not explicitly clear how authors deemed that the automated sleep
spindle detector has matched the assessment of an expert in cor-
rectly identifying a sleep spindle. There is no clear consensus in
the research literature currently; the last column in Table 4 sum-
marizes some of the different approaches that have been used.
We agree with Causa et al. (2010) who criticize other studies
that the criteria used for algorithmic assessment are not made
explicit, and would encourage other researchers to meticulously
report the methodology followed to mark their assessments; ide-
ally this methodology should be standardized to facilitate direct
comparisons of algorithmic concepts.

Inspection of the results revealed that different sleep spindle
detection algorithms have the potential to detect different spin-
dles under different conditions. This would suggest that explor-
ing some data fusion approaches might have good potential in
this application. Data fusion in conceptually related applications
(combining the outputs of multiple signal processing algorithms
which estimate some property of the signal) has shown great
promise (Mitchell, 2012; Tsanas et al., 2014; Zhu et al., 2014). In
fact, simple combination approaches of the first six sleep spin-
dle detection algorithms used in this study have been previous
explored by Warby et al. (2014) but the authors did not report
any significant improvement over the single best algorithm;
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future studies could further explore some principled data fusion
frameworks in this application.
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