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Abstract: Cataracts account for over half of global blindness. Cataracts formations occur mainly due
to aging and to the direct insults of oxidative stress and inflammation to the eye lens. The nuclear
factor-erythroid-2-related factor 2 (Nrf2), a transcriptional factor for cell cytoprotection, is known as the
master regulator of redox homeostasis. Nrf2 regulates nearly 600 genes involved in cellular protection
against contributing factors of oxidative stress, including aging, disease, and inflammation. Nrf2 was
reported to disrupt the oxidative stress that activates Nuclear factor-κB (NFκB) and proinflammatory
cytokines. One of these cytokines is matrix metalloproteinase 9 (MMP-9), which participates in the
decomposition of lens epithelial cells (LECs) extracellular matrix and has been correlated with cataract
development. Thus, during inflammatory processes, MMP production may be attenuated by the Nrf2
pathway or by the Nrf2 inhibition of NFκB pathway activation. Moreover, plant-based polyphenols
have garnered attention due to their presumed safety and efficacy, nutritional, and antioxidant effects.
Polyphenol compounds can activate Nrf2 and inhibit MMP-9. Therefore, this review focuses on
discussing Nrf2’s role in oxidative stress and cataract formation, epigenetic effect in Nrf2 activity,
and the association between Nrf2 and MMP-9 in cataract development. Moreover, we describe the
protective role of flavonoids in cataract formation, targeting Nrf2 activation and MMP-9 synthesis
inhibition as potential molecular targets in preventing cataracts.
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1. Introduction

Cataracts are the leading cause of blindness throughout the world. World Health Organization
(WHO) estimates from 2010 indicate that cataracts are responsible for 51% of global blindness [1]. It is
well known that aging is the main cause of opacification of the eye lens epithelia, either as a direct
result of numerous environmental, nutritional, or metabolic injuries or as an indirect result of systemic
or ocular diseases including diabetes, glaucoma, and retinal degenerative diseases [2,3].

As aging is an inevitable process, finding improvements in mechanisms to preserve sight from
avoidable blindness is the focus of numerous research programs. Recent advances in non-surgical
treatment options for cataracts, such as management of optimal refractive and glasses for glare reduction,
can reduce the effect of cataract formation [4]. Cataract surgery is still a safe, well-validated treatment
option, but not without caveats. Surgery-associated complications such as cystoid macular edema
and posterior capsular opacification may arise and unavoidably cause irreversible blindness [5–7].
Rates from the US Cataract Patient Outcomes Research Team (PORT) indicate that cataract surgery has
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led to 3.21% for cystoid macular edema [5–7], 0.81% for posterior capsular opacification [5–9], and
1.1% for lens dislocation [5,6]. Thus, there is a need to identify non-surgical therapeutics with benefits
outweighing the risks of surgery.

Oxidative stress can directly influence the solubility of the lens proteins, which increases the
lens’s opacity. Oxidation seems to be a very early event that leads to cataracts formation [10,11].
The decline of antioxidants compounds levels may sign the changes that occur during senile cataract
development [12]. With aging, the antioxidant potency is decreased, such as the diminished levels of
glutathione or antioxidant enzymes expression [13]. Another vital contributor to cataract formation is
the activity of matrix metalloproteinases (MMPs), which may decompose the extracellular matrix (ECM)
of lens epithelial cells (LECs). MMPs were described to be associated with diabetic cataract [14–16], and
increased levels of MMP-2 and MMP-9 in lenses stressed by oxidative stress, radiation, or transforming
growth factor-β (TGF-β) were reported to contribute to cataract formation [17,18]. Numerous studies
have shown evidence that alteration in the expression of MMPs may be associated with multiple
cataract phenotypes [17], and thus, inhibition of their activity may have therapeutic potential.

It is crucial to identify novel compounds with antioxidant effects that could modulate molecular
targets and prevent cataract formation. Additionally, compounds that can inhibit the expression of
MMPs may help maintain the integrity of ECM and avoid further damages that could lead to cataracts.
In this regard, plant-derived polyphenols, particularly flavonoids, have garnered attention due to
their presumed safety and efficacy, nutritional, and antioxidant therapeutic effects. These compounds
have been described to activate the nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a transcription
factor involved in the regulation of cytoprotective genes and cellular protection against oxidative
stress contributing factors such as aging, disease, and inflammation. Flavonoids also have shown
an inhibitory activity in the expression of MMPs in ocular cells, such as human LECs. Therefore,
this review describes (1) the association of oxidative stress in cataract formation, (2) the role of the
transcription factor Nrf2 in reducing oxidative stress and its protective effect against cataract formation,
(3) the role of epigenetic in Nrf2 expression, (4) MMP-9 expression in cataract formation, and (5) how
MMP inhibitors may be useful tools for cataract prevention. Moreover, we discuss the use of flavonoid
supplements that may increase Nrf2 activity and attenuate MMP-9 expression, which may be new
targets to prevent or slow the lens cataract progression.

2. Types and Causes of Cataract Development

The cataracts types are classified according to their location on the lens. Nuclear cataract, usually
a result of advanced age, is the one found at the center of the lens; cortical cataract is usually related
to diabetes and corresponds to the one that extends from the outside to the center of the lens; and
subcapsular cataract which is associated to radiation from microwave, diabetes, and patients who take
steroids and develops at the lens back portion [19].

A cataract is considered a multifactorial disease and can develop from several reasons such
as congenital defects, age, injuries, systemic inflammation and degeneration, endocrine disorders
and biochemical abnormalities, drug abuse, radiation, and oxidative stress [20]. Hereditary genetic
anomalies correspond to one-third of the factors that contribute to congenital cataracts [21], and it may
happen in the presence or not of aniridia, microphthalmia, developmental anomalies in the anterior
chamber, degeneration of the retina, or other genetic disorders such as chromosome abnormalities [22].
A congenital cataract may also be caused by malnutrition or infection during pregnancy [23], as well
as endocrine disturbance [22], drug abuse, or radiation exposure [23]. A higher incidence of cataracts
was observed in women compared to men, where African and Hispanic Americans seem to have twice
the risk compared to Caucasians [21]. A senile cataract occurs in people over 50, and it becomes more
often and severe in the elderly [24]. Aging is the most frequent risk factor for cataracts, and it is linked
to decreased levels of glutathione and broad modification of nuclear proteins, including change in
color and oxidation [19].
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There is a higher chance of cataract in smokers, linked to increased harshness of nuclear opacities.
Inhaled smoke contains aromatic compounds that modify lenticular components oxidatively [25].
Traumatic cataracts can be developed after eye injuries such as physical injuries and eye lens capsule
discontinuation. With the capsule breaking of the outer lens, a water swelling of the inner lens
occur and becomes white, leading to lens proteins denaturation. Complicated cataract refers to
a type that is not a primary disease to the eye but comes from other diseases, such as some of
the drugs used in glaucoma treatment [21], eye inflammation, and uveitis originated from some
autoimmune diseases [23]. A metabolic cataract is caused by endocrine disorders such as diabetes
mellitus, which is connected with the development of several systemic and ocular complications
that may lead to vision loss [26,27]. In vivo and in vitro studies have indicated that uncontrolled
diabetes may lead to hyperglycemia, which is linked to ocular tissues with non-enzymatic protein
glycation [28], osmotic stress [29], and oxidative stress [30], leading to cataracts. Many drugs can also
contribute to cataracts, including steroids [31] and neuroleptic drugs employed in psychiatric disorders
treatment [32]. Long-acting cholinesterase inhibitors might stimulate the anterior sub-capsular granular
type of reversible cataract [23]. Several toxins, including synthetic medications, were reported to trigger
cataracts, including acetone, dinitrophenol, cresol, and paradichlorobenzene. Alcohol consumption
elevates the possibility of nuclear, cortical, and posterior sub-capsular cataracts since the lenses are
susceptible to oxidative stress and the direct toxic effect of alcohol [33,34].

3. Pathophysiology of Cataracts

The human eye lens epithelium comprises the middle layer of the lens and contains a monolayer of
metabolically active (i.e., oxidation) epithelial cells [35]. During aging, the migration of LECs to the inner
fibrous portion of the lens occurs and it causes them to become lens fibers, gradually compressing and
forming nuclear opacity [35]. Additionally, oxidative stress may induce degradation and aggregation of
the lens α, β, and γ crystalline proteins, which comprise 90% of lens proteins, resulting in opacity and
cataract formation [4,35–38]. Other major contributors to oxidative stress in the lens include damage
in DNA, lipid peroxidation, and an imbalance in calcium homeostasis [39]. Glutathione, one of the
main antioxidants in the eye lens, typically protects lens proteins against reactive oxygen species (ROS)
including hydroxyl radicals, superoxide, and hydrogen peroxide (H2O2) in healthy lenses; reduced
glutathione converts to its oxidized form when it reacts with ROS and is reinstated through glutathione
reductase action, which is synthesized and regenerated on the lens cortex [40]. H2O2, a significant
contributor to oxidative stress and the pathogenesis of cataracts, is generally removed by glutathione
or by the activity of catalase and glutathione peroxidase [41]. Conversely, a decrease in these protective
mechanisms’ activity occurs with aging, resulting in elevated H2O2 levels in the lens, inhibition of
membrane lipids and proteins that work as transporters (Na+K+ATPase), and ultimately leading to
lens epithelial cell death and opacity [1,42].

Moreover, oxidative stress has been described as a crucial factor in cataract genesis. It rises as the
human lens age, leading to a significant increase in protein concentration in cataractous lenses [37].
The imbalance between ROS production and the cellular antioxidant defense system originates from
the oxidative stress process. In the eyes, cells ROS may induce toxic biochemical reactions, including
membrane lipids peroxidation and protein injure, leading to intracellular protein aggregation and
precipitation [37]. The ocular lens is at constant risk of photooxidative injure because of ambient oxygen
and exposition to light, leading to cataract. The oxygen-free radicals can affect the lens crystallins,
which form the opacities, and proteolytic enzymes that eliminate damaged proteins. Therefore, the
upregulations of antioxidants including glutathione, catalase, and superoxide dismutase may reduce
the modifications during senile cataracts development [43].

4. Nrf2 Reduces Oxidative Stress and Inflammation Levels

Nrf2 controls the redox homeostatic gene regulatory system, and the Nrf2 Kelch-like
ECH-associated protein 1 (Keap1) complex is known as one of the most important mechanism
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in the cellular defense against oxidative stress [35,36]. Nrf2 regulates approximately 600 cytoprotective
genes [36], serving as a critical nuclear transcriptional inducer by binding to the antioxidant response
element (ARE) in DNA promoters and controlling the transcription of many antioxidant genes such as
glutathione reductase, thioredoxin, and glutathione-S transferase [44,45]. To maintain homeostasis as a
sensor of oxidative stress, Keap1 serves as the main inhibitor of Nrf2, and regularly targets Nrf2 for
ubiquitination and subsequent degradation of 26S proteasomal to keep Nrf2 basal levels [46]. During
unstressed conditions, Nrf2 is kept in the cytoplasm bound to Keap1 in a relatively rapid interaction;
with a short half-life of 13–21 min, this rapid turnover ensures low, basal levels of Nrf2 [36,47–49].
During stressed conditions (i.e., oxidative or endoplasmic reticulum (ER) stress), Nrf2 separates from
Keap1, it is phosphorylated, translocated into the nucleus, and it stimulates the transcription of
antioxidant genes controlled by ARE, ultimately initiating the detoxification of ROS by the regulation
of glutathione levels [50] (Figure 1).
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Figure 1. Keap1-Nrf2 system. The figure shows Nrf2 activation during stress conditions, which leads
to the transcription of cytoprotective and antioxidant genes.

The discrepancy between ROS production and the antioxidants’ capacity to detoxify the reactive
intermediates can lead to oxidative stress [3,51]. Oxidative stress may be associated with several
abnormalities leading to cell apoptosis and death [52,53]. ROS are essentially short-lived and extremely
reactive and are stimulated by a diversity of intracellular pathways, including by-products of normal
aerobic metabolism or messengers in various signaling pathways [3]. As mentioned, enhanced
oxidative stress and the decrease of antioxidant defense are thought to be two main contributors to the
pathogenesis of age-related cataract development. Many studies have probed into the molecular details
of oxidative stress involvement. In particular, mechanisms of oxidative stress has been implicated in
the activation of transcription factors such as Nrf2 and Kelch-like erythroid cell-derived protein with
CNC homology (ECH)-associated protein 1 (Keap1), both involved in the activation of cell survival and
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death mechanisms [35,54,55] Phase II antioxidants such as heme oxygenase 1 (HO-1) are regulated by
the Nrf2. Overproduction of ROS leads to the suppression of Nrf2-dependent antioxidant protection
in LECs [42,51].

Previous studies have revealed that the transcription factor Nrf2 controls the expression of phase
II detoxifying enzymes and antioxidant genes that play a role in the cell defense against various injuries
through their anti-inflammatory effects, hence modulating the disease course [56–58]. High levels
of oxidative stress and elevated production of the ROS may help the formation of lipid peroxides
that contribute to aging pathologies that have a role in systemic and retinal degenerative diseases,
including diabetes and inflammation. These diseases are considered significant risk factors for the
formation of cataract [59].

5. Nrf2 Activation and Cataracts

Numerous studies have examined the antioxidant and anti-inflammatory effects of several Nrf2
inducers that may serve as potential anti-cataract therapeutic compounds. Nrf2 protective effects
may be increased by pharmacologic or molecular modulations, where increased antioxidant and
anti-inflammatory effects can offer new and helpful targets for devastating diseases that lead to
blinding [60]. Acetyl ester of the trimethylated amino acid L-carnitine (ALCAR) has been shown to
prevent cataract formation in rat models by increasing the levels of antioxidant proteins controlled
by Nrf2 and decreasing proteins induced by ER stress in homocysteine-treated cells [61]. Morin
(3, 5, 7, 20, 40-pentahydroxyflavone), widely used in herbal medicines, has been shown to increase
the Nrf2 protein levels and stimulate the extracellular signal-regulated kinase (ERK)-Nrf2 signaling
pathway in human LECs, leading to the upregulation of HO-1 and Nrf2 cytoprotective effects against
oxidative stress [62]. Plant-extracted isothiocyanate 1-isothiocyanato-4-methyl-sulfinyl butane (SFN)
has gained attention as a potential nutritional anti-cataract therapy by its ability to increase the activity
of thioredoxin reductase in the lens of mouse, which prevents oxidative stress and cataract formation
when consumed [63]. The multi-target neuroprotective drug, DL-3-n-butylphthalide (NBP), is widely
utilized to treat ischemic stroke patients and diminishes oxidative damage, enhances the function of the
mitochondria, lessens inflammation, and decreases neuronal apoptosis [64]. NBP has also been shown
to induce the expression of Nrf2 in the lenses of diabetic rats [64] and maybe a promising anti-cataract
therapeutic option with further investigation. Another plant-based therapeutic option with antioxidant
and free radical-scavenging capability, Rosa laevigata (RLM), has been examined in a model of diabetic
cataracts by Liu et al. using an immortalized LEC line (SRA01/04) [65]. RLM reduced ROS production
and improved mitochondrial membrane potential via the stimulation of HO-1 expression and Nrf2
regulated gene in hyperglycemic SRA01/04 cells, suggesting that the protective effects of RLM are
controlled by the PI3K/serine-threonine kinase (AKT) and Nrf2/ARE signaling pathways [65].

6. Epigenetics Modulation of Nrf2 Expression

Epigenetic factors that lead to protein misfolding and aggregation have been reported as
contributors to cataract formation. Post-translational modifications of lens proteins cause protein
destabilizations and subsequent aggregation [66,67]. Although cells have their mechanism of protection,
environmental stress and mutant proteins can stimulate cataract formation. The rough ER is responsible
for synthesizing the membrane, luminal or secretory proteins and then transporting it into the highly
oxidized ER lumen. Stress can cause the misfolding of these proteins in the ER, leading to cataract
development. The unfolded protein response intensifies crystallin and protein degradation and causes
modification and aggregation in the downstream cascade [68]. As a mechanism of defense, ER-stressed
cells increase their antioxidant ability to balance the ROS increase and homeostasis maintenance. Nrf2
is the crucial transcription factor that controls the genes that regulate the redox homeostasis [36].

The most common epigenetic modification induced by oxidative stress is DNA methylation,
limiting the activity of promoters and enhancers genes in somatic cells during aging [69]. DNA
methylation happens mainly at CpG dinucleotides. DNA methyltransferases transfer the methyl group
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to cytosine nucleotides, producing 5-methylcytosine, whose majority is found almost entirely within
CpG dinucleotides located in mammalian somatic cell’s DNA [70]. There is not much information on
the modifications in promoter DNA methylation patterns between normal lens aging and age-related
cataracts [71]. The epigenetic modification represents a mechanism that selectively alters gene function
as a response to conditions such as environmental and aging stresses.

Gao et al. found DNA methylation of the Keap1 promoter in non-cataractous human lens and
cultured LECs, suggesting that Keap1 promoter demethylation is an age-dependent, crucial process
for cataract formation [55]. Palsamy et al. described that methylated DNA sequence analysis of Nrf2
and Keap1 genes showed that the CpG dinucleotides in the Keap1 gene are epigenetically modified but
the same was not observed in Nrf2 gene [71]. As mentioned previously, the Nrf2-Keap1 complex is a
key cellular defender against oxidative stress, which is also connected with DNA hypomethylation in
the Keap1 gene in lens cataracts [36]. The loss of DNA methylation upregulates Keap1 gene expression;
a demethylated Keap1 promoter leads to an increase in the expression of Keap1 and enhanced levels
of Keap1 protein [36]. Elevated levels of Keap1 stimulate Nrf2 degradation by ubiquitin-mediated
proteasomal degradation and ER-associated degradation, leading to a decreased in Nrf2-dependent
antioxidant defense and shifting the redox balance more towards lens oxidation [36,46,71–74]. Misfolded
protein conformation then initiates misfolded crystallin aggregation production and, ultimately, cataract
formation [36]. DNA hypomethylation in the Keap1 promoter is close to 0% in the lens of individuals
around 17 years of age but is up to 40% and 50% in the lens of individuals aged 60 and 75 years,
respectively [36,71,73]. The loss of DNA methylation in aged populations (40–50%) is highly increased
(90%) with cataractogenic stress in those who develop cataracts associated to age, suggesting that
cataracts incidence is significantly enhanced with DNA hypomethylation [36,71,73].

7. Matrix Metalloproteinases Overexpression Induces Cataract Formation

In diabetic cataracts, a range of pathological changes of LECs directly impacts the disease [75].
Studies demonstrated that cataract LECs present a high expression of TGF-β1 linked with these
epithelial cells’ differentiation and proliferation [76]. Additionally, modifications to LECs’ extracellular
matrix formed by the lens capsule can influence cell differentiation and proliferation [18,77]. Matrix
metalloproteinases (MMPs) belong to a family of enzymes that regulate tissue remodeling and are
controlled by tissue inhibitors, known as tissue inhibitors of metalloproteinases (TIMPs), which regulate
activity of enzymes and proenzymes activation. Constitutive expression of numerous MMPs and
TIMPs has been observed in ocular tissues such as the lenses [78].

Matrix metalloproteinase 9, in particular, participates in the decomposition of LECs extracellular
matrix and has been correlated with diabetic cataract [18,77]. Increased activation of MMP-2 and
MMP-9 in lenses that suffered stress by oxidative processes, radiation, or TGF-β was observed in
process of corneal wound healing and cataract development [14–16]. Evidence shows that MMP-2
and MMP-9 expression is stimulated in different cataract phenotypes, including subcapsular cataract
(ASC) and posterior capsular opacification (PCO) [17,18]. Using MMP knockout mice, Korol et al.
observed that MMP-9 knockout mice showed resistance to TGF-β-induced ASC formation, suggesting
that inhibition of MMP activity through MMP inhibitors may help prevent some types of cataract,
including ASC and PCO [79]. Studies demonstrated an increase in MMP-9 expression by stimulating
the proteolytic cleavage of latent TGF-β and E-cadherin, leading to epithelial-mesenchymal transition
(EMT), which is linked to lens opacity [80,81]. Moreover, MMP-9 activity levels in LECs were measured
in patients with diverse age-related cataracts, showing that the main MMP-9 activity was found
in cortical cataracts [82]. Numerous studies indicate that MMPs have a crucial function in cataract
formation by the stimulation of intracellular β-crystallin aggregation and growth factor receptors
shedding [83,84]. Thus, inhibitors of MMPs may have the potential to prevent and treat ASC, PCO,
and cortical cataracts associated to age.
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8. Association between Nrf2 Expression and MMP-9 Activity

Numerous proinflammatory cytokines (i.e., MMP-9) are overexpressed after NFκB activation
by oxidative stress. This process of proinflammatory oxidative stress activates NFκB and causes
overexpression of cytokines. To disrupt this cycle, the activation of the Nrf2/ARE system is crucial [85].
The link between the expression of Nrf2 and MMP-9 has been studied in different models. Mao et al.
demonstrated that in Nrf2 function deficient mice, there was increased edema in the spinal cord,
exacerbated inflammatory response, activation of NFκB, production of TNF-α, and expression of
MMP-9 after the spinal cord injury, compared to the controls. The data suggested that Nrf2 expression
may have a protective function by controlling inflammatory responses [86]. The Nrf2/HO-1 axis
decreased the expression of two members of the MMP family; MMP-9 in macrophages and MMP-7 in
epithelial cells of the human intestine, improving the disease state of inflammatory bowel disease [87,88].
In Nrf2-knockout mice with skin damage induced by UV-radiation, higher levels of MMP-9 were
observed compared to the control, indicating that Nrf2 protects against UV radiation by reducing
MMP-9 expression [89]. It was also reported that in inflammation and tumor cell invasion, NFκB
signaling inhibition could reduce MMP-9 transcriptional activation [90]. Thus, during inflammatory
processes, MMP production may be controlled directly by the Nrf2 pathway or by the effect of Nrf2 in
the activation of the NFκB pathway [87].

9. Polyphenols and Nrf2 Activation

While the various polyphenols that have been discussed show potential in cataract treatment,
there are currently no known studies connecting their antioxidant effects on Nrf2 activation concerning
lens epithelia. However, a few studies have evaluated the Nrf2 activation capability of polyphenols
in human retinal epithelial cells (RPE). Using cultured human ARPE-19 cells and primary RPE,
Hanneken et al. found that quercetin protected RPE cells after oxidative stress exposure, and both
quercetin and epigallocatechin gallate (EGCG) induced the nuclear protein expression of Nrf2 and
HO-1 [91]. Sampath et al. investigated the cytoprotective effects of bioactive compounds isolated
from ginger, apple, and tea, including EGCG, on methylglyoxal-induced carbonyl stress RPE. They
showed that EGCG reduced the toxic effect of methylglyoxal [92]. EGCG was also reported to be a
potent inhibitor of advanced glycation end products compared to the untreated group, and phloretin,
an antioxidant chemical found in apples, significantly increased the translocation of Nrf2 to the
nucleus and enhanced HO-1 expression compared to cells treated with MGO only [92]. Hu et al.
examined thymoquinone (TQ) protective effect against H2O2-induced oxidative stress in RPE and
demonstrated that TQ induced Nrf2/HO-1 signaling activation compared with the H2O2 induction
group [93]. The results were further confirmed with si-Nrf2, where knockdown of Nrf2 abolished TQ’s
protective effect (compared with TQ treatment group) on H2O2-induced oxidative damage suggesting
that TQ protects RPE from oxidative stress via the Nrf2/HO-1 signaling pathway [93]. Studies such as
these are needed in lens epithelia to substantiate further the ability of polyphenols to induce Nrf2,
which, in turn, regulates the protective mechanism against cataract formation.

Another potential therapeutic plant-based compound that has been shown to involve the Nrf2
pathway is paeoniflorin (PF), a monoterpene glucoside compound extracted from Paeonia lactiflora
roots [94–96]. Wankun et al. explored PF’s effects on oxidative stress induced by H2O2 and the
mechanisms involved in Nrf2-related signaling pathways in human cultured ARPE-19 cells. MTT cell
viability assay showed that PF effectively prevented H2O2-induced cell death in a dose-dependent
manner and significantly inhibited H2O2-induced ROS production [96]. Although this study did
not explore the direct effects of PF on NRf2, PF treatment was found to both significantly inhibit
H2O2-induced caspase-3 activity and decrease phospho-p38 MAPK and phospho-ERK, suggesting
that PF mediates its protective effects through Nrf2-related signaling pathways [96].
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10. Polyphenols and MMP-9 Inhibition

Numerous studies have shown the inhibitory effect of polyphenols on the expression of MMP-9 [97]
in different models. Using a rat model (middle cerebral artery occlusion), Tu et al. reported that
baicalin, a flavonoid compound isolated from Chinese medicine radix of Scutellaria baicalensis Georgi,
decreased MMP-9 expression, protected tight junction proteins, reduced blood brain barrier (BBB)
damage, and attenuated brain edema [98]. In agreement, baicalin also attenuated the expression of
MMP-9 in rats with intracerebral hemorrhage brains, decreased BBB damage, and brain edema [99]. It
is not clear how baicalin reduces the expression of MMP-9, but it is known that inhibition of NFκB may
reduce the transcription of the MMP-9 gene in stroke models, decreasing the expression of MMP-9 [99].
Additionally, MAPK signaling, more specifically, p38, may be involved in the diminished levels of
MMP-9 [100]. Resveratrol, a natural phenol found in the Chinese herb Polygonum cuspidatum [101],
reduced the expression of MMP-9 in rodent ischemic brains, decreasing edema and lessening BBB
damage [102,103]. Using the molecular docking approach, resveratrol interacted with residues Glu
402, Ala 417, and Arg 424. It occupied the active site of MMP-9 [104], explaining the direct effect of the
compound in a stroke model. Moreover, in vitro studies reported that resveratrol inhibited MMP-9
expression by activating peroxisome proliferator-activated receptor-α and inhibiting extracellular
signal-regulated kinases [105,106]. Another polyphenolic compound extensively studied is curcumin,
from the Chinese medicine Curcuma longa Linn [107]. Curcumin was reported to reduce the expression
of MMP-9 in ischemic brains [108], possibly by the downregulation of NFκB activity, showing an
indirect effect [109]. ’t Hart et al. demonstrated that apocynin, derived from the medical plant Picrorhiza
kurroa [110], reduced BBB damage and protected tight junction proteins in a hyperglycemic rat (rat
middle cerebral artery occlusion model) via downregulation of MMP-9/-2 [111,112]. Many other
plant-derived compounds have been described to inhibit MMP-9 expressions, such as glycyrrhizin [113–
117] and caffeic acid [118]. Mendonca et al. demonstrated that 1,2,3,4,6-Penta-O-galloyl-Beta-D-glucose,
a polyphenolic compound found in many plants, inhibited proMMP-9 expression in LPS-activated
BV-2 microglial cells. The MMP-9 expression may be associated with Alzheimer’s disease and the
formation of senile plaques and neurofibrillary tangles, suggesting that MMP-9 could be a therapeutic
target to treat brain inflammation [119]. These studies show evidence that polyphenols can modulate
direct or indirectly the levels of MMP-9.

The effect of a citrus-fruit-derived flavonoid was also investigated in cataracts. Miyata et al.
demonstrated that the intake of polymethoxylated flavones (PMFs) isolated from Kaempferia. parviflora
caused a delay in cataract formation. These compounds inhibited the mRNA expression of MMP-9
stimulated by PMA, which is known to induce MMP-9 activity in LECs. Considering that MAPK
signaling is a crucial mechanism to regulate the expression of MMP, the study showed that PMA
increased MAPKs phosphorylation in LECs. At the same time, MAPK inhibitors, specifically for
ERK1/2, p38, and JNK, inhibited MMP-9 expression and its subsequent activity in SRA01/04 cells [120].
The PMFs also inhibited phosphorylation of p38 and JNK in SRA01/04 cells, indicating that these
flavones regulate MMP-9 mRNA expression via the PKC/p38 and PKC/JNK pathways in LECs [120].
Considering the crucial role of MMP-9 expression in cataract formation such as ASC and PCO, the
authors suggested that the dietary intake of PMFs may have a therapeutic potential to prevent or help
in the treatment of fibrotic cataracts.

11. Polyphenols and Cataract Formation

Non-enzymatic glycation is a mechanism associated to diabetic cataract development, and
advanced glycation end-products accumulation with age may lead to lens opacity [4]. Thus, compounds
with potent anti-glycating activity such as polyphenols are viable anti-cataract therapeutic options.
Polyphenols are dietary antioxidants commonly found in foods such as fruits, vegetables, nuts, seeds,
cereals, chocolate, and beverages such as tea, coffee, and wine [4]. With the growing interest in using
food as medicine, polyphenol nutraceuticals have gained attention in treating cataracts. Caffeic acid,
a naturally occurring cinnamic acid found in various plants such as coffee, pear, basil, oregano, and
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apple [4,121], has been shown to inhibit the formation of advanced glycation end-products [4,73,121].
Another naturally occurring cinnamic acid, ferulic acid, is found in vegetables, fruits, wheat, oats,
and rice and has been shown to prevent advanced glycation end products [4]. Recent studies have
investigated the therapeutic potential of several polyphenolic compounds on cataract development.
The following describes these compounds (Figure 2).

Nutrients 2020, 12, x FOR PEER REVIEW 9 of 22 

 

 

Figure 2. Flavonoid compounds and their chemical structure. 

11.1. Resveratrol 

Resveratrol (trans-3,40,5-trihydroxystilbene) is a naturally occurring polyphenolic phytoalexin 

member of the stilbene family of compounds with two aromatic rings joined by a methylene bridge 

and is mainly found in seeds and skins of grape and fruit berries [122,123]. Its antioxidant activities 

include decreasing the production of ROS and increasing protection against oxidative stress [4,124]. 

Resveratrol has also been shown to prevent cataract formation by suppressing apoptosis of LECs 

[4,124]. To further examine the effects of resveratrol on diabetic cataracts in rats, Higashi et al. used 

a preclinical model of streptozotocin-induction of severe hyperglycemia to promote diabetic cataract 

formation in seven-week-old male Wistar rats. All lenses from the control group were clear 

 CHEMICAL STRUCTURE 

Resveratrol 
 

 

 

 

Curcumin  

 

 

Quercetin  

 

 

Epigallocatechin 
Gallate 

 

 

 

Thymoquinone  

 

 

 

Figure 2. Flavonoid compounds and their chemical structure.



Nutrients 2020, 12, 3651 10 of 22

11.1. Resveratrol

Resveratrol (trans-3,40,5-trihydroxystilbene) is a naturally occurring polyphenolic phytoalexin
member of the stilbene family of compounds with two aromatic rings joined by a methylene bridge
and is mainly found in seeds and skins of grape and fruit berries [122,123]. Its antioxidant activities
include decreasing the production of ROS and increasing protection against oxidative stress [4,124].
Resveratrol has also been shown to prevent cataract formation by suppressing apoptosis of LECs [4,124].
To further examine the effects of resveratrol on diabetic cataracts in rats, Higashi et al. used a preclinical
model of streptozotocin-induction of severe hyperglycemia to promote diabetic cataract formation
in seven-week-old male Wistar rats. All lenses from the control group were clear throughout the
experimental period [125]. Cataracts were observed in 77% of the lenses of diabetic rats two weeks after
hyperglycemic-induction in the lens’s peripheral region [125]. In contrast, cataracts were detected in 75%
of lenses of diabetic rats treated with 10 mg/kg/day resveratrol, and 60% of lenses of diabetic rats treated
with 30 mg/kg/day resveratrol [125]. Cataract progressed with time throughout diabetic induction, with
40% of lenses developing hypermature cataracts nine weeks after induction; hypermature cataracts
occurred in 17% of lenses in the 10 mg/kg/day resveratrol treatment group and 5% of lenses in the 30
mg/kg/day resveratrol treatment group. Although resveratrol did not entirely prevent diabetic cataracts’
appearance, it significantly delayed cataracts’ progression compared with controls [125]. Higashi et al.
also examined the levels of sorbitol and protein carbonyls to measure polyol pathway activity and
reactive oxygen-mediated protein oxidation [37,125–127]. Both sorbitol and protein carbonyl levels
were increased in the lenses of diabetic rats compared to control rats [125]. Resveratrol blocked the
increased protein carbonyl levels, but not of sorbitol, in diabetic lenses, suggesting that resveratrol
delays diabetic cataracts’ progression in part by attenuating oxidative damage to lens proteins [125].
Although further work is needed to elucidate resveratrol’s detailed antioxidant mechanism, this work
demonstrated that its anti-cataract effect appears to be partially due to decreased oxidative damage to
lens proteins.

11.2. Curcumin

Derived from Curcuma longa L’s rhizome, curcumin has been used as an active ingredient
of herbal remedies to treat various diseases with its antioxidant, anti-inflammatory antimutagenic,
antimicrobial, and anticancer activity in traditional Chinese medicine and Ayurvedic medicine for
thousands of years [128–134]. Turmeric is a well-known source of curcumin as a spice widely used
in cooking. Despite its poor bioavailability, it is non-toxic and generally well tolerated at high doses
of 8 to 12 g/day humans [128,135]. Concerning its antioxidant properties, curcumin acts through
various mechanisms: it may scavenge ROS and reactive nitrogen species [128,136]; it may modulate
the activity of enzymes responsible for the neutralization of free radicals such as glutathione (GSH),
catalase (CAT), and superoxide dismutase (SOD) [128,137,138]; and it may inhibit enzymes that
generate ROS, such as lipoxygenase/cyclooxygenase and xanthine hydrogenase/oxidase [128,137]. In
cultured human LECs, Chhunchha et al. showed that curcumin inhibited peroxiredoxin 6, a pleiotropic
oxidative stress-response protein [128,139]. Curcumin has been explored in numerous cataract models,
demonstrating its ability to suppress oxidative stress induced by selenium and delay the formation
of cataracts by inhibiting non-enzymatic antioxidant depletion in rat organ cultured lens [128,140].
Curcumin was also shown to delay diabetic cataract progression, significantly decreasing GSH levels
and preventing the alteration of protein carbonyls, antioxidant enzymes such as glutathione peroxidase
glucose-6-phosphate dehydrogenase (G6PD), thus preventing hyperglycemia-induced oxidative stress
in rat lenses [128,141].

Recently, Cao et al. investigated the potential mechanism of the anti-cataract and cytoprotective
effects of curcumin using sodium selenite-induced cataract in vivo and LEC in vitro models [142].
Methods included CCK-8 assay and flow cytometry to assess cell viability, cell apoptosis, and cell cycle
in the in vitro studies along with RT-PCR and ELISA to analyze the expression of the following: heat
shock protein 70 (HSP70), 8-hydroxy-2-deoxyguanosine (8-OHdG), catalase, malondialdehyde (MDA),



Nutrients 2020, 12, 3651 11 of 22

SOD, and glutathione peroxidase (GSH-Px), caspase 3, Bcl-2 associated X (Bax), B-cell lymphoma
2 (Bcl-2), cyclooxygenase (Cox-2), c-met, and Slug [142]. In the in vivo studies, HSP70 levels and
8-OHdG and MDA activities were decreased in the lens from the curcumin treatment group compared
with the control group [142]. Conversely, activities of CAT, SOD, and GSH-Px were significantly higher
in the lens from the curcumin treatment group compared to the control group [142]. Cell viability and
apoptosis were significantly increased, and caspase-3, Bax, and Cox-2 expression were decreased in
LECs treated with curcumin compared to controls. These results suggest that curcumin attenuated
selenite-induced cataract formation by reducing intracellular ROS production and protecting cells
from oxidative damage [142].

11.3. Quercetin

Quercetin, which is also a flavonoid, is found in a diversity of fruits and vegetables and has been
shown to protect against cataracts induced by H2O2 and retinal lesions induced by diabetes [122,143].
Quercetin-3-D-galactoside (hyperoside), a type of flavonoid generally found in Hypericum perforatum L.,
can inhibit oxidative stress by upregulating ERK activity in hydrogen peroxide (H2O2)-treated human
LECs, which in turn increases Nrf2 expression and its antioxidant response [144]. Further studies on
the anti-aging functions are needed to understand its full potential in protecting LECs against cataract
formation. Park et al. recently examined the anti-cataract effect of eight dietary flavonoids, including
quercetin, in a glycation-induced goat lens organ culture study [144]. The researchers analyzed lens
transparency as the high refractive index; lens transparency is the essential prerequisite for visual
acuity [144]. Quercetin, along with kaempferol and taxifolin, effectively maintained lens transparency
and structural integrity of the glycation-induced cataractous lenses [144]. Together, this study’s results
focus on the use of quercetin, kaempferol, and taxifolin as potential candidates for the management of
glycation-induced cataract formation [144].

11.4. Epigallocatechin Gallate

Epigallocatechin gallate (EGCG) represents more than 50% of the polyphenols that are found in
green tea [122]. It has been shown to exhibit significant antioxidant properties through the inhibition
of ROS-generating enzymes [122]. Chaudhary et al. performed a series of elegant structural and
spectrophotometric analyses to assess the effects of EGCG on human γ crystallin aggregation in cataract
formation. One study determined the effect of EGCG on H2O2-mediated oxidation of tryptophan
(Trp) residues of a modified form of γ crystallin (HGCc) isolated from the human ocular lens cataracts.
Oxidation of Trp is thought to be a key factor in HGC modification starting at the center of the lens,
then spreading as oxygen diffuses to the center and is converted to H2O2, thereby damaging the lens
proteins [145,146]. The fluorescence intensity of N-formyl kynurenine (NFK), one of the major oxidized
products of Trp human crystallin [147], was used in this study to monitor the extent of Trp oxidation in
the presence and absence of EGCG. HGCc showed significant emission at 339 nm due to Trp residues
and a strong fluorescence at ~420 nm due to NFK when excited at 330 nm, confirming cataract presence
due to Trp oxidation [145]. Using a fixed amount of 200 mM H2O2 to keep the ratio of protein and
H2O2 at 1:100 and an excitation wavelength of 330 nm, a broad spectrum with a fluorescence maximum
located at ~420 nm was observed in the absence of EGCG [145]. A gradual decrease in the fluorescence
intensity of NFK was observed in the presence of increasing concentrations of EGCG from 0–16 mM,
suggesting the EGCG could hinder H2O2-oxidation of Trp at concentrations well below the toxicity
range of EGCG [145]. The researchers also studied the crystal structure to assess the docking of EGCG
and demonstrated that EGCG is positioned between the two lobes of HGC in close proximity of Trp 157,
Tyr 50, and Tyr 151 [145]. Thus, EGCG interacted with Trp of HGCc with high affinity accompanied by
quenching of the Trp fluorescence [145]. In all, these studies showed that Trp oxidation is involved in
oxidative stress-mediated cataract formation and the inhibitory potential of EGCG.

Another more recent study at Chaudhury et al. investigated the fibrillar aggregation of human
γβ-crystallin in the absence and presence of EGCG using numerous techniques [148]. A previous
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study by this group showed that EGCG inhibited photooxidative damage of human γβ-crystallin [149];
thus, they continued to assess the inhibitory potential of ECGC on human γβ-crystallin aggregation.
Human γβ-crystallin formed fibrillar aggregates at pH 2.0 (50 mMKCl/HCl) and were monitored in
the absence and presence of EGCG [148]. Turbidity assays showed that native γβ-crystallin rapidly
aggregated as depicted from the increase in the absorbance value at 350 nm of the protein in the
absence of EGCG after 24h (~0.25 a.u.) and 48h (~0.6 a.u.). In the presence of EGCG, a noticeable
decrease in the absorbance was seen (<0.1 a.u.) at 24h and 48h, suggesting that EGCG is capable
of preventing aggregation [148]. Kinetic studies assessed γβ-crystallin aggregation at low pH and
elevated temperature by measuring thioflavin T (ThT), a non-fluorescent dye in buffer/water whose
fluorescence intensity is enhanced when it binds with a fibrillar cluster [150]. Native γβ-crystallin
did not initially display any significant ThT fluorescence intensity at 485 nm (<175 a.u.). However,
ThT fluorescence intensity increased significantly to >400% higher after 48h (>525 a.u.) [148]. In
contrast, ThT fluorescence intensity was much lower in the presence of EGCG (<375 a.u.) at both
24h and 48h, indicating EGCG inhibited fibril formation. ANS fluorescence spectroscopy was also
used to assess the tertiary structure of γβ-crystallin fibrils. There was no significant difference in ANS
fluorescence intensity of native γβ-crystallin compared to γβ-crystallin fibril, which showed a strong
ANS fluorescence and pronounced blue shift at 48h post-incubation [148]. A significant reduction of
ANS fluorescence of γβ-crystallin incubated with EGCG (~175 a.u.) compared to native γβ-crystallin
(~280 a.u.) was also noted [148]. These results show that hydrophobic patches on γβ-crystallin solvent
are exposed under acidic conditions, resulting in conformational changes and partial loss of tertiary
structure and suggesting that EGCG prevents the hydrophobic site exposure on the protein [148].
Circular dichroism spectroscopy further monitored the secondary structural changes of γβ-crystallin
in the absence and presence of EGCG, with native human γβ-crystallin sample containing a mostly
β-sheet secondary structure and a much smaller decrease in absorption minimum at ~218 nm in the
presence of EGCG compared to no EGCG, suggesting that EGCG could protect the protein from being
aggregated [148].

To visually confirm the fluorescence studies, electron microscopy studies were employed. Using
high-resolution transmission electron microscopy (HRTEM), lower quantities of fibrils were seen in
the presence of EGCG at 24 h compared to control, and the fibrils seemed to disintegrate into smaller
aggregates after 48h [148]. Field emission scanning electron microscopy showed distinct, unbranched,
long curly fibrils at lengths of ~1 mm at the onset of incubation in the absence of EGCG [148]. With
fluorescence microscopy, γβ-crystallin showed amyloid fiber-like features of typical unbranched fibers
of ~20µm diameter and few mm in length; no fibrillar features were detected in γβ-crystallin in the
presence of EGCG [148]. These studies’ totality indicates that polyphenols such as EGCG prevents
γβ-crystallin fibrillar aggregation under stressed environments in part by preventing strands from
forming extended β-sheets [148]. Such approaches can help further identify the therapeutic properties
of EGCG and gives information about how to design EGCG nutraceuticals to combat cataract formation.

11.5. Nigella sativa and Thymoquinone

Nigella sativa oil (NSO), also known as black seed oil, belongs to the Ranunculaceae family and
typically contains >30 w/w of fixed oil and 0.40–0.45 w/w of volatile oil; the volatile oil typically
contains 18.4–24% thymoquinone (TQ) [151,152]. Both NSO and TQ have been reported to have strong
antioxidant properties against oxidative damage induced by various free radical generating agents
and have been used as nutraceuticals [151,152]. Two recent studies have evaluated the antioxidative
effects of NSO and TQ on ionizing-induced cataract formation. Eye damage is widely observed in
patients receiving total-body irradiation before bone marrow transplantation and ocular or head and
neck cancers. A damaging, downstream effect of this type of radiation is ROS production, leading to
cataract formation [151,153]. Both Demir et al. and Taysi et al. used similar approaches to investigate
the antioxidant and radioprotective effects of NSO and TQ [151]. After the tenth day of total cranium
radiation, both groups found the development of cataracts in 80% of the rats in the radiotherapy
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group [151,152]. Cataract rates dropped to 20% in NSO and 50% in TQ groups. They were limited to
grade 1 and grade 2 based on Chylack’s cataract classification system [152,154], showing that NSO and
TQ could prevent ionizing radiation-induced cataract formation [151,152]. Radiation-induced increases
in xanthine oxidase [151], nitric oxide synthase, nitric oxide, and peroxynitrite [152] were prevented by
NSO and TQ, suggesting that these substances could prevent irradiation-induced cataract formation
by decreasing the lipid peroxidation, preserving antioxidant enzyme activities, and inhibiting free
radical generation [151,152].

12. Conclusions

In conclusion, these studies indicate that increased oxidative stress via inflammation, protein
oxidation, unfolded protein response activation, DNA damage, and demethylation lead to injuries in the
lens epithelia and, ultimately, cataract formation. The Nrf2/Keap1/ARE signaling pathway has emerged
as one of the major cell defense mechanisms against oxidative stresses [35]. Chronic stressors suppress
Nrf2-dependent antioxidant protection by overproduction of ROS and/or DNA damage and subsequent
demethylation of Keap1, leading to loss of Nrf2 and ultimate cataract formation. As mentioned,
natural compounds such as resveratrol, curcumin, phloretin, quercetin, ECGC, thymoquinone, and
paeoniflorin have been shown to target directly or indirectly the Nrf2/Keap1/ARE signaling pathway
(Figure 3). Thus, the development of Nrf2 inducers could have a profound impact on the treatment
of cataracts.
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Figure 3. The protective effect of flavonoids in cataract formation. The diagram shows the effect of
flavonoids on Nrf2 activation, leading to reduced inflammation, oxidative stress, and ROS, involved
in cataract development. The figure also highlights Nrf2 modulation by epigenetic factors and the
attenuation of MMP expression by flavonoids or by the inhibitory effect of the Nrf2 pathway in NFκB
pathway activation.
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The studies reviewed here have indicated the efficacy of Nrf2 activation and MMP-9 inhibition as
critical therapeutic targets in treating cataracts. There are a sufficient number of studies describing the
Nrf2 role as a key player in cellular defense mechanisms against aging and oxidative stress. Additionally,
Nrf2 was reported as having a key role in inhibiting the overexpression of proinflammatory cytokines.
It regulates the modulation of the NFκB pathway directly or indirectly, responsible for MMP expression
(Figure 3). Moreover, this review discussed the regulatory effect of epigenetics in Nrf2 activation,
indicating that DNA methylation changes may increase cataract incidence in the elderly (Figure 3).

Additionally, previous reports indicated that LECs are vulnerable not only to oxidative stress but
also to apoptosis. As cited before, the imbalance between the ROS and antioxidants may exacerbate
oxidative stress, changing the internal environment and leading to apoptosis of the lens. Both Nrf2
and MMP have been associated with cell apoptosis. Ma et al. using HO-1 inducers demonstrated
that elevated levels of HO-1 stimulated the antioxidants activity and inhibited pro-apoptotic proteins,
showing an indirect effect of Nrf2 in protecting the LECs against apoptosis [155]. In this regard, other
studies showed that MMP might stimulate apoptosis by the disruption of a mitochondrial protein
(connexin-43) and impairment of the membrane potential of the mitochondria [156]. Additionally,
MMP seems to be stimulated by the diabetic environment, and it participates in several diabetic
complications such as retinopathy. The activation of MMP-9, in particular, induced apoptosis in the
retina capillary cells in the pathogenesis of diabetic retinopathy [157], showing that an elevation on
MMP levels seems to be associated with the apoptosis process. Therefore, in agreement with this
review, inducers of Nrf2 and inhibitors of MMP, such as the flavonoids, may have a beneficial effect
against cataracts formation.

In conjunction with Nrf2 defense mechanisms, the research findings for the polyphenols reviewed
here have demonstrated consistent beneficial outcomes concerning oxidative stress, inflammation,
and epigenetic regulatory factors, crucial in developing cataracts. However, no studies show a direct
correlation of the antioxidant, anticataract potential of polyphenols on Nrf2 activation and/or induction
in lens epithelia. Thus, more work is needed to fully justify the superiority of Nrf2 as a therapeutic
target specifically for lens cataract formation. Cataract surgical options may be limited by several
reasons, including accessibility and affordability and surgery-associated complications. An important
factor that may alleviate these barriers is supplementing the diet with flavonoids as an alternate
treatment option for cataracts. This review provides evidence and strongly supports the use of
flavonoid supplements that may increase Nrf2 activity and attenuate MMP-9 expression, which may be
new targets to prevent or slow the lens’s cataract progression. However, more basic, and translational
research is needed to understand these compounds’ effect on cataract development and progression.
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