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Abstract

B-cell receptor (BCR)-mediated signaling plays an important role in the pathogenesis of a

subset of diffuse large B-cell lymphoma (DLBCL), and novel agents targeting this pathway

are now in clinical use. We have previously identified a signature of active BCR signaling on

formalin-fixed paraffin-embedded specimens using quantitative immunofluorescence,

allowing for identification of patients who might benefit from anti-BCR therapies. We sought

to characterize the clinicopathologic significance of active BCR signaling in DLBCL by corre-

lating measures of signaling intensity with clinical features and various tumor cell character-

istics. High MYC and concurrent high MYC and BCL2 double-expression was positively

correlated with individual markers of active BCR signaling and cases with MYC/BCL2 dou-

ble-expression showed overall greater BCR activation compared to cases lacking double-

expression. Our findings suggest that the BCR signaling pathway may be more active in

MYC/BCL2 double-expressor DLBCL and may represent a rational therapeutic target in this

aggressive DLBCL subgroup.

Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma

and has a poor prognosis in approximately 50% of patients [1,2]. DLBCL is biologically hetero-

geneous and shows variable responses to conventional chemotherapy and rituximab [1,2].

Recent advances in next generation sequencing (NGS) have provided a better understanding
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of the biology of DLBCL and have implicated potential targets to improve diagnosis and ther-

apy [3–5]. A variety of signaling pathways are involved in the pathogenesis of DLBCL includ-

ing those involving the B-cell receptor (BCR), NFκB, NOTCH, Toll-like receptor (TLR), PI3

kinase, MAP kinase, immunity, cell cycle/apoptosis, and chromatin modification [3,5–7]. A

number of recurrent mutations lead, either directly or indirectly, to pathway activation, and

components of various signaling pathways are attractive targets in the clinical setting [3].

Based on cell-of-origin (COO) gene signatures studies, DLBCL can be stratified into prog-

nostically relevant subtypes, with the activated B-cell (ABC) type being associated with an infe-

rior outcome compared with the germinal center B-cell (GCB) type [8–10]. With regard to

BCR signaling inhibition, fostamatinib, a SYK inhibitor, showed activity against relapsed

DLBCL in an early phase I/II study [11], and evaluable tumor responses were observed in two

of seven DLBCL patients treated with the BTK inhibitor, ibrutinib, as part of a phase I study

for relapsed or refractory B-cell non-Hodgkin lymphoma [12]. In a subsequent phase II study

of fostamatinib, the overall response rate was only 3% and no patient with stable disease or

response had ABC type tumors [13]. However, ibrutinib continues to hold promise as an effec-

tive strategy for BCR signal inhibition, at least in certain DLBCL subtypes: in a recent phase I/

II clinical trial of relapsed or refractory DLBCL, ibrutinib achieved 37% complete or partial

responses in ABC subtype but only 5% response in GCB DLBCL, underscoring the importance

of BCR signaling in the pathogenesis of ABC type tumors [14]. Interestingly, this study showed

that the highest number of responses occurred in ABC tumors that lacked BCR mutations (9/

29; 31%) implying that BCR signaling in ABC DLBCL is not dependent on the presence of

BCR mutations and may be activated via other mechanisms [14]. Genetic and transcriptional

analyses are not yet widely available in routine practice, and although paraffin-based methods

are on the horizon [15], these analyses represent only an indirect measure of protein expres-

sion. Immunohistochemistry (IHC) is a time-tested and widely available method to evaluate

both protein amount and phosphorylation. Thus, immunohistochemical analysis of BCR sig-

naling components should be an effective and accurate tool for selection of DLBCL cases that

would respond to anti-BCR therapies, such as ibrutinib.

We have previously identified a robust signature of active BCR signaling in DLBCL on for-

malin-fixed paraffin-embedded specimens based on quantitative immunofluorescence (qIF) of

phosphorylated BCR-associated kinases SYK, LYN and BTK [16]. We used DLBCL cell lines

as a model system, and identified and validated active BCR signaling in 46% (71/154) of pri-

mary DLBCL patient specimens in two clinical cohorts. Additional analysis revealed increased

nuclear exclusion of forkhead transcription factor FOXO1, a downstream effect of BCR signal-

ing and AKT activation leading to increased cell survival, among DLBCL with qIF evidence of

active BCR signaling compared with those without (p = 0.004). There was no difference

between any qIF variable for GCB versus non-GCB cases, nor was there any enrichment for

GCB or non-GCB COO within BCR-positive or negative cases [16]. Our data underscored the

importance of immunohistochemical analysis to detect active BCR signaling at the level of pro-

tein expression and supported the utility of qIF as a tool to identify patients who could poten-

tially benefit from anti-BCR therapies such as ibrutinib.

Rearrangements of the oncogenes BCL6, BCL2, as well as MYC are well documented in

DLBCL, and MYC translocations are recognized to confer a worse prognosis in patients

treated with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP), with or

without rituximab (R) [17–20]. The poor outcome of double-hit DLBCL, defined by rear-

rangements affecting the MYC locus in combination with another breakpoint, mainly BCL2,

appears to be the result of the combination of MYC and BCL2 overexpression [21–23]. While

double-hit DLBCL is relatively uncommon, found in 5–10% of cases, concurrent high expres-

sion of MYC and BCL2 proteins by IHC, termed double-expressor lymphoma (DEL), is

MYC/BCL2 double-expressor lymphoma shows evidence of active B-cell receptor signaling
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detected in approximately 20% of DLBCL [22,24,25]. DEL is characterized by an aggressive

clinical course and inferior response to R-CHOP therapy, indicating the need for more indi-

vidualized therapeutic approaches targeting particular signaling pathways [23–30]. MYC over-

expression by IHC does not correlate perfectly with the presence of a MYC rearrangement, as

other mechanisms of MYC activation can lead to overexpression, including copy number

amplification, upstream regulation by microRNA and oncogenic mutations. However, MYC
gene activation has been associated with poor outcome and thus, these alternate pathways that

activate MYC may have similar biological consequences as MYC rearrangement. Indeed, some

studies have shown that B-cell lymphomas with concurrent MYC and BCL2 abnormalities,

other than translocations, appear to behave similarly to MYC/BCL2 double-hit lymphomas

[27–29]. In addition, it has been proposed that the poor prognosis of ABC vs. GCB type in

DLBCL may be largely explained by MYC/BCL2 double-expression rather than COO per se

[26], although COO assignment using an RNA-based expression platform designed for forma-

lin-fixed paraffin-embedded tissue appears to support the prognostic impact of COO indepen-

dent of MYC/BCL2 double-expression [31]. Currently, these IHC studies are increasingly used

as part of risk stratification of DLBCL but do not directly impact therapy [25,26]. In this study,

we further characterize the clinicopathological significance of active BCR signaling, as deter-

mined by qIF, in a cohort of primary DLBCL samples (N = 93) by correlating signaling inten-

sity with clinical features and tumor cell characteristics. We demonstrate that concurrent high

expression of MYC and BCL2 by IHC is positively correlated with previously studied markers

of activated BCR signaling. These findings imply that the BCR signaling pathway is more active

in DEL compared to other DLBCL subgroups and may represent a rational therapeutic target

in this aggressive subgroup of DLBCL.

Methods

Case selection

To analyze clinicopathologic features associated with activated BCR signaling in a cohort of

primary DLBCL samples, we obtained clinical follow-up data from electronic medical records

of patients from the original validation cohort from the previously published study [16]. This

cohort consisted of 144 consecutive DLBCL patients diagnosed at the Massachusetts General

Hospital between 2000 and 2006. Patients were identified via a computer-assisted search of

electronic pathology reports and only cases with sufficient tissue for tissue microarray (TMA)

construction were selected for further study following Institutional Review Board approval.

Tumors were classified according to the 2008 World Health Organization classification [1].

Tissue microarray construction, immunofluorescence and

immunohistochemistry

TMA construction was conducted as described previously [32]. Briefly, three 0.6 mm diameter

tissue cores were punched from representative regions of each donor tissue block and inserted

into a recipient paraffin block using a semiautomatic robotic precision instrument. Immuno-

fluorescent staining and quantification on the TMA was performed as described previously

[16] and as detailed in S1 Text. Tumors were further characterized by IHC for various antigens

previously shown to be prognostic in DLBCL. TMA sections 4 μm thick were prepared, depar-

affinized and rehydrated according to laboratory protocols. Staining was performed using

Leica BOND Polymer Refine DAB Detection kits on a Leica BOND-III Autostainer (Leica Bio-

systems, Buffalo Grove, IL) using validated staining protocols. On line antigen retrieval was

performed prior to incubation with the primary antibodies. Antibodies studied, and their

MYC/BCL2 double-expressor lymphoma shows evidence of active B-cell receptor signaling
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clones, dilutions and sources were as follows: MYC (clone Y69, 1:50, Epitomics), BCL2 (clone

bcl-2/100/D5, prediluted, Leica), CD10 (clone 56C6, prediluted, Leica), BCL6 (clone LN22,

prediluted, Leica), MUM1 (clone EAU32, prediluted, Leica), Ki67 (clone MIB-1, 1:200, Dako),

CD30 (clone BerH2, 1:50, Dako) and p53 (clone DO-7, prediluted; Leica).

All immunohistochemical stains were evaluated via consensus review by two hemato-

pathologists (AEK and ARS), who were blinded to the results of qIF and to patient outcome.

Stains for MYC, BCL2, Ki67, CD30 and p53 were scored on tumor cells in increments of 10%.

Based on prior data examining optimum survival cutoffs for dichotomizing levels of expres-

sion, 40% positivity was used as a cut-off for MYC and 50% positivity for BCL2 overexpression

[25]. Therefore, DEL was defined as tumors demonstrating�40% MYC and�50% BCL2

expression. COO (GCB vs. non-GCB) was determined using the Hans classifier (CD10, BCL6,

MUM1), with positive expression for each antibody defined as�30% tumor cell staining [33].

Fluorescence In Situ Hybridization (FISH)

FISH was performed on 4μm thick TMA sections as described previously [34]. Rearrange-

ments involving the following loci were assessed using the probes indicated (each from Abbot

Molecular, Des Plaines, IL): MYC/8q24 (Vysis LSI MYC Dual Color Break-Apart Rearrange-

ment Probe), BCL2/18q21 (Vysis LSI BCL2 Dual Color Break-Apart Rearrangement Probe),

and BCL6/3q27 (Vysis LSI BCL6 Dual Color Break-Apart Rearrangement Probe). Fifty to 100

nuclei were scored per case, and a case was considered positive for the rearrangement if 20%

or more nuclei exhibited a break-apart signal.

Statistical analysis

The initial statistical analysis of qIF data has been previously described [16]. The mean and

standard deviation of pLYN+(%), combined score of pSYK+(%) and pBTK+(%) expression

derived from linear regression using a maximum-likelihood algorithm (hpSYK,pBTKi), and

cytoplasmic localization score of FOXO1 (Fcyt), a surrogate marker of AKT activation, were

calculated. Results from untransformed data are based upon arithmetic means, and trans-

formed data are based upon medians, of two to three samples per clinical specimen. Details

regarding transformation and reanalysis of BCR signaling classification are provided in S1

Text. Welch’s unequal variances t-test was used to compare qIF markers (pLYN, pSYK, pBTK,

FOXO1), adjusted where noted by the Holm-Bonferroni correction. Pearson’s χ2 test with

Yates’ correction was used to compare nominal variables. Overall survival (OS) was defined as

the time from diagnosis to death from any cause. OS was analyzed using the Kaplan-Meier

method with censoring. The log-rank test used to compare differences in survival between

groups.

Results

Of 144 clinical specimens examined, 93 fulfilled criteria for measurement of pLYN, hpSYK,

pBTKi and Fcyt and were evaluable for BCR signaling by qIF. Among the immunohistochemi-

cal markers studied, high MYC expression (27/93 cases, 29%) and DEL (21/93 cases, 23%) were

found to be positively correlated with markers of activated BCR signaling by qIF (Table 1). The

significance of the association increased progressively for markers further downstream of the

BCR, from pLYN (p = 0.08), to hpSYK,pBTKi (p = 0.02), to Fcyt (p = 4×10−5). Examples of

BCR+ and BCR- cases and their differences in MYC and BCL2 expression are illustrated in

Fig 1.

No correlation was observed between BCR signaling markers and the other clinical or path-

ological parameters studied, including age; sex; COO as assessed by the Hans classifier;

MYC/BCL2 double-expressor lymphoma shows evidence of active B-cell receptor signaling
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expression of BCL2 alone, BCL6, Ki67, CD30 or p53 by IHC; or MYC, BCL2 or BCL6 rear-

rangement status as determined by FISH. Of note, only 8% of cases harbored a MYC rear-

rangement and no cases of MYC/BCL2 or MYC/BCL6 double-hit lymphoma were identified.

Based on previously established criteria [16], we initially classified cases with>15% pLYN

and>15% hpSYK,pBTKi as BCR-positive (BCR+), and cases with<15% pLYN and<15%

hpSYK,pBTKi as BCR-negative (BCR-). Despite the observed association of BCR signaling

markers with DEL, we found no significant association of DEL with classification as BCR+,

although there was a significant association of DEL with Fcyt (Table 2). We therefore re-exam-

ined our criteria for BCR classification. Two problems are evident: first, the use of percentage

Table 1. Clinicopathologic and qIF characteristics of DEL vs. non-DEL.

Category All MYC+1 MYC-1 DEL2 non-DEL2 MYC+ vs. MYC-3 DEL vs. non-DEL3

N 93 27 66 21 72

Clinical parameters

Age4 62±16 64±16 61±16 66±14 61±16 ns ns

Male 57 19 38 15 42

Female 36 8 28 6 30 ns ns

Treatment

CHOP 16 5 11 5 11

R-CHOP 56 14 42 11 45

R-other 6 2 4 2 4

Other 5 1 4 1 4

Unknown 10 5 5 2 8

Immunophenotype

pLYN+ (%)4 36±32 51±35 30±28 48±35 33±30 0.008 0.08

hpSYK,pBTKi (%)4 29±29 44±30 24±27 44±32 25±27 0.005 0.02

Fcyt
4 52±30 70±22 45±30 73±21 47±30 4×10−5 4×10−5

GCB 50 10 40 8 42

non-GCB 43 17 26 13 30 ns ns

BCL2 (%)4 45±37 69±36 36±34 86±16 34±34 2×10−4 6×10−15

CD30 (%)4 8±18 4±13 10±19 4±13 10±19 ns ns

Ki67 (%)4 63±24 73±23 59±23 69±23 62±23 0.009 ns

p53 (%)4 19±28 29±33 14±25 27±30 16±23 0.05 ns

FISH (+ve/-ve/ND)5

MYC 7/81/5 5/19/3 2/62/2 4/14/3 3/67/2 ns ns

BCL2 13/79/1 3/23/1 10/56/0 3/17/1 10/62/0 ns ns

BCL6 8/76/9 3/20/4 5/56/5 2/15/4 6/61/5 ns ns

1 MYC� 40%.
2 MYC� 40%, BCL2� 50%.
3 p-values are uncorrected for multiple comparisons. Holm-Bonferroni corrections (MYC+ vs. MYC-): p = 0.02 (pLYN), p = 0.02 (hpSYK,pBTKi), p = 2×10−4

(Fcyt), p = 0.001 (BCL2), p = 0.02 (Ki67), p = 0.05 (p53). Holm-Bonferroni corrections (DEL vs. non-DEL): p = 0.08 (pLYN), p = 0.04 (hpSYK,pBTKi),

p = 1×10−4 (Fcyt), p = 2×10−14 (BCL2).
4 Expressed as mean +/- standard deviation.
5 No cases of MYC/BCL2 or MYC/BCL6 double-hit lymphoma were identified.

Abbreviations: CHOP—cyclophosphamide, doxorubicin, vincristine, and prednisone; COO—cell of origin; DEL—double-expressor lymphoma; FISH—

fluorescence in situ hybridization; GCG—germinal center B-cell type; IHC—immunohistochemistry; ns—not significant; R-CHOP—rituximab,

cyclophosphamide, doxorubicin, vincristine, and prednisone; R-other—rituximab alone or other rituximab-containing regimen; qIF—quantitative

immunofluorescence.

doi:10.1371/journal.pone.0172364.t001
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positive cells is not optimal because the data is not evenly distributed over the range of

0–100%; and second, the definition of BCR+ and BCR- excludes cases with >15% pLYN but

<15% hpSYK,pBTKi, or vice versa, corresponding to 18/93 (19%) of cases in the current

cohort.

Accordingly, we returned to the original qIF data for BCR signaling markers in activated

DLBCL cell lines [16] and applied a modified logit transformation to correct the uneven distri-

bution of data (S1 Fig). Unsupervised normal mixture modeling readily clustered known

BCR+ and BCR- cell lines (S2 Fig). We then defined a hyperplane equally weighted according

Fig 1. Differences in MYC and BCL2 expression by IHC in a BCR-negative and a BCR-positive case. Bar graph of percent

positive (+ve) for BCR phosphomarkers pLYN, <pSYK, pBTK> and Fcyt and representative images of H&E stain and MYC and BCL2

immunohistochemical stains for two representative cases. (A) A BCR-negative case that was negative for MYC and positive for BCL2

expression. This patient responded to R-CHOP therapy and was alive with no evidence of disease 10 years following diagnosis. (B) A

BCR-positive case with MYC/BCL2 double-expression. This patient expired within several months of diagnosis despite receiving

R-CHOP.

doi:10.1371/journal.pone.0172364.g001

Table 2. Association of DEL with BCR and Fcyt classification (untransformed).

DEL non-DEL Pearson’s χ2 p value

All cases 21 72

BCR+ 13 29 3.75 0.15

BCR- 4 29

Other* 4 14

Fcyt+ (>50) 17 30 10.04 0.001

Fcyt- (<50) 4 42

*Cases with >15% pLYN but <15% hpSYK,pBTKi or vice versa that are unclassified based on previously

established criteria for BCR positivity.16

Abbreviations: BCR—B-cell receptor; DEL—double-expressor lymphoma.

doi:10.1371/journal.pone.0172364.t002
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to the three transformed BCR markers, pLYN, pSYK and pBTK, in order to separate the two

clusters for unambiguous assignment of all specimens as either BCR+ or BCR- (S1 Text).

We applied the same transformation to the 93 clinical samples of DLBCL. The untrans-

formed data were unevenly distributed, being clustered near the origin and 100% (S3 Fig). The

logit transformed data were more evenly distributed (Fig 2), in closer agreement with a stan-

dard error distribution assumed by a standard t-test. Following logit transformation, DEL

cases showed significantly higher levels for each individual BCR signaling marker compared to

non-DEL cases, including after Holm-Bonferroni correction for multiple hypotheses testing

(Table 3).

We tested recursive partitioning to generate a decision tree (S4 Fig), but this was not an

effective means for selecting DEL cases on the basis of BCR signaling markers. We also applied

unsupervised clustering by normal mixture modeling to the qIF data of the TMA (S1 Text).

Two clusters were generated for putative BCR+ and BCR- cases, but no significant association

between BCR status and DEL was detected. However, when the hyperplane derived from

reanalysis of DLBCL cell lines was applied to classify BCR+ and BCR- cases, a significant

Fig 2. Logistic transform of BCR signaling markers in DLBCL specimens. Pairwise scatterplots of

transformed (logit) data for pLYN+CD20+, pSYK+CD20+, pBTK+CD20+ and the untransformed ratio of FOXO1

cytoplasmic staining (Fcyt) in 93 primary DLBCL cases. Cases are classified as BCR+ (red) or BCR- (black)

based on a hyperplane based upon normal mixture modeling of BCR activation in ten DLBCL cell lines (S1

Text).

doi:10.1371/journal.pone.0172364.g002
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association was observed between BCR status and both DEL and Fcyt via this revised classifica-

tion (Table 4).

Treatment information was known in 83/93 patients (89%), the largest proportion of whom

received R-CHOP (56/83, 67%) (Table 1). Survival data were available in 88/93 patients (95%),

with a median follow-up of 60 months. Patients with DEL had significantly shorter OS com-

pared to those with non-DEL (median OS 21 months vs. not reached, p = 0.03, Fig 3A). The

difference between DEL and non-DEL was no longer significant when analysis was restricted

to R-CHOP-treated patients, likely due to the smaller sample size (Fig 3B). In addition, no sig-

nificant OS difference was seen between BCR+ vs. BCR- cases (Fig 3C), or between cases with

net cytoplasmic localization of FOXO1 (Fcyt>50 vs. Fcyt<50, Fig 3D). There were also no sta-

tistically significant differences in OS between DEL/BCR-, DEL/BCR+, non-DEL/BCR- and

non-DEL/BCR+ cases (S5 Fig). Hence, while active BCR signaling and FOXO1 cytoplasmic

localization were associated with DEL, they showed no apparent association with OS in the

cohort comprising this study.

Discussion

In this study, we demonstrate that among several pathological features assessed by IHC and

FISH, MYC expression by IHC was the only one positively correlated with markers of active

BCR signaling as determined by qIF. In addition, DEL showed greater BCR activation as com-

pared to non-DEL based on individual phosphomarker expression, FOXO1 cytoplasmic locali-

zation, and overall BCR activity classification. Overall, our findings suggest that the BCR

signaling pathway is more active in DEL compared with other DLBCL subgroups and raise the

possibility for targeting the BCR signaling pathway with agents, such as ibrutinib, in this infe-

rior prognostic subgroup of DLBCL.

Although DEL correlated with both OS and activated BCR signaling, we were unable to

demonstrate a direct association between active BCR signaling and OS, which may be related

Table 3. Association of DEL with BCR classification according to logit transformation.

DEL Non-DEL t-test*

pLYN 0.027 -1.59 p = 0.02 (0.02)

pSYK -0.66 -2.36 p = 4×10−3 (8×10−3)

pBTK 0.025 -2.21 p = 2×10−3 (5×10−3)

Fcyt 70 47 p = 7×10−4 (3×10−3)

*p values in parentheses adjusted for Holm-Bonferroni correction.

Abbreviations: BCR—B-cell receptor; DEL—double-expressor lymphoma.

doi:10.1371/journal.pone.0172364.t003

Table 4. Association of DEL with BCR (transformed) and of BCR (transformed) with Fcyt

classification.

DEL Non-DEL Pearson’s χ2 p value

BCR+ 15 28 5.68 0.02

BCR- 6 44

BCR+ BCR-

Fcyt+ (>50) 33 15 18.40 2×10−5

Fcyt- (<50) 10 35

Abbreviations: BCR—B-cell receptor; DEL—double-expressor lymphoma.

doi:10.1371/journal.pone.0172364.t004
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to the retrospective nature of our study, the relatively small number of patients within different

immunohistochemical subgroups, and the non-uniform treatment received (as treatment was

not a selection criterion for inclusion in our TMA), all important limitations of our analysis.

However, our findings suggest that study of a larger number of uniformly treated patients may

help to clarify the prognostic and predictive implications, if any, of activated BCR signaling in

DLBCL and DEL. In addition, as with immunohistochemical studies of a similar nature, pre-

analytical variables and inter- and intraobserver variability in scoring tissue sections may con-

found the results. Therefore, validation of these findings is warranted following the develop-

ment of multiplex quantitative IHC assays for simultaneous and objective scoring of multiple

markers.

The exact mechanisms linking BCR signaling to MYC expression have yet to be elucidated.

The MYC oncogene is a transcription factor that has a broad effect on gene expression: it

regulates more than 15% of human genes, including a number of microRNA (miRNAs), and

contributes to the pathogenesis of many human cancers [35,36]. Activation of MYC has a pro-

found role in a variety of cellular processes including proliferation, DNA replication, metabo-

lism, and protein and nucleotide biosynthesis. Hence, its dysregulation is associated with

genomic instability and oncogenic potential. Studies of P493-6, a human B-lymphoid cell line

with tet-repressible MYC gene and enrichment of MYC-repressed genes, show evidence for

the role of miR-17~92, a MYC-regulated miRNA, as a major regulator of BCR pathway com-

ponents [37]. The miR-17~92 cluster has a strong oncogenic role: it is known to regulate mul-

tiple cellular processes that contribute to malignant transformation, cell survival and rapid cell

Fig 3. Kaplan-Meier analysis of overall survival (OS) based on DEL and BCR classification. (A) OS for DEL (solid) vs. non-DEL

(dashed) cases (p = 0.03) among all patients with available follow-up. (B) OS for DEL (solid) vs. non-DEL (dashed) cases restricted to

R-CHOP-treated patients. (C) OS for BCR+ (solid) vs. BCR- (dashed) cases according to the revised definition for BCR positivity. (D)

OS for cases with Fcyt>50 (solid) vs. Fcyt<50 (dashed).

doi:10.1371/journal.pone.0172364.g003
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proliferation, and it has been implicated in various B-cell malignancies, including DLBCL [38–

41]. In the P493-6 cell line, many of the direct targets of miR-17~92 were found to be immu-

noreceptor tyrosine inhibitory motif (ITIM)-containing proteins, including CD22 [37]. Inter-

estingly, either MYC or miR-17~92 expression was necessary to sustain phosphorylation of

SYK and B-cell linker protein (BLNK) upon BCR activation. Furthermore, BCR stimulation

by miR-17~92 resulted in elevated MYC protein levels and enhanced calcium influx, while

inhibition of the miR-17~92 diminished the BCR response as measured by SYK and BLNK

phosphorylation. Thus, it appears that the MYC-miR-17~92-BCR axis may constitute a novel

lymphomagenic feed-forward loop in which MYC amplifies BCR signaling and increases its

own protein levels via upregulation of miR-17~92 and targeting of ITIM proteins. This study

also showed that human DLBCLs of the BCR subtype by molecular profiling express higher

levels of MYC transcript and MIR17HG, the precursor transcript derived from the miR-17~92
gene, compared to other subtypes [42]. Other data suggest that MYC may act as a universal

amplifier of expressed genes in lymphocytes and embryonic stem cells by enhancing preexist-

ing transcriptional programs rather than being an on/off specifier [43,44]. Therefore, it is pos-

sible that our results simply reflect increased BCR-mediated gene transcription that is present

to some extent in all DLBCL but further regulated and enhanced by overexpression of MYC. A

recent study in precursor B-cell acute lymphoblastic leukemia revealed that pre-BCR signaling

regulates PI3K/AKT, FOXO1 and MYC and can be a target of SYK inhibition [45]. Interest-

ingly, this report shows that the pre-BCR regulates MYC in a FOXO1-dependent manner.

Finally, early data show that MYC and BCR signaling may also be interconnected through reg-

ulation of MYC stability via post-translational modification and phosphorylation at specific

MYC residues [46].

DEL is characterized by an aggressive clinical course and inferior response to R-CHOP

therapy, indicating the need for more individualized therapeutic approaches targeting particu-

lar signaling pathways [23–26]. Active BCR signaling can be detected using qIF of phosphory-

lated forms of BCR-associated kinases LYN, SYK and BTK in nearly 50% of DLBCL and can

be used as a tool in formalin-fixed paraffin-embedded tissue samples to identify patients who

may benefit from anti-BCR therapies [16,47,48]. Our findings suggest that the BCR signaling

pathway as assessed by qIF shows higher activity in MYC-high DLBCL and DEL compared

with other DLBCL subgroups. We also confirm the utility of MYC and BCL2 IHC, tests that

are more readily available and less costly than FISH, to identify DLBCL cases with an unfavor-

able prognosis. Our preliminary findings suggesting the potential utility of BCR signaling

inhibitors in DEL require validation in prospective studies incorporating MYC/BCL2 double-

staining and qIF of BCR signaling molecules to identify patients most likely to respond to such

agents. Such a strategy may also help to clarify the interplay between BCR signaling and MYC

overexpression in DLBCL.

Supporting information

S1 Text. Supporting methods.

(PDF)

S1 Fig. Logistic transform as a function of percentage. Plot of logit(p) vs. p.

(TIF)

S2 Fig. Logistic transform and cluster analysis of BCR signaling markers in DLBCL cell

lines. (A) Pairwise scatterplots of untransformed data for %pLYN+, %pSYK+, %pBTK+ in ten

DLBCL cell lines. Uneven distribution with crowding at the origin is evident. (B) Pairwise scat-

terplots of transformed (logit) data for %pLYN+, %pSYK+, %pBTK+. (C) Pairwise scatterplots
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of transformed (logit) data for %pLYN+, %pSYK+, %pBTK+, with centroids for two clusters

generated by unsupervised normal mixture modeling. BCR+ (blue), BCR- (red). (D) Pairwise

scatterplots of aggregated (median) transformed data for %pLYN+, %pSYK+, %pBTK+, with

centroids for two clusters generated by unsupervised normal mixture modeling. BCR+ (blue),

BCR- (red).

(TIF)

S3 Fig. Untransformed data for BCR signaling markers in primary DLBCL specimens.

Pairwise scatterplots of untransformed data for %pLYN+CD20+, %pSYK+CD20+,

%pBTK+CD20+ in tissue microarray of primary DLBCL specimens. Uneven distribution

with crowding at the origin and near 100% is evident.

(TIF)

S4 Fig. Recursive partitioning of DEL vs. non-DEL cases according to BCR signaling mark-

ers. Decision tree based on unsupervised recursive partitioning of DLBCL primary specimens

according to BCR signaling markers. Each intersection within the tree is labeled based on the

majority of cases, and the number of DEL cases (left) and non-DEL cases (right) given below

and the percent (%) of all cases within the cohort. Below the tree are one- and two-dimensional

scatterplots of cases based on single or pairwise classification by the four BCR signaling mark-

ers pLYN, pSYK, pBTK and Fcyt. Cases are assigned as either DEL (red) or non-DEL (blue),

and cut-offs determined by recursive partitioning indicated by step function (1-D) or black/

white masking (2D). Note: logistic transform for generation of plots used ε = 1×10–3, resulting

in slight reduction in overall data range compared to other Figs.

(TIF)

S5 Fig. Kaplan-Meier analysis of overall survival (OS) based on DEL and BCR classifica-

tion. OS for DEL/BCR- (solid black), OS for DEL/BCR+ (dashed black line), non-DEL/BCR-

(red solid) and non-DEL/BCR+ (dashed red).

(TIF)
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