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ABSTRACT: Despite the technological importance of super-
critical fluids, controversy remains about the details of their
microscopic dynamics. In this work, we study four supercritical
fluid systemswater, Si, Te, and Lennard-Jones fluidvia classical
molecular dynamics simulations. A universal two-component
behavior is observed in the intermolecular dynamics of these
systems, and the changing ratio between the two components leads
to a crossover from liquidlike to gaslike dynamics, most rapidly
around the Widom line. We find evidence to connect the liquidlike
component dominating at lower temperatures with intermolecular
bonding and the component prominent at higher temperatures
with free-particle, gaslike dynamics. The ratio between the
components can be used to describe important properties of the
fluid, such as its self-diffusion coefficient, in the transition region. Our results provide an insight into the fundamental mechanism
controlling the dynamics of supercritical fluids and highlight the role of spatiotemporally inhomogeneous dynamics even in
thermodynamic states where no large-scale fluctuations exist in the fluid.

■ INTRODUCTION

In the past few decades, supercritical fluids have attracted
renewed interest due to their applications in a wide range of
chemical and materials processing industries.1 Most interesting
applications of supercritical fluids fall in the region close to the
critical point.1,2 There, the fluids exhibit unique properties
combining the advantages of liquids (e.g., high densities) and
gases (e.g., high diffusivities), and these properties are highly
tunable with relatively small changes in temperature, T, and
pressure, P.2 Thus, it is important to understand these
properties and their dependence on the thermodynamic state.
Thanks to many years of research, the thermodynamics of

supercritical fluids, which is based on their macroscopic
properties, has become well understood. In particular, the
concept of the Widom line has been introduced to refer to the
line of maxima of a given response function, such as the
isobaric heat capacity, CP.

3 Although not a rigorous separatrix
between liquid and gas states,4 the Widom line indicates rapid
changes in the thermodynamic properties of supercritical
fluids, especially in the near-critical region. Around the Widom
line, a crossover between liquidlike and gaslike properties is
expected for the fluid.5

The picture is less clear when it comes to molecular-scale
dynamics of supercritical fluids, which should reveal the
microscopic mechanism behind many of the macroscopic
properties. One of the first systematic studies on this topic was
done by Simeoni et al.6 Using classical molecular dynamics
(MD) simulations supported by inelastic X-ray scattering

(IXS) data, they observed a crossover in the deep supercritical
region along an extension of the Widom line.
Our previous work7 focused instead in a region close to the

critical point, where the Widom line is very clear. We used
both IXS measurements and MD simulations to study the
intermolecular dynamics of supercritical water in the region 0.9
< P/Pc < 2.3, 0.6 < T/Tc < 1.2, where Pc and Tc are the critical
pressure and temperature. Contrary to previous approaches,6,8

we found that the intermolecular dynamics at a given P,T state
cannot be consistently described using models developed for
liquids, but instead can be decomposed into two compo-
nentsa high-frequency component associated with the
stretching mode between hydrogen-bonded molecules and a
low-frequency component representing free-particle motions.
With changing thermodynamic states, it is the ratio between
the two components that changes, with a rapid crossover
observed near the Widom line. However, remnants of both
components can be found on either side of the Widom line.
It is natural to ask whether the observed two-component

dynamics is specific to water, whose liquidlike dynamics arises
from hydrogen bonds, or can be generalized to other
supercritical fluids. In this work, we aim at answering this
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question by studying the potentials representing four different
supercritical fluid systemswater, Si, Te, and Lennard-Jones
(LJ) fluidvia classical MD simulations. Even though these
systems have very different interatomic potentials (see the
Methods section), the two-component behavior is universal in
their molecular dynamics. Moreover, we find evidence to
associate the liquidlike component with the degree of
intermolecular bonding and the gaslike component with
dynamics similar to that in an unbonded, free gas state. As
in the case of water, a fast change in the ratio between the two
components marks the dynamical crossover, but both
components exist on either side of the transition. The fraction
of the components can also be used to describe the transport
properties of the fluid, such as its self-diffusion coefficient.

■ METHODS
Simulation Details. In this study, we investigate four fluid

systems with different potential models:

(1) Water, with the TIP4P/2005 potential.9 This potential
includes a Lennard-Jones (LJ) interaction between
oxygen sites and long-range Coulomb force between
all charged sites.

(2) Si, with the Stillinger−Weber (SW) potential.10 This
potential includes pairwise interactions as well as three-
body interactions, both short-ranged (cutoff at 3.771 Å).
The three-body interaction term favors local tetrahedral
ordering.

(3) Te, with an analytical bond-order potential (BOP).11

This potential considers the effect of bond orders, which
are functions of the local environments of the atoms, on
the bond energy.

(4) LJ fluid, with the shifted-force (sf) potential
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is the standard 12-6 potential. ϵ and σ are energy and distance
units, respectively. Other units for the LJ fluid can be expressed
in terms of ϵ, σ, and the atomic mass M. For example, the unit

for time is τ σ≡ ϵM /2 . In this work, we set Rc = 2.5σ.
The MD simulations are carried out using the LAMMPS

simulation package.12 The simulation box contains 2880
molecules for water and 4000 atoms for Si, Te, and LJ fluid.
We use NPT ensembles, with a Nose−́Hoover thermostat and

barostat. The damping constants are 1 ps for water, Si, and Te,
and 1 τ for LJ. After equilibration at each P,T state, the
simulation is run for 1 ns (with 1 fs time steps) for water, 0.4
ns (with 1 fs time steps) for Si, 1 ns (with 2.5 fs time steps) for
Te, and 1000 τ (with 0.001 τ time steps) for LJ.

Critical Parameters. Table 1 presents the critical point
parameters for the fluid systems in this study. The TIP4P/
2005 model for water, the SW model for Si, and the LJ fluid
model are well studied, and their critical parameters can be
found in the literature. The critical point parameter for the
BOP Te model is determined using a direct MD simulation
method;13 more details are provided in the Supporting
Information. Most of the results below focus on the
temperature dependence of the properties of the fluid along
an isobar P ≈ 1.6Pc; the exact value of P for each system is
listed in the last column in Table 1. Figure 1 shows the

(reduced) P−T phase diagram of all of the systems, as well as
the thermodynamic states simulated in this study. We note
that, as mentioned in the Discussion and Conclusions section,
the two-component phenomenon is not an anomaly arising
from large-scale critical fluctuations, and the isobars taken are
sufficiently away from the critical point. Therefore, the results
in this study are robust against errors in the critical point
parameters.

■ RESULTS

Two-Component Dynamics. The molecular dynamics of
fluids is usually described by the dynamic structure factor, S(Q,
ω), which measures the correlation of density fluctuations in
wavenumber (Q) and frequency (ω) space.19 It is defined as

Table 1. Critical Point Parameters for the Models Used in This Study and the Isobar Pressure Pa

model Tc Pc ρc P T range

water14 640 ± 16 146 ± 7 0.337 ± 0.008 225 546−846
Si15 7925 ± 250 1850 ± 400 0.75 ± 0.10 2850 5200−11 200
Te 2080 ± 40 530 ± 40 2.17 ± 0.04 870 1160−2760
LJ16 0.937ϵ/kB 0.0820ϵ/σ3 0.320σ−3 0.13ϵ/σ3 0.7−1.3ϵ/kB

aThe units for water, Si, and Te are: Tc in K, Pc and P in bar, and ρc in g/cm3. The last column shows the temperature range investigated for each
system.

Figure 1. P−T phase diagram of the systems in reduced units. The
lines show the liquid−vapor coexistence line for the systems (see refs
16−18 for water, Si, and LJ, and the Supporting Information for Te),
which terminate at the critical point (CP, black star). The symbols
show the thermodynamic states included in this study.
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where angular brackets indicate the ensemble average and
ρQ(t) = ∑n = 1

N eiQ·rn(t)/√N is the density in Q-space at time t,
with rn(t) being the position of the nth atom. In this paper, we
take the classical limit. S(Q, ω) is one of the most important
functions to describe the molecular dynamics of fluids, as it
contains all of the relevant information on the dynamics of the
system.19 Moreover, at wavenumbers approaching intermo-
lecular scales (Q ∼ Å−1), S(Q, ω) can be directly measured
using inelastic neutron and X-ray scattering.19,20

The dynamics in different thermodynamic states can be
conveniently compared using the longitudinal current
correlation J(Q, ω), defined by replacing the density ρQ(t) in
eq 3 with the longitudinal current jQ,l(t) = ∑n = 1

N vn,l(t)e
iQ·rn(t)/

√N. Here, vn,l(t) denotes the velocity of the nth atom along
the direction of Q. It bears a simple relation to S(Q, ω)19

ω ω ω=J Q
Q

S Q( , ) ( , )l

2

2 (4)

J(Q, ω) obeys the classical sum rule19

∫ ω ω =
−∞

∞M
k T

J Q( , )d 1
B

l (5)

where the pre-factor contains only the molecular mass M, the
Boltzmann constant kB, and the temperature T, all of which are
known constants for the simulation. This provides a simple
way to normalize and compare the spectra for different
thermodynamic states.
With the help of this normalization, the two-component

behavior in the fluid systems becomes clear. This can be seen
in Figure 2, where the symbols on the left column show the
normalized spectra, Jl(Q, ω) ×(M/kBT), obtained from MD
simulations. Each row presents one of the four fluid systems in
this studywater, Si, Te, and LJ fluidas indicated. For each
system, three temperature points are taken along an isobar of P
≈ 1.6Pc as indicated in Table 1: a low-temperature state (blue
circles), an intermediate-temperature state (gray squares), and
a high-temperature state (red triangles). The Q value is chosen
to be ∼0.5Qm, where Qm is the position of the first peak in the
structure factor S(Q); in real space, this Q corresponds to
approximately twice the average intermolecular distance. We
note that the same two-component phenomenon can be
observed at other Q values at least in the range of 0.3Qm to
0.8Qm, as was also the case in our previous work.7

The black lines in Figure 2 show the spectra expected of the
gas state. For water, Si, and LJ fluid, this is taken to be the free-
particle limit, assuming simply a Maxwell−Boltzmann velocity
distribution with no interaction7,19
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where ≡v k T M/0 B is the thermal velocity. The temperature
is taken to be the same as the high-T state, although small
changes in T lead only to a slight shift (∝√T) in the peak
position and do not appear to significantly influence the results
below. For Te, the gas phase is diatomic (i.e., it consists of Te2
dimers), so there is an additional peak around 23 meV
corresponding to the dimer stretching mode (see the
Supporting Information for more details). Hence, a simple

expression cannot be obtained for Jl
free(Q, ω), and we use

instead a low-P spectrum at 100 bar, 2760 K, where the density
is only 0.109 g/cm3 compared to the critical density of 2.17 g/
cm3. It can be seen that the high-T spectrum is close to the gas
state for all systems.

Figure 2. Two-component behavior in the longitudinal current
correlation function. Each row shows a different fluid system. The left
columns show data from simulation (symbols) along with the NMF
fit (solid lines). For each system, we choose three states along an
isobar P ≈ 1.6Pc: a low-temperature, liquidlike state (blue circles), an
intermediate state in the crossover region (gray squares), and a high-
temperature, gaslike state (red triangles). The right column shows the
L component (dash-dotted lines) and G component (dashed lines)
obtained from NMF, and the peak positions are marked by
corresponding symbols. For reference, we show in both columns
the gas limit as black dashed lines without symbols. σ and ϵ are LJ
units.
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From these plots, it is clear, particularly for Si and Te, that
the intermediate state contains features of both the low- and
high-temperature spectra as in the case of water.7 Specifically,
the intermediate spectrum in Si shows both the peak around
55 meV, which is prominent in the low-T state and the peak
around 20 meV, which dominates the high-T state, and
similarly for Te (including the dimer oscillation peak around
23 meV). In the case of the LJ fluid, even though we do not
observe two distinct peaks, the intermediate-temperature
spectrum can still be interpreted as a linear combination of
the high- and low-temperature states. In addition, as will be
shown below, this interpretation can be used to predict other
properties of the LJ fluid in the same way as for the other
systems. Therefore, our results show that there is a universal
two-component behavior in the supercritical fluids under
study.
NMF Analysis and the Liquidlike-to-Gaslike Transi-

tion. To describe the spectra quantitatively, a method is
needed to extract the two components. To our knowledge,
however, no existing theory can adequately describe the two-
component phenomenon and provide a model to fit the data.
Therefore, we adopt the non-negative matrix factorization
(NMF) method21 used in our previous study,7 which provides
a model-free way to extract the components in the spectra.
Mathematically, we optimize the decomposition

ω

ω ω= +

M
k T

J Q P T

c P T J Q c P T J Q

( , ; , )

( , ) ( , ) ( , ) ( , )
B

l

L l
L

G l
G

(7)

where Jl
L(Q, ω) and Jl

G(Q, ω) are the L and G components
dominating in the liquidlike (low T) and gaslike (high T)
states, respectively; the shapes of these components are
assumed to be independent of P and T. The pressure and
temperature dependence of the normalized spectra are
captured entirely in the coefficients cL(P, T) and cG(P, T).
When fitting, we include all temperatures along the isobar and
add the gas state as well. It also turns out that spectra from
different Q’s can be fit together, resulting in the same
coefficients cL(P, T) and cG(P, T). Because we are interested
in molecular-scale dynamics, in this work, we typically use data
from 0.3Qm to 0.8Qm, which corresponds to length scales on
the same order as the average intermolecular distance. Small
changes in the Q range used for fitting do not have a significant
influence on the results below. When Q < 0.3Qm, the data tend
to be noisier because of the finite system size and energy
resolution.
Results of the NMF decomposition are shown in Figure 2.

On the left column, the solid lines show the NMF fit (sum of
the components), which agrees well with data (symbols); on
the right column, the G and L components are shown as
dashed and dash-dotted lines, respectively, with the corre-
sponding symbols indicating their respective peak positions. In
all systems, the G component is close in shape to the gas-state
spectrum and the L component peaks at a higher frequency.
With increasing temperature, the spectral weight shifts from
the L component to the G component, leading to a liquidlike-
to-gaslike transition.
Because of the sum rule, eq 5, we normalize the L and G

components as well so that ∫ −∞
∞ Jl

L,G(Q, ω)dω = 1. As a result,
cL + cG = 1, so we may interpret cL and cG as the fraction of the
L and G components. If we now define the parameter f ≡ cL, it
can be seen from eq 7 that the spectral evolution is captured

entirely by the single parameter f as a function of P and T, and
any dynamical crossover on an isobar should show up when
plotting f(T).
Therefore, in Figure 3, we present f as a function of reduced

temperature T/Tc for all four systems. The overall shape and

value of the curves are very similar for all of the systems. This is
consistent with van der Waals law of corresponding states22

and provides evidence for the universality of the two-
component behavior among supercritical fluids. In particular,
all curves show an “S” shape with a rapid decrease slightly
above T/Tc = 1. The position of the fast change in f agrees well
with the expected location of the Widom line. To show this, we
plot in Figure 4 the enthalpy, H, against the parameter f. The
former can be easily obtained from MD simulations. An
approximately linear relation can be seen between f and H for
all systems, with linear fits shown as solid lines. Because the
isobaric heat capacity, CP, is the derivative of H with respect to

Figure 3. Dependence of the fraction of the L component, f, on
reduced temperature T/Tc along the isobar P ≈ 1.6Pc. Blue squares:
water; yellow crosses: Si; green circles: Te; red triangles: LJ fluid.
Dashed lines are a guide to the eye.

Figure 4. Relation between the enthalpy, H, and the parameter f. Data
are shown as empty circles, and the linear fits are shown as solid lines.
ϵ is the LJ energy unit (see Methods).
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temperature along the isobar, the linearity between f and H
implies that |df/dT| peaks at roughly the same temperature as
CP, i.e., near the Widom line. In other words, the dynamics
change most rapidly around the Widom line. We note that
although the Widom line here has a specific definition (CP
maximum along an isobar), in the near-critical region, it is
expected to lie close to the Widom lines obtained by other
definitions as well. For example, in the case of water, it has
been shown that the rapid changes in f are close to the Widom
lines with several different definitions.7

L Component and Intermolecular Bonding. Having
established above that the G component corresponds to the
gas state, we now turn to the physical origin of the L
component. In the case of water, our previous work7 has
provided evidence that this component is related to the O−O
stretching motion between hydrogen-bonded molecules.
Therefore, it is reasonable to hypothesize that the L
component in the other systems is related to intermolecular
bonding as well.
To investigate this, it is necessary to define “bonding” for

these systems. Because the LJ fluid has only a pairwise
interaction that depends solely on the interatomic distance, it
is natural to define a cutoff distance Rb, below which a pair is
considered bonded. In the following, we take Rb = 1.6σ, close
to the first minimum in the radial distribution function g(r) in
the low-temperature state at T = 0.7ϵ/kB, P = 0.13ϵ/σ3 (see the
Supporting Information for details on g(r)).
The cases of Si and Te are in principle more complicated.

Unlike water, whose hydrogen bonds can be defined by the
geometry and/or the interaction energy between two
molecules, Si and Te contain interaction terms that involve
three or more atoms (see the Methods section). To our
knowledge, there is no established way to define “bonding” in
these systems. Hence, we simply define two atoms to be
bonded if they are closer than a cutoff distance Rb. As in the
case of the LJ fluid, Rb is chosen to be around the first
minimum in the radial distribution function for the low-
temperature state, which is about 3.5 and 4.2 Å for Si and Te,
respectively (see the Supporting Information).
In Figure 5, the circles show the average number of bonds

each atom (or water molecule) has, N̅b, plotted against the
parameter f. For water, as in our previous work, we use a
common definition for hydrogen bonding: two molecules are
hydrogen-bonded if their O−O distance is less than 3.5 Å and
the O···O−H angle is less than 30°.23,24 For Si, Te, and LJ, we
use the cutoff distance definition mentioned above. The data
show very good linearity between N̅b and f. Moreover, for
water, Si, and LJ, the data are consistent with a zero intercept
at f = 0, as the solid lines show. For Te, as mentioned above
and shown in more detail in the Supporting Information, the
gas state consists of Te2 dimers, so we expect each atom to
have exactly one bond. Indeed, the data are consistent with an
intercept of N̅b = 1 at f = 0, as the solid line shows. These
results strongly support that the L component, which
dominates in low-temperature, liquidlike states, is directly
related to intermolecular bonding for all systems studied. In
the gas state, little to no bonding remains, and the L
component disappears. We note that for water, using other
hydrogen-bonding definitions with various levels of strictness
does not alter the conclusion, and for Si, Te, and LJ, the
conclusion is robust against changes in the cutoff distance
being used up to at least 10% (see the Supporting
Information).

Application: Modeling the Self-Diffusion Coefficient.
Our results above have provided evidence for the two-
component dynamical behavior and have shown that f is a
descriptor for the microscopic dynamics in the liquidlike to
gaslike crossover. Since the microscopic dynamics is closely
related to the macroscopic transport properties, there should
be a close relation between f and transport properties as well.
Below we show one such example.
One of the most important transport properties for

supercritical fluids, especially for industrial applications, is the
self-diffusion coefficient, D. This quantity can be easily
obtained from MD simulations using the mean-square
displacement19

= ⟨| − | ⟩
→∞

D
t

t
r r1

6
lim

( ) (0)
t

2

(8)

where r(t) is the position of a given particle at time t. Here,
angular brackets denote the ensemble average. For water, we
use the position of the O atom. The simulation times are long
enough to reach the t → ∞ limit. Alternatively, D can be
obtained using the velocity autocorrelation function19

∫= ⟨ · ⟩
∞

D t tv v
1
3

(0) ( ) d
0 (9)

where v(t) is the velocity of a given particle at time t. The
results from the two methods agree within 5%.
Earlier work5 found that the self-diffusion coefficient for

supercritical water appeared to follow an Arrhenius equation in
the liquidlike and the gaslike region along each isobar. A
dynamical crossover was found in between, but no specific
model was given to describe it. Here, we propose a model in
which the parameter f is used to describe this transition.
A good model should reduce to the observed dependence in

the gaslike and liquidlike limits. In the limit of a dilute gas, it is
well known25,26 that D has a power-law dependence on either
the temperature T or the density ρ (T and ρ are inversely

Figure 5. Relation between the number of bonds per atom (or water
molecule), N̅b, and the parameter f. Data are shown as empty circles.
For water, Si, and LJ, the data are consistent with an intercept of N̅b =
0 at f = 0, as the solid lines show. For Te, the data are consistent with
an intercept of N̅b = 1 at f = 0 shown by the solid line.
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related on an isobar by the ideal gas law). Since in this limit the
density should be proportional to the number of bonds per
atom, which is in turn proportional to f, we expect D to have a
power-law dependence on f as well. In the dense liquid limit, D
is often described instead by the free volume model:27,28 D ∝
exp(−Av/Vf), where Av is a constant and Vf is the free
molecular volume (i.e., the average volume per molecule in
excess of its van der Waals volume). Under the framework of
our two-component dynamics description, we draw an analogy
between the free volume, Vf, and the fraction of the gaslike
component, 1 − f. This can be justified by noting that, as
shown above, the gaslike dynamic component corresponds to
free-particle-like diffusive motions in the fluid. Therefore, in
the dense liquid limit, we expect D ∝ e−A/(1−f), where A is a
constant.
Combining the two limits, we build the following model for

the self-diffusion coefficient

= −
−

− i
k
jjjjj

y
{
zzzzzD D f

A
f

exp
1

n
0

(10)

where D0, n, and A are constants. In the gaslike limit, f → 0, so
D → D0 f−ne−A ∝ f−n, i.e., it shows the expected power-law
dependence. In the liquidlike limit, f → 1, so D → D0e

−A/(1−f)

in line with the discussion above. We use eq 10 to fit the data
with D0, n, and A as fit parameters, and the results are shown in
Figure 6. The model is able to fit the data well, including the

crossover region near the Widom line, where D increases
rapidly with temperature. Values of the fit parameters are
shown in Table 2. Except for Te, the exponent n in the gas
limit is similar to literature values: n = 1.5 from the Chapman−
Enskog theory,26 and n = 1.823 for nonpolar systems according
to Slattery and Bird’s fit for experimental data.25 Note that, as
mentioned above, on an isobar, we expect f ∝ ρ ∝ T−1, so we
can rewrite expressions in the literature in terms of f. Through
this example, we show that f can be used to describe
macroscopic transport properties across the liquidlike-to-
gaslike transition, connecting the limits of a dense liquid and

a dilute gas. Given the proportionality between f and the
number of bonds, N̅b, eq 10 may also be rewritten in terms of
N̅b and expanded to cover a wider range of thermodynamic
states. This can be grounds for future investigations.

■ DISCUSSION AND CONCLUSIONS
To demonstrate the universality of the two-component
phenomenon, we have chosen in our study four systems
containing very different interatomic interactions (see the
Methods section for more details)the simple pairwise LJ
potential, TIP4P/2005 water9 with long-range Coulomb
forces, Stillinger−Weber (SW) silicon10 with a three-body
term favoring local tetrahedral coordination, and tellurium
bond-order potential,11 where the gas phase is diatomic. The
appearance of the two-component dynamics in all systems
shows that this phenomenon is not specific to the local
bonding mechanism but common among several supercritical
fluid systems. Consequently, any theory describing the
molecular-scale dynamics of supercritical fluids, particularly
the crossover between liquidlike and gaslike behavior, should
take into account the existence of at least two components in
the dynamics.
We note that the two-component phenomenon is not an

anomaly arising from large-scale critical fluctuations since the
thermodynamic states in this study are sufficiently far away
from the critical point and no such large-scale fluctuations are
observed in our simulations. Instead, our results suggest the
presence of spatiotemporally heterogeneous dynamics on the
molecular scale, reflecting unbounded and bounded particle
motions. Notably, a recent work29 using machine learning on
local structural information has also found the existence of
molecular-scale heterogeneities in supercritical LJ fluids.
Because of this, the two-component phenomenon is not
expected to appear in the long-wavelength (low Q) limit. This
has not been explored in our study by the low Q cutoff around
0.3Qm as mentioned in the Results section. Nonetheless,
macroscopic quantities are influenced by their microscopic
mechanisms and, as shown above, the use of the two-
component model for the molecular dynamics can help build a
more fundamental understanding of macroscopic properties
such as the diffusion coefficient.
We mention here another dynamical crossover proposed in

the literature, the “Frenkel line”, which separates the
supercritical region into “rigid” and “nonrigid” fluids depend-
ing on the relaxation time of the system.30 The underlying
assumption there is that a single relaxation time describes the
dynamics of all of the fluid. Here, we have shown, at least in
the near-critical region we have investigated, that the dynamics
is spatiotemporally heterogeneous. Thus, it is not appropriate
to describe the dynamics as purely liquidlike or gaslike, but
rather a combination of both. In our previous work on
supercritical water7 including both experimental and simu-
lation results, no significant change was observed near the

Figure 6. Self-diffusion coefficient, D, plotted against reduced
temperature along an isobar P ≈ 1.6Pc. The MD data are shown as
black dots. The red lines show the fits using eq 10 over the range,
where f is available through the two-component analysis.

Table 2. Fit Parameters for the Self-Diffusion Coefficient
Model, Eq 10a

system lnD0 n A

water −3.16 ± 0.28 1.38 ± 0.12 0.181 ± 0.075
Si −2.66 ± 0.11 1.84 ± 0.07 0.034 ± 0.021
Te −3.83 ± 0.08 1.22 ± 0.08 0.033 ± 0.006
LJ −1.93 ± 0.10 1.42 ± 0.08 0.044 ± 0.008

aD0 is in units of mm2/s (for water, Si, Te) or σ2/τ (for LJ).
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proposed Frenkel line position. However, we have not
investigated the deep supercritical region, where the Frenkel
line might also exist;30 this may be a subject for future studies.
A limitation of our methodology using the NMF

decomposition is the assumption that the shapes of the
components do not change with the thermodynamic state.
This of course does not work at all temperatures and pressures;
for example, going to extremely high temperatures, the free-
particle limit will be broadened according to eq 6. However,
the fact that the NMF fit shown in Figure 2 works well
indicates that this assumption is valid over the temperature
range under study, around 0.6Tc to 1.4Tc. As mentioned in the
Introduction section, this range around the critical point is the
most interesting for applications. A more rigorous theory
taking into account the change in the shape of the components
may be able to describe a wider range of thermodynamic
conditions.
We emphasize that one interesting point of our approach is

that it can be checked against scattering experiments, for
example, high-resolution inelastic X-ray scattering.20 These
experiments directly measure the dynamical structure factor,
S(Q, ω),19,20 and the simple relation given by eq 4 connects it
to Jl(Q, ω). The Jl(Q, ω) spectra are all that is needed for the
two-component analysis and the extraction of the parameter f.
Thus, f is a descriptor of microscopic dynamics that is
experimentally accessible and, as shown above, it is connected
with various other properties of the fluid. In our previous
work,7 we have indeed used inelastic X-ray scattering to
measure the molecular dynamics of supercritical water and
found excellent agreement between experimental data and MD
simulation results. Similar measurements can be done on other
supercritical fluid systems as well to verify experimentally the
universality of the two-component phenomenon found in this
study. We note that, while the TIP4P/2005 water potential
and the LJ potential have been shown to reproduce well
experimental data on the dynamics of supercritical water7 and
argon,31 the Si and Te potentials used in this study have not
been optimized or checked against experimental data in the
supercritical region since no data is yet available.
This universality and the close relation between intermo-

lecular bonding and the L component is reminiscent of the
well-known lattice gas model,32,33 which forms the basis
connecting the liquid−gas critical point to the 3D Ising
universality class. In the lattice gas model, a liquid-to-gas
transition takes place with the breaking of bonds, which is
similar to the behavior of f and its connection to intermolecular
bonding found in our study. Furthermore, we note that both in
the lattice gas model and in our two-component analysis, the
liquidlike-to-gaslike transition happens gradually with a
continuous loss of bonds. Therefore, our study suggests that
the understanding of supercritical fluids based on the lattice
gas model may be extended into the description of their
molecular dynamics as well.
In conclusion, our results show that the two-component

phenomenon in the molecular dynamics, previously observed
in supercritical water,7 is universal among several supercritical
fluid systems with different intermolecular interactions. While
the gaslike (G) component corresponds to free-particle motion
in a dilute gas, the liquidlike (L) component can be associated
with intermolecular bonding (a generalization of hydrogen
bonding in the case of water). These observations are shown to
have important implications for transport properties such as
the self-diffusion coefficient, particularly in bridging the

liquidlike-to-gaslike transition, which is relevant to industrial
applications.
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