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Whole-genome sequencing reveals genomic
signatures associated with the inflammatory
microenvironments in Chinese NSCLC patients
Cheng Wang1,2,3, Rong Yin4, Juncheng Dai1,2, Yayun Gu1,2, Shaohua Cui5, Hongxia Ma1,2, Zhihong Zhang6,

Jiaqi Huang7, Na Qin1,2, Tao Jiang1,2, Liguo Geng1,2, Meng Zhu1,2, Zhening Pu1,2, Fangzhi Du1,2, Yuzhuo Wang1,2,

Jianshui Yang1,2, Liang Chen8, Qianghu Wang3, Yue Jiang1,2, Lili Dong5, Yihong Yao7, Guangfu Jin 1,2,

Zhibin Hu1,2, Liyan Jiang5, Lin Xu4 & Hongbing Shen1,2

Chinese lung cancer patients have distinct epidemiologic and genomic features, highlighting

the presence of specific etiologic mechanisms other than smoking. Here, we present a

comprehensive genomic landscape of 149 non-small cell lung cancer (NSCLC) cases and

identify 15 potential driver genes. We reveal that Chinese patients are specially characterized

by not only highly clustered EGFR mutations but a mutational signature (MS3, 33.7%), that is

associated with inflammatory tumor-infiltrating B lymphocytes (P= 0.001). The EGFR

mutation rate is significantly increased with the proportion of the MS3 signature (P= 9.37 ×

10−5). TCGA data confirm that the infiltrating B lymphocyte abundance is significantly higher

in the EGFR-mutated patients (P= 0.007). Additionally, MS3-high patients carry a higher

contribution of distant chromosomal rearrangements >1Mb (P= 1.35 × 10−7), some of which

result in fusions involving genes with important functions (i.e., ALK and RET). Thus,

inflammatory infiltration may contribute to the accumulation of EGFR mutations, especially in

never-smokers.
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Lung cancer is the most commonly diagnosed cancer and the
leading cause of cancer deaths both globally and in China1.
Non-small cell lung cancer (NSCLC) is the major histolo-

gical type of lung cancer and mainly includes adenocarcinoma
(AD) and squamous cell carcinoma (SCC). Over the past decades,
next-generation sequencing has accelerated the systematic char-
acterization of genomic events, including single base substitutions
and small insertions/deletions (indels), and has yielded sub-
stantial insights into the unique and shared genomic features of
the two NSCLC subtypes2–4.

A series of candidate “driver” genes involved in the receptor
tyrosine kinase (RTK) pathway were identified in recent studies.
Alterations in some genes, including EGFR, KRAS, and PIK3CA,
have been shown to trigger carcinogenesis of lung cancer in the
mouse models5.

Genomic studies of lung cancer have mainly been conducted in
patients from Western countries2–4; however, Chinese patients
have unique epidemiological features, especially women. For
example, the lung cancer rates are higher in Chinese women than
among women in some European countries despite an extremely
low prevalence of smoking1, indicating the presence of other
carcinogens and carcinogenic mechanisms. The inverse mutation
rates of EGFR and KRAS in Chinese NSCLC patients6 have
provided some clues for the etiologic mechanisms, but the full
picture remains unclear.

Carcinogens commonly leave imprints in the DNA. Thus,
signatures of genomic events such as mutational signatures (MSs)
are widely used in cancer etiological studies7–9. Whole-genome
sequencing (WGS) is a powerful technology for investigations of
alterations in intronic and intergenic regions as well as in the
exome, and provides an opportunity to delineate the complete
MSs imprinted on the genome during the mutagenic process7–11.
Moreover, WGS enables the detection of genomic rearrangements
that are major but less-studied components of structural altera-
tions in cancer genomics10,11.

In this study, we analyze genomic events in 149 NSCLC cases
(92 WGS and 57 whole-exome sequencing (WES)) coupled with
The Cancer Genome Atlas (TCGA) WGS data from 100 NSCLC
patients and comprehensively identified the distinct genomic
features of Chinese NSCLC patients. We show that the differences
(i.e., the diverse mutation rates of EGFR) are mainly attributed to
a subtype of patients with enriched inflammatory tumor-
infiltrating lymphocytes (TILs). These patients are characterized
by a distinctive MS and large-scale rearrangements.

Results
Burden of genomic events in Chinese NSCLC patients. To
identify somatic alterations in Chinese NSCLC patients, we per-
formed WGS on tumor-blood pairs from 92 cases (57 lung AD
and 35 lung SCC) and WES on additional 57 pairs (27 lung AD
and 30 lung SCC) from Nanjing Lung Cancer Cohort (NJLCC,
Supplementary Fig. 1). We observed a lower smoking rate in the
Chinese NSCLC patients (53.7%) than in the TCGA patients
(85.5%) (Supplementary Table 1), which was most obvious in
lung AD patients (NJLCC: 34.5% vs. TCGA: 82.4%). Almost all of
the female patients enrolled in this NJLCC cohort were lifelong
non-smokers, with typical demographic and clinical character-
istics for the disease (Supplementary Table 1).

Unlike comparable mutation rates between lung AD and SCC
in previous studies of other populations (MedianAD= 8.7
mutations/Mb and MedianSCC= 9.7 mutations/Mb)2, we
observed polarized mutation rates in the Chinese patients
(MedianAD= 2.17 mutations/Mb, and MedianSCC= 13.64 muta-
tions/Mb, Wilcoxon’s rank sum test P= 3.45 × 10−8, Fig. 1a).
Similar results were observed in the patients following WES

(Supplementary Fig. 2a). Additionally, we detected abundant
genomic structural rearrangements in these patients, with a
median of 126 rearrangements (range 16–405, Fig. 1a). However,
we observed no significant differences between patients with
varied histologic or smoking statuses.

Diverse mutation patterns of frequently altered genes. To
determine the most common cancer genes involved in Chinese
NSCLC patients, we combined somatic substitutions and indels in
protein-coding exons with data obtained from both WGS and
WES. Overall, we identified 27 significantly mutated genes
(SMGs) in these NSCLC patients using the IntOGen and Mut-
SigCV frameworks (Supplementary Table 2), of which 15 genes
were potential driver genes in previous studies2,12,13 (Fig. 1b).
Three additional driver candidates were identified in a histolo-
gical subtype analysis (the chromatin remodeling gene SMARCA4
in AD and FAT1 and SVEP1 in SCC, Supplementary Tables 3 and
4). Furthermore, we also identified 30 frequently altered regions
in our patients (Supplementary Fig. 2b and Supplementary
Table 5). All of these regions overlapped with previously identi-
fied regions2 but deletions at 6p21.32 and 9p13.1. The peak region
of deletions at 6p21.32 included major histocompatibility
complex (MHC) class II molecules (Supplementary Fig. 2b).

Seven genes were mutated with different rates between the AD
and SCC patients. Two oncogenes (EGFR and KRAS) in the RTK
pathways were mutated more frequently in AD. Notably, we
observed highly accumulated EGFR mutations in our patients
(31.5%), and the EGFR mutation rate was significantly higher in
our AD patients (52.0%) than in the patients from TCGA project
(13.6%) (Fisher’s exact test P= 6.69 × 10−14, Fig. 1c). EGFR
amplifications also occurred frequently in our patients (18.8%)
and most of which (10.7%) co-occurred with the EGFR
mutations. In contrast to KRAS, EGFR was also mutated in the
SCC patients (4.6%) and the frequency was higher than the
frequency in the SCC patients from TCGA (3.4%), while the
smoking rate was relatively lower in our SCC patients (82.9%)
than in TCGA SCC patients (93.8%). Smoking-related KRAS
mutations were less common in our patients (8.0%) than in
TCGA patients (31.3%) and occurred exclusively with EGFR
mutations. STK11, which is another gene exclusively mutated
with EGFR14, also had a lower frequency in our AD patients
(Fig. 1c). Moreover, we observed a higher rate of RB1 mutations
in AD than in SCC, though the difference was not significant, and
almost all of the RB1 mutations co-occurred with TP53 mutations
(Fig. 1b). In addition, RB1 mutations occurred more frequently in
our AD patients (15.5%) than in TCGA patients (5.4%).

Most of the SCC-specific driver genes were classic tumor
suppressors, including TP53 (75%), KMT2D (28%), CDKN2A
(22%), and FBXW7 (9%), indicating the highly disorganized
status of SCC cells. Compared with TCGA SCC patients, our SCC
patients had more frameshift indels in CDKN2A, but there was no
difference between the mutation rates (Fig. 1c); mutations in
oncogenic NFE2L2 occurred only in the SCC patients and
exhibited a significantly higher frequency in our SCC patients,
whereas mutations in KEAP1 and CUL3 (KEAP1-NRF2 pathway)
were so rare that they could not be identified as SMGs.

Three MSs in Chinese patients. To illuminate the etiologic
mechanisms of the diverse mutation rates in Chinese patients and
decipher the mechanisms underlying the mutagenic and
tumorigenic processes of lung cancer, we adopted a non-negative
matrix factorization (NMF) to extract MSs from 96 subtypes of
three-base context of mutations. Three prominent signatures
were detected (Supplementary Fig. 3a): MS1, which is char-
acterized by C > T mutations at the TpC dinucleotide and an
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APOBEC-driven hyper-mutated phenotype (Supplementary
Fig. 3b); MS2, which is characterized mainly by C > A mutations
with smaller contributions from other base substitution classes
and a complex pattern caused by exposure to tobacco carcinogens
(Supplementary Fig. 3b); and MS3, which is characterized by
mutations distributed across all 96 subtypes of base substitutions
with a predominance of C > T and T > C mutations, although the
underlying mechanisms of MS3 are not well understood7 (Sup-
plementary Fig. 3b). Similar signatures were extracted from 100
WGS data sets from TCGA NSCLC patients (Supplementary
Fig. 4a).

In our patients, APOBEC-related MS1-dominant patients were
only observed in a small number of AD patients (10.9%),
although the MS1 proportion showed no significant difference
between AD and SCC (Supplementary Fig. 3c). The smoking-
related MS2 was overwhelmingly seen in SCC, and every patient
carried MS2 mutations (Supplementary Fig. 3c). Similar MS2
proportion was observed in the SCC patients from TCGA
(Supplementary Fig. 3c & 4b).

In contrast to MS2, MS3 was a predominant signature in AD
(Wilcoxon’s rank sum test P= 5.77 × 10−5), never-smokers
(Wilcoxon’s rank sum test P= 3.76 × 10−6), and female patients
(Wilcoxon’s rank sum test P= 4.09 × 10−3) (Supplementary
Fig. 3c). Moreover, 33.7% patients (31/92) were defined as MS3
dominant in our patients. The proportion was more than twice as
much as in TCGA patients (Fisher’s exact test OR= 2.30, P= 0.01),
suggesting that MS3 was mainly present in the Chinese patients.

Characterized genomic alterations in MS3-dominant patients.
Next, we investigated whether MS3 signature was associated with
Chinese-specific EGFR mutations. Distinct from the dispersed

mutation pattern in TCGA patients, the EGFR mutations in our
patients were not only more frequent but were also highly
recurrent (Fig. 2a). A total of 39 patients carried mutations sen-
sitive to EGFR tyrosine kinase inhibitors (TKI) (19th exon dele-
tion: 20 and L858R: 19), and five patients carried TKI-resistant
mutations (insertions on the 20th exon and the T790M
mutation). One patient carried both TKI-sensitive and TKI-
resistant mutations (Fig. 2a). As expected, the EGFR mutations
mainly occurred in the MS3-dominant NSCLC patients
(Cochran–Armitage trend test P= 9.37 × 10−5, Fig. 2b). The
mutation rate increased with the increasing MS3 proportion and
was maximized in the 7th and 8th MS3 groups in our patients
(Fig. 2c). The EGFR mutation rate in the patients in these groups
reached 80% (Fig. 2c). Using the same MS3 cutoffs, we found that
the two groups had the fewest patients in the TCGA data, which
explained the differences in the EGFR mutation rates between our
patients and TCGA patients (Fig. 2c).

We also noted that the patients in the highest MS3 quantile
carried much fewer EGFR mutations (2/10) but carried a specific
copy number profile (GISTIC cluster 1, Fig. 2b) clustered from
the copy number status of 30 highly recurrent amplified/deleted
regions, suggesting that structural alterations might also partici-
pate in the carcinogenic process in the patients with the highest
MS3 signal. Thus, we systematically investigated the fusion genes
in our patients. We observed six known fusions in our patients
involving ALK, ROS1, and RET. Half of these fusions occurred in
the patients in the highest MS3 quantile (Fisher’s exact test OR=
10.43, P= 0.02, Fig. 2c). Similar results were observed in TCGA
data (Fisher’s exact test OR= 30.41, P= 0.004, Fig. 2c). More-
over, we identified a new fusion transcript involving the ERBB
family-related lncRNA BCAR415 (CD63-BCAR4, Supplementary
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Fig. 5a). The expression levels of both this fused gene and ERBB3
were highly activated in the patient (Supplementary Fig. 5b & c).
A BCAR4 fusion was also observed in a TCGA patient in whom
BCAR4 was directly fused with ERBB3 to activate the expression
of both genes16 (Supplementary Fig. 5a). Interestingly, the new
fusions were only observed in the patients with the highest
MS3 signal (Fig. 2c). For patients with enough adjacent normal
tissues, we also examined the rearrangements in the adjacent
normal tissues, but none of the rearrangements was observed
(Supplementary Fig. 6), suggesting that the rearrangements only
occurred in tumor tissues.

MS3 co-occurred with distant rearrangements (>1Mb). We
also investigated genomic rearrangements in the NSCLC patients.
To conduct this analysis, we adopted a rearrangement classifi-
cation that incorporated 15 subclasses according to a previous
study11. Application of the NMF algorithm revealed three rear-
rangement signatures (RSs).

RS1 and RS2 were mainly characterized by rearrangements >1
Mb (Fig. 3a). More than 60% of the intra-chromosomal
rearrangements in our patients were classified as RS1/RS2
dominant. We observed a significant correlation between RS1/
RS2 and the MS3 proportion (Spearman Correlation r= 0.53, P
= 1.35 × 10−7, Fig. 3b, Supplementary Fig. 7a). RS1 was
incomplete in TCGA NSCLC patients, possibly due to the lower
number of MS3-related patients and more smokers (Supplemen-
tary Fig. 8).

RS3 was characterized by rearrangements <1Mb (Fig. 3a). This
signature was significantly associated with the smoking-related
MS2 (Spearman Correlation r= 0.52, P= 2.22 × 10−7) and was
also extracted from TCGA NSCLC data (Supplementary Fig. 8).
RS3 was once reported to be associated with alterations in the
DNA damage response (DDR) gene BRCA2 in breast cancer
patients11, which suggested that smoking might lead to BRCA2-
like rearrangements. We observed only four individuals with
functional mutations in BRCA1/BRCA2, but the RS3
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rearrangement number increased with the number of functional
mutations in DDR-related genes17 (Fig. 3c), indicating that other
DDR mechanisms were largely responsible for this signature in
lung cancer. Additional analysis revealed that the RS3 proportion
was significantly associated with mutations in DDR-related genes
(Wilcoxon’s rank sum test P= 0.02) and involved multiple DDR-
related pathways (Supplementary Fig. 7b).

Next, we applied a piecewise constant fitting (PCF) approach to
find breakpoint hotspots with clustered rearrangements by adjusting
the background features18. In total, we identified 22 hotspots. Two
hotspots at 2p22.3 (LINC00486) and 2p25.3 (TPO-PXDN) showed
an extremely high rearrangement rate (>100/Mb), which might
include new fragile sites in NSCLC cells (Supplementary Fig. 7c).
Among the remaining 20 hotspots, most of which (17/20) were
dominated by RS1/RS2 (Fig. 3d) and 10 hotspots overlapped with
the regions with highly altered copy number detected in this study,
including 5p15.33 (TERT), 3q26.32 (SOX2 and PIK3CA), and 7p11.2
(EGFR) (Fig. 3d). Chromosome 2 seems to be vulnerable in lung
cancer, since five hotspots were identified in our patients, including
highly rearranged hotspots at 2p22.3 and 2p25.3.

Enriched infiltrating lymphocytes in MS3-dominant patients.
To investigate the potential etiologic mechanism of MS3, we
conducted a gene set enrichment analysis (GSEA) to compare the
genes expressed according to the proportion of the MS3 signal to

the gene list from 165 KEGG pathways. A total of 14 pathways
were significantly enriched with genes positively associated with
MS3 (GSEA FDR q < 0.05, Fig. 4a), most of which were related to
the immune response (i.e., glycan biosynthesis19, lysosome20, and
intestinal immune network for IgA production).

Tumor-prompting inflammation is one of two major enabling
hallmarks of cancer21 and is widely linked to genomic instability22,
but no inflammatory signal in genomics has ever been described.
Thus, we evaluated the association between tumor-prompting
inflammation environment and the MS3 signal using in silico TIL
estimates from the RNA-seq data. We found a significant positive
correlation between the MS3 proportion and multiple TILs (B cells
and CD4+ T cells, FDR q <0.05, Fig. 4b and Supplementary
Fig. 9a). The immunohistochemistry analysis also confirmed that B
cells (CD19) and CD4+ T cells (CD4) were present in significantly
higher levels in the MS3-dominant patients compared to the other
patients (Fig. 4c, d). Infiltrating B cells are known for their tumor-
inducing roles23, but CD4+ T cells consist of different subpopula-
tions. An additional GSEA analysis also revealed that genes with
expression levels correlated with MS3 were significantly enriched in
tumor-stimulating regulatory T cell (Treg)-, T helper cell (Th) 2-,
and Th17-specific genes (GSEA PTreg= 0.004, PTh2= 0.004, and
PTh17= 0.008, Fig. 4e, Supplementary Fig. 9b) but not in Th1-
specific genes (PTh1= 0.43, Fig. 4e, Supplementary Fig. 9b)22,23. T
cell subpopulation-specific gene sets were determined by RNA-seq
data obtained from purified T lymphocyte cells24. These tumor-
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Fig. 4 MS3 dominance was characterized by enriched tumor-infiltrating lymphocytes (TILs). a The GSEA analysis revealed that the genes positively
correlated with MS3 were enriched in immunological pathways. b B cells and T cells were significantly associated with the MS3 proportion. The box plot
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prompting T cells commonly exist in a chronic inflammation
environment and can lead to the inhibition of specific immune
responses23. Because the abundance of B cells and CD4+ T cells
also varied across NSCLC patients with different histological
subtypes (Supplementary Fig. 9c), we used a partial correlation to
exclude the immunological differences caused by histological
heterogeneity. In our data, the correlation between B cells and
MS3 remained significant after adjusting for the histological types
(Spearman rank partial correlation r= 0.21, P= 0.047, Supplemen-
tary Table 6). Because the EGFR mutations primarily occurred in
the MS3-dominant patients and the KRAS mutations occurred in
the MS2-dominant patients, we compared the TIL levels between
patients with the EGFR and KRAS mutations. We observed a
significantly higher B cell abundance in the EGFR-mutated NSCLC
patients from TCGA (Wilcoxon’s rank sum test P= 0.007, Fig. 4f)
further connecting an inflammatory microenvironments with
accumulated EGFR mutations.

Similarly, the RS1 proportion was associated with multiple
TILs (Fig. 4g). In contrast to the connection between MS3 and B
cells, the RS1 signal was associated with another antigen-
presenting cell type (macrophage; Spearman Correlation r=
0.32, P= 0.002) instead of B cells (Spearman Correlation r= 0.19,
P= 0.08). This finding suggested that a different immunologic
mechanism was involved in the generation of the long structural
alterations.

Notably, most of the depleted pathways in MS3-GSEA analysis
served as enriched pathways in smoking-related MS2-GSEA
analysis and involved the DNA replication and damage response
processes (Fig. 4a and Supplementary Fig. 9d). This finding
further supported that smoking-like genomic events were mainly
attributed to the DDR process. Thus, tobacco smoking commonly
results in thousands of mutations and short genomic rearrange-
ments and results in a heavy burden of genomic alterations, some
of which can act as “neo-antigens” and trigger a tumor-
eliminating immunological process to inhibit tumor cells25. Here,
we observed that CD274 (PD-L1) expression also increased
concomitant with the MS2 mutations (Spearman Correlation r=
0.16, P= 0.04) and the total mutation burden (Spearman
Correlation r= 0.16, P= 0.03).

Discussion
Tumor-prompting inflammation is defined as a tumor-enabling
hallmark of cancer, that is also reported to cause genomic
instability and induce genomic alterations, including the MS3-like
C > T and T > C mutations26 and oxidative stress that generates
genomic rearrangements27. According to a specific MS, our
results revealed that Chinese NSCLC patients were enriched with
inflammatory TILs (B and CD4+ T lymphocytes)28. A consistent
immunologic signature was also identified in early-stage lung AD
by a very recent study29, which integrated mass cytometry by
time-of-flight (CyTOF), single-cell transcriptomics and multiplex
tissue imaging of the lung tumor. The results indicated that the
immunologic microenvironments occurred in the initial stage of
lung cancer and therefore emphasized their essential role in the
development of lung cancer. Recent studies on Chinese lung
cancer patients also provided evidence for the association
between chronic inflammation and non-smoking lung cancer:
Shiels et al. found that circulating inflammation markers were
elevated in the lung cancer patients several years before the
diagnosis30; our recent work also suggested that circulating
polyunsaturated fatty acids, which is important participants in the
stimulation of chronic inflammation, were causal risk factors of
lung cancer, especially for female never-smokers31. Our results
further identified the association between inflammatory TILs and
well-known EGFR mutations in Chinese NSCLC patients. In

addition, we reanalyzed sequencing data from a recent study on
lung AD and precancerous tissues (atypical adenomatous
hyperplasia, AAH)32. We found that inflammatory micro-
environments formed earlier than the occurrence of EGFR
mutations (Supplementary Fig. 10). Because inflammatory
microenvironments release signaling molecules such as the tumor
growth factor EGF21, which can serve as a ligand for the EGFR
protein, we proposed that the microenvironments may select
tumor cells with an EGFR protein that is highly activated by
functional mutations in EGFR, which provides a new potential
explanation for the frequent and recurrent EGFR mutations in
never-smokers. Thus, patients with EGFR mutations may benefit
from a combination of anti-tumor immunologic therapy and an
EGFR inhibitor, especially TKI-resistant individuals, although the
causal relationship between TILs and EGFR mutations needs
further evaluation. Furthermore, we found that such alterations of
immunologic microenvironments can be discriminated by intra-
rearrangements longer than 1Mb. The high accumulation of
these rearrangements can generate important fused genes invol-
ving RTK pathway (i.e., ALK and RET), that can directly drive the
carcinogenic process. These findings illuminated the connection
between specific genomic features and tumor-prompting
inflammation in NSCLC and emphasized the importance of
immunologic alterations in Chinese NSCLC patients.

In contrast to the inflammatory infiltrating NSCLC, smoking-
related NSCLC was characterized by driver mutations in tumor
suppressors and high level of mutations and short genomic
rearrangements, possibly due to the loss of the DDR. Because
high mutation load has been linked with cytolytic activity33,34 and
elevated expression of CD274 (PD-L1) is observed in our
smoking-related NSCLC patients, the application of immune
checkpoint blockade therapies may be expected in the future. In
addition, further studies are warranted to evaluate the response of
PARP inhibitor in these patients because of the high proportion
BRCA2-like genomic rearrangements, although BRCA1/2 muta-
tions are seldom observed in NSCLC patients35.

Methods
Sample collection and DNA/RNA extraction. The study and its design were
approved by local ethics committee (Nanjing Medical University and Shanghai
Chest Hospital) and all participants provided written informed consent for the
research. Patients who received any treatment or neoadjuvant therapy before
surgery/biopsy were excluded. Samples (tumor specimens, adjacent normal tissues,
and peripheral blood) were obtained during surgical resection. All tissue samples
were snap-frozen. HE-stained sections from each sample were subjected to an
independent pathology review to confirm that the tumor specimen was histolo-
gically consistent with NSCLC (>70% tumor cells) and that the adjacent tissue
specimen contained no tumor cells.

DNA was extracted from frozen lung tissue using the QIAamp DNA Kit
(51306) and from blood samples using the QIAamp DNA Blood & Tissue Kit
(69506). Total RNA was extracted from frozen lung tissue using the RNeasy Plus
Kit (74134).

We performed WGS on matched tumor-blood samples from 92 cases and
transcriptome sequencing on matched tumor-adjacent tissues from 90 of the same
individuals. Clinical information and inferred TILs of 90 patients were listed in the
Supplementary Table 7. An additional 57 cases (matched tumor-blood) were
sequenced by WES.

WGS and WES. We performed 150 bp (WGS) and 100 bp (WES) paired-end
sequencing reactions under contracts with WuXi NextCODE Co., Ltd. (Shanghai,
China). The average sequence coverage was 67.84× for the tumor samples and
36.70× for the blood samples for WGS and 112.50× for the tumor samples and
111.80× for the blood samples for WES. The WES data were included to describe
general mutation pattern of Chinese NSCLC patients and to identify the potential
driver genes (Supplementary Fig. 1). The FastQC package (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc) was used to assess the quality-score
distribution of the sequencing reads. Read sequences were mapped to the human
reference genome (GRCh37) using the Burrows–Wheeler Aligner (BWA-MEM
v0.7.15-r1140)36 with the default parameters, and duplicates were marked and
discarded using Picard (v1.70)(http://broadinstitute.github.io/picard). Then, the
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local realignment and recalibration of the reads aligned by BWA was conducted
using the Genome Analysis Toolkit (GATK v3.5)37.

We included WGS data from 100 NSCLC patients (50 AD and 50 SCC) from
TCGA project (Genomic Data Commons Data Portal: https://portal.gdc.cancer.
gov/) and downloaded the aligned “bam” files for following analysis.

Processing of genomic data. Somatic substitutions and indels were detected using
the Mutect2 mode in GATK on the GRCh37 genome build following the best
practice for somatic SNV/indel calling (https://software.broadinstitute.org/gatk/
best-practices/). Briefly, the algorithms compare the tumor to the matched normal
sample to exclude germline variants. Somatic calls were excluded if: (1) they were
found in a panel of normal built by 92 matched normal tissues; (2) they were
located in the segmental duplication region marked by UCSC browser (http://
genome.ucsc.edu/); (3) they were found in the 1000 genomes project (the Phase III
integrated variant set release, across 2,504 samples) with the same mutation
direction. Chromosome rearrangements and breakpoints were discovered using the
local assembly tool novoBreak (v1.1.3rc)38. Breakpoints that were located in seg-
mental duplication region marked by UCSC browser were excluded from analysis.
Mutations (SNVs/indels) and breakpoints of chromosome rearrangements were
annotated with the local versions of Oncotator (1.8.0)39 and Annovar (2016Feb01)
40, according to GENCODE v19. BIC-Seq2 was used to address WGS data to detect
somatic copy number alterations (CNAs) with the default parameters41. GATK
best practices for somatic CNAs in exomes were used to detect CNAs from the
WES data (https://software.broadinstitute.org/gatk/best-practices/).

NSCLC drivers and comparison between the NJLCC and TCGA data. The
IntOGen platform13 coupled with MutSigCV (1.4)42 was used to identify SMGs.
The IntOGen pipeline included two algorithms (OncodriveCLUST43 and Onco-
driveFM44) that were designed to find genes with highly clustered mutations and
non-randomly distributed functional mutations, respectively. MutSigCV was used
to find genes with a higher mutation rate than the calculated background mutation
rate. Multiple testing correction (Benjamini–Hochberg FDR) was performed
separately and genes with q values <0.05 in any algorithm were reported in this
study (Supplementary Table 2). Then, we defined a SMG as a potential NSCLC
driver gene if one of the following conditions was met: (1) the gene was collected by
the COSMIC Cancer Gene Census as a mutated gene in lung cancer12; (2) the gene
was reported as an IntOGen lung cancer gene13; or (3) the gene was a frequently
altered gene reported in recent genomic studies on lung cancer2. Somatic muta-
tions from TCGA WES data of 654 NSCLC patients (478 AD and 176 SCC) and
clinical information were downloaded from the Firehose Broad GDAC (http://
gdac.broadinstitute.org/, version 2016_01_28) to compare the mutation rates of the
NSCLC genes.

MS analysis. MSs were identified using the Bioconductor package Soma-
ticSignatures, which was based on the NMF methodology developed by Nik-Zainal
et al.9. Briefly, we converted all mutation data from 92 WGS data sets into a matrix
(M) composed of 96 features comprising mutation counts for each mutation type
(C > A, C > G, C > T, T > A, T > C, and T > G) using each possible 5′ and 3′ context
for all samples. MSs and their contribution to each sample’s mutational spectrum
were estimated with NMF decomposition method. We used the cosine similarity
distance to measure the similarities between our identified signatures and the
COSMIC signatures (http://cancer.sanger.ac.uk/cosmic/signatures). A MS-
dominant patient was defined if the contribution of the MS was over 0.5 in the
patient. The same analysis was applied to mutations called from 100 TCGA WGS
data sets to further validate the identified MSs.

Highly amplified/deleted regions and consensus clustering. Copy number
segments were used as input for GISTIC245 to identify significantly amplified/
deleted regions with the default parameters. A default q value threshold (0.25) was
used to define highly amplified/deleted regions. To further identify subgroups of
samples that shared similar CNA pattern, we performed consensus clustering using
the ConsensusClusterPlus R package46. The input data for each sample were the
copy number values for each identified region reported by GISTIC2. The copy
numbers for each region were mean-centered across the samples prior to clus-
tering. The following parameters were used in the consensus clustering: number of
repetitions 1000; pItem= 0.7; pFeature= 0.7; Pearson distance metric and Ward
linkage method. Different cluster solutions were evaluated.

RSs and hotspot detection. We extracted RSs from intra-chromosome rearran-
gements according to a previous study11. All intra-rearrangements were classified
into deletions, duplications, and inversions, and then further sub-classified
according to size of the rearranged segment (1–10 kb, 10–100 kb, 100 kb–1Mb,
1–10Mb, and more than 10Mb). The classification produces a matrix of 15 distinct
categories of structural variants across 92 NSCLC genomes. The matrix was
decomposed using the same NMF methods applied for the extraction of MSs.

Three RSs were extracted from our lung cancer WGS data. A rearrangement
was attributed to one RS if the probability of the rearrangement being generated
from this specific signature was greater than 0.5 in a given sample. The probability
of a given arrangement being assigned to one signature in the sample was

calculated as the probability of the RS generating this type of rearrangement,
multiplied by the exposure of this sample to the signature.

A PCF algorithm was performed to define rearrangement hotspots with the
default parameters (γ= 8, kmin= 8, and i= 2)47. Briefly, we collected both
breakpoints of each rearrangement and sorted the breakpoints based on their
chromosomal positions. Then, we calculated the inter-rearrangement distance
(IMD) for each breakpoint, which was defined as the distance between one
breakpoint and the breakpoint immediately preceding it. A putative hotspot was
defined as a region having an average IMD that was two times greater than the
genome-wide level and a breakpoint density higher than the expected number
according to the background model.

Since numerous genomic features are known to affect the non-uniform
distributions of rearrangements, we conducted a multi-variable genome-wide
regression analysis according to a previous study18 to evaluate the association
between the genomic features and the rearrangements identified in our data to
construct the background rearrangement model. Briefly, we divided the genome
into non-overlapping genomic bins of 0.5 Mb and characterized each bin with
features including the replication time, repetitive sequences, DNaseI
hypersensitivity sites, non-mapping sites, known fragile sites and histone
modification status of the chromatin. Then, to enable the comparability between
different features, each feature was normalized to a mean of 0 and a standard
deviation of 1 across the bin. We counted the total number of breakpoints for each
bin and performed a negative binomial regression model to learn associated
features. Finally, the properties obtained from the above model were used to
calculate the expected number of breakpoints for the bin fi using the following
formula:

bi ¼ em
QN

i¼1
ewifi ;

where N represents the number of features, wi represents the weights of
different features from the negative model, and m represents the intercept of the
model.

RNA sequencing to assess gene expression and fusions. Standard Illumina
RNA-seq protocol (http://support.illumina.com/training/online-courses/
sequencing.html) was conducted to generate transcription profiles of these samples
using the Illumina HiSeq 1500 platform. RNA reads were generated, aligned to the
GENCODE v19 genome assembly with STAR v2.4.148, and quantified with fea-
tureCounts v1.5.049. The raw read counts were normalized with DESeq250 to
estimate gene expression.

Fusions were detected by the somatic fusion genes finder FusionCatcher51 with
the default parameters, which integrated four commonly used aligners (Bowtie52,
BLAT53, STAR48, and Bowtie252) to find reads of fusion transcripts. All fusions
involving known functional fused genes reported in previous genomic studies of
lung cancer2,54 were included in the analysis. A new fusion involving BCAR4 was
identified, because the count of unique reads mapping on the fusion junction was
>10 and BCAR4 was recurrently fused in a TCGA NSCLC patient. A total of five
important rearrangements were examined in the adjacent normal tissues by PCR,
according to the breakpoints identified by both WGS and RNA-Seq in the matched
tumor samples. The primers of PCR are listed in Supplementary Table 8.

Fusions in TCGA data were downloaded from ChimerDB v3.016. All functional
fused transcripts reported by previous studies were included in the analysis.

GSEA analysis. A GSEA was performed using Spearman’s rank correlation
coefficients between the MS3 proportion and the expression of genes using the
“GSEA” command from the Bioconductor package clusterProfiler55 based on 165
KEGG pathways (minimal set size: 20, maximal set size: 500) from the MSigDB
(www.broadinstitute.org/gsea/msigdb) c2 database and T cell subpopulation-
specific gene sets.

Estimation of TILs. We applied the tumor immune cell deconvolution method
TIMER56 to predict TILs by slightly adapting the available source code. TIMER is a
recently developed computational approach that uses expression profiles from
RNA-seq data to estimate the abundance of diverse TILs in tumor tissues. A
curated leukocyte gene signature matrix was used as the reference data including
2271 signature genes overexpressed in the immune lineage. Normalized read
counts were used as the input matrix for TIMER. Batch effects between our data
and the external reference data sets were removed using ComBat command from
the R package sva57. Six types of immune infiltrates were estimated (B cell, CD4+
T cell, CD8+ T cell, neutrophil, macrophage, and dendritic cell). TILs of TCGA
patients were downloaded from the TIMER database (https://cistrome.shinyapps.
io/timer/_w_7bef51bc/immuneEstimation.txt).

T cell subpopulation-specific gene sets. Raw RNA-seq data (Fastq) for the T
lymphocyte subsets and B lymphocytes were downloaded from ArrayExpress (E-
MTAB-2319)24. The same STAR-featureCounts-DESeq2 pipeline was used to
quantify expression. Four types of T lymphocytes (T helper 1, T helper 2, T helper
17, and regulatory T cells) and B lymphocytes were included to identify cell-specific
gene sets. The specificity measure (SPM) was used to evaluate the subpopulation
lymphocyte subpopulation-specific expression patterns58. The SPM values range

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04492-2

8 NATURE COMMUNICATIONS |  (2018) 9:2054 | DOI: 10.1038/s41467-018-04492-2 | www.nature.com/naturecommunications

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://software.broadinstitute.org/gatk/best-practices/
https://software.broadinstitute.org/gatk/best-practices/
http://genome.ucsc.edu/
http://genome.ucsc.edu/
https://software.broadinstitute.org/gatk/best-practices/
http://gdac.broadinstitute.org/
http://gdac.broadinstitute.org/
http://cancer.sanger.ac.uk/cosmic/signatures
http://support.illumina.com/training/online-courses/sequencing.html
http://support.illumina.com/training/online-courses/sequencing.html
http://www.broadinstitute.org/gsea/msigdb
https://cistrome.shinyapps.io/timer/_w_7bef51bc/immuneEstimation.txt
https://cistrome.shinyapps.io/timer/_w_7bef51bc/immuneEstimation.txt
www.nature.com/naturecommunications


from 0 to 1, with values close to 1 indicating a major contribution to gene
expression in a specific lymphocyte relative to all other lymphocytes. For each T
cell subpopulation, genes with SPMs higher than 0.9 were defined as
subpopulation-specific genes.

Immunohistochemistry analysis. Immunohistochemistry method was used to
validate the abundance of B cells and CD4+ T cells in 12 patients selected ran-
domly from MS3-dominant patients defined above (ContributionMS3 >0.5) and 12
patients selected randomly from other patients (ContributionMS3 ≤0.5). Following
the process of dewaxing and rehydratation, the sections were placed into a retrieval
solution (G1202 pH 6.0) and then were heated to boiling for about 25 min. As
cooled to room temperature, the sections were submerged in phosphate-buffered
saline solution (pH 7.4) three times. Slides were further processed on an automated
immunostainer. Endogenous peroxidase was blocked with 3% H2O2 solution
shielded from light at room temperature. Next, slides were blocked with 3% BSA to
avoid non-specific background staining. Afterward, the specimens were incubated
overnight at 4 °C with a primary antibody (GB13064-1 Servicebio, for CD4, 1:100
dilution; ab134114, Abcam, for CD19, 1:300 dilution) and then were incubated for
1 h at room temperature with the biotinylated secondary antibodies diluted to
1:1000. The samples were developed using DAB-Plus Substrate Kit (invitrogen)
under the microscope and were counterstained with hematoxylin, which was a
nucleophilic dye. Finally, after dehydration and mounting, the specimens were
observed with microscope and imaged for further analysis. To ensure the con-
sistency of the results, the images were selected that were representative of different
TILs levels, based on the results obtained from three pathologists without pre-
viously being acknowledged for the clinical information. In detail, the final results
were present as the median number of TILs in the three hotspot areas selected
randomly.

Statistical analysis and figures. All statistical tests were performed using a
Wilcoxon rank-sum test for continuous data, Spearman’s rank correlation or
partial correlation for the estimation of correlation. Fisher’s exact test was used to
assess differences for the count data. Multiple testing corrections were performed
where necessary using the Benjamini–Hochberg method. All reported P values are
two-sided. Figures were generated with the R packages ggplot259 and
RColorBrewer60.

Data availability. The sequencing data of this study have been deposited in the
European Genome-phenome Archive (EGA) at the EMBL-European Bioinfor-
matics Institute under accession number EGAD00001004071 (https://ega-archive.
org/datasets/EGAD00001004071). The RNA-Seq data have been deposited at fig-
share (https://doi.org/10.6084/m9.figshare.6253973.v1). Data that support the
findings of this study are available from TCGA database (http://cancergenome.nih.
gov).
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