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Pathogenic bacteria and their microbial products activate dendritic cells (DCs) at

mucosal surfaces during sexually transmitted infections (STIs) and therefore might also

differently shape DC functions during co-infection with HIV-1. We recently illustrated that

complement (C) coating of HIV-1 (HIV-C), as primarily found during the acute phase of

infection before appearance of HIV-specific antibodies, by-passed SAMHD1-mediated

restriction in DCs and therefore mediated an increased DC activation and antiviral

capacity. To determine whether the superior antiviral effects of HIV-C-exposed DCs also

apply during STIs, we developed a co-infection model in which DCs were infected with

Chlamydia spp. simultaneously (HIV-C/Chlam-DCs or HIV/Chlam-DCs) or a sequential

infection model, where DCs were exposed to Chlamydia for 3 or 24 h (Chlam-DCs)

followed by HIV-1 infection. Co-infection of DCs with HIV-1 and Chlamydia significantly

boosted the CTL-stimulatory capacity compared to HIV-1-loaded iDCs and this boost

was independent on the opsonization pattern. This effect was lost in the sequential

infection model, when opsonized HIV-1 was added delayed to Chlamydia-loaded DCs.

The reduction in the CTL-stimulatory capacity of Chlam-DCs was not due to lower

HIV-1 binding or infection compared to iDCs or HIV-C/Chlam-DCs, but due to altered

fusion and internalizationmechanismswithin DCs. The CTL-stimulatory capacity of HIV-C

in Chlam-DCs correlated with significantly reduced viral fusion compared to iDCs and

HIV-C/Chlam-DCs and illustrated considerably increased numbers of HIV-C-containing

vacuoles than iDCs. The data indicate that Chlamydia co-infection of DCs mediates a

transient boost of their HIV-specific CTL-stimulatory and antiviral capacity, while in the

sequential infection model this is reversed and associated with hazard to the host.
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INTRODUCTION

Dendritic cells (DCs) play a pivotal role in the defense against
invading pathogens. DCs reside in the peripheral tissue, where
they capture antigens and transport them to lymph nodes to
present them to naive T cells. Hence, DCs play a key role
in shaping the adaptive immune response. Of all new HIV-1
infections, 60–90 % are caused by sexual transmission (1, 2).

Since HIV-1 transmission occurs at mucosal surfaces, DCs are
amongst the first cells to encounter the virus (3). At the same
time, HIV-1 spontaneously activates the classical complement
(C) pathway (4), even in seminal fluid (5), through direct
binding of C1q to the viral surface. Therefore, C-opsonized HIV
(HIV-C) is accumulating at mucosal sites during early HIV-1
infection (6, 7).

We have previously shown that HIV-C interacts with
complement receptors 3 (CR3) and 4 (CR4) on iDCs, whereas
non-opsonized HIV binds DCs via gp120 to DC-SIGN (8)
and via CD169 (Siglec-1) binding to virions. Furthermore,
iDCs were efficiently infected with HIV-C compared to

non- or antibody-opsonized HIV (7, 9). HIV-C was able
to bypass SAMHD1 restriction in DCs, an intrinsic cellular
defense mechanism, which usually inhibits HIV-1 replication
in myeloid cells. Thus, complement opsonization of the
virus counteracted viral defenses in DCs. DCs exposed
to HIV-C had a significantly higher maturation and co-
stimulatory capacity compared to DCs exposed to non-opsonized
HIV (9).

In general, efficiency of HIV-1 transmission is low (10).
However, it is known that viral and bacterial genital infections
that cause inflammation or ulcers increase risk of infection
and/or susceptibility to HIV transmission (10). Epidemiological

studies also revealed a link between an increased incidence
of STIs with increased efficiency to transmit the virus to an
uninfected partner (11). Among the STIs most commonly
associated with high genital HIV loads are Gardnerella vaginalis
(12, 13) associated with bacterial vaginosis (BV), herpes
simplex virus type 2 (HSV-2), Chlamydia trachomatis, Neisseria
gonorrheae, and Trichomonas vaginalis (10). Dendritic cells
incubated with mucosal fluid from women with BV were
found to up-regulate maturation and activation markers like
HLA-DR, CD40, and CD83, and to have an increased T cell-
stimulatory capacity indicating an impact on mucosal immunity
(14). To determine if model pathogenic bacteria could similarly
pereturb the complement-mediated avoidance of antiviral effects
when DCs are exposed to bacteria, we added Chlamydia
and opsonized HIV-1 either simultaneously mimicking a co-
infection (HIV-C/Chlam-DCs) or by delayed addition of HIV-
C (Chlam-DCs). Chlamydia (C.) trachomatis are gram-negative
obligate intracellular bacteria and a primary agent causing non-
gonococcal urethritis (15). During infection of cells within
the vaginal mucosa, C. trachomatis initiates disruption of the
mucosal-epithelial layer allowing better tissue entry of HIV-
1 (10). Immunological alterations due to the presence of C.
trachomatis may further support the transmission of HIV to
susceptible cells or impact the antigen-presenting capacity of
DCs (10).

Given that infection of iDCs is modulated by the opsonization
pattern of HIV-1, which also had an impact on outcomes of both
humoral and cellular antiviral immune responses (9, 16, 17) and
given that HIV-1 particles are opsonized in vivo (18) and in vitro
(4, 5), we analyzed whether the presence of Chlamydiamodulates
DC properties and function during co-infection with HIV-C.

MATERIALS AND METHODS

Ethics Statement
This study was carried out in accordance with the
recommendations of the Ethics Committee of the Medical
University of Innsbruck. The protocol was approved by the
Ethics Committee of the Medical University of Innsbruck. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Generation of Human Monocyte-Derived
iDCs and mDCs
Monocytes were isolated from whole blood of healthy donors
by using CD14 BD IMAG Beads (Becton-Dickinson), according
to the manufacturer’s instructions. Differentiation into iDCs was
done using IL-4 (200 U/ml) and GM-CSF (1,000 U/ml) and
the iDC phenotype was routinely confirmed on day 5 by flow
cytometry using CD11b, CD11c, DC-SIGN, HLA-DR, and CD83
(9, 16, 19). Representative histogram plots of these markers on
iDCs are illustrated in Figure S1 (upper panel, red; isotype, blue).
To generate LPS-DCs, day 5 iDCs were stimulated for 24 h with
100 ng/ml pure LPS-EB (Sigma) prior to HIV-1 infection.

Acute and chronic Chlamydia exposure was mimicked by
stimulation of day 5 iDCs with infectious or heat-inactivated
Chlamydia for either 24 h prior to (Chlam-DCs) or at the
same time (HIV-C/Chlam-DCs or HIV/Chlam-DCs) as HIV-
1 infection. For first experiments (DC maturation, binding,
internalization) infectious as well as heat-inactivated bacteria
were used. Since no differences were observed and since we
intended to study PAMP-associated changes in DCs induced
by Chlamydia, for all other analyses we used heat-inactivated
bacteria. A representative histogram plot of CD83 expression on
iDCs (red), DCs treated with heat-inactivated Chlamydia (dark
green) or live Chlamydia (light green) is depicted in Figure S1,
lower panel. Since isotype controls between the conditions
did not differ, the iDC isotype control is shown (Figure S1,
lower panel).

Bacteria
Chlamydia spp. propagated in human epithelial HL cells and
aliquots of purified bacteria were stored in sucrose phosphate
glutamic acid at −80◦C until use (20). For quantification of
infection, coverslips overlaid with HL-cell-monolayers were
fixed in methanol and stained with FITC-conjugated anti-
Chlamydia LPS monoclonal antibody (OXOID (Ely) Ltd., Ely,
UK). Chlamydial inclusion bodies within cells were counted by
fluorescence microscopy at a magnification of x100 with a Scope
A1microscope (Zeiss). For experiments using infectious, purified
Chlamydia cells were infected at a multiplicity of infection/MOI
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of 10 as described earlier (20). An aliquot of tested, purified
Chlamydia spp. was used for heat-inactivation at 70◦C for 20min.

Plasmids
The infectious R5-tropic HIV-1 proviral clone R9Bal was used
formaturation, binding/internalization andDC infection studies.
For HIV-1 fusion assays the R9Bal and vpr/β-lam expression
constructs were used to generate chimeric R9Bal/β-lam pro-
viral clones. Confocal microscopic analyses and HC/HT imaging
analyses were performed by using chimeric R9Bal/mCherry
virus preparations originating from R9Bal and vpr/m-Cherry
expression plasmids (21).

Virus Production
HIV-1 proviral clones were produced by transfecting HEK293T
cells. R9Bal/β-lam and R9Bal/mCherry virus stocks were
prepared by co-transfection of HEK293T cells with the pro-
viral R9Bal DNA and the vpr-β-lam or vpr-mCherry expression
constructs (9). Freshly produced virus was obtained via
ultracentrifugation (70,000 × g/90 min/4◦C). Concentration
of the ultracentrifuged virus was measured by p24 ELISA
(22) and viral infectivity was confirmed by the determination
of the TCID50 using PHA/IL-2-stimulated PBLs. To monitor
productive infection of DCs or DC/T cell co-cultures, p24 ELISA
was used.

Opsonization of Viral Stocks
Viruses were opsonized by incubation with normal human
serum (NHS) as a complement (C) source in a 1:10 dilution
for 1 h at 37◦C (HIV-C). As negative control, the viruses
were incubated under the same conditions in medium, which
reflects non-opsonized HIV-1 (HIV). After opsonization, viruses
were thoroughly washed, pelleted by ultracentrifugation (25,000
× g/90 min/4◦C) and re-suspended in RPMI medium. The
opsonization pattern was determined by virus capture assay
(VCA) as described (7). 96-well high-binding plates were coated
using anti-human C3c, C3d, or IgG antibodies. Mouse IgG
antibody was used as a control for background binding. Plates
were then incubated overnight at 4◦C with the differentially
opsonized virus preparations (10 ng p24/well). After extensive
washing, virus was lysed and p24 ELISA was performed.

Capture of HIV-1
Differentially matured DCs (1 × 105 cells/well/100 µl) were
exposed to 25 ng p24/ml of R5 tropic non-opsonized (R9Bal) or
complement-opsonized (R9Bal-C) HIV-1. After 6 h incubation
at either 4◦C for binding or 37◦C for internalization, cells were
washed 4 times to remove unbound virus. Cell pellets were lysed
with 2% Igepal and viral amount was assessed by p24 ELISA.

Viral Fusion Assay
DCs were plated into 96-well plates (1 × 105 cells/well/100 µl)
and infected with 250 ng p24/ml non-opsonized or opsonized
R9Bal/β-lam. After 5 h incubation cells were washed and loaded
for 1 h with CCF2-AM substrate solution according to the
manufacturer’s instructions (LiveBLAzerTM FRET-B/G Loading
Kit with CCF2-AM, LifeTechnologies). Cells were washed again
and developed for 16 h in CO2-independent medium (Gibco)

containing 10% FCS and 2.5mM probenicid. Cleavage of CCF2
was analyzed by flow cytometry after fixation of DCs in
4% paraformaldehyde.

Microscopy
To visualize intracellular HIV-1 localization by confocal
microscopy, iDCs, HIV-C or HIV/Chlam, Chlam- and LPS-
DCs were plated onto Poly-L-lysine (Sigma)-coated coverslips
and exposed to R9Bal/mCherry or –GFP (350 ng p24/ml) for
24 h. For HC/HT screening analyses, various matured DCs
(50,000/well) were seeded in CellCarrier Ultra plates (Perkin
Elmer) and infected over night with fluorescently labeled HIV-
C (350 ng p24/ml). DCs were fixed with 4% paraformaldehyde,
labeled using Hoechst 33342 (Cell Signaling Technologies),
permeabilized (Permeabilization Wash Buffer, BioLegend), and
stained withHLA-DR (BioLegend). Following staining, cells were
washed and mounted (confocal microscopy) or re-suspended in
D-PBS (HC/HT Screening). Confocal microscopy was performed
on a Leica SP5 (Leica Microsystems) using a glycerol objective.
Images were analyzed using LAS AF Lite (Leica Microsystems)
and Fiji (ImageJ). For 3-D-rendered stacks, Imaris (Bitplane)
was used. HC/HT analyses were performed using an Operetta
CLSTM (Perkin Elmer) and co-localization of mCherry/HLA-DR
or GFP/Siglec-1 automatically quantified using the HarmonyTM

Software and RMS Spot Analyses (Perkin Elmer). For these
automated analyses, first fluorescence intensities were measured,
since if HIV particles are in the cytoplasm, the fluorescence
intensities are significantly lower compared to packed virus
in endosomes. Lower intensities can then be excluded from
the automatic screening process. Then co-localization of virus
particles with HLA-DR, which is in endosomal compartments
only, was measured.

DC Infection
Day 6 iDCs, HIV-C or HIV/Chlam-DCs, Chlam-DCs and LPS-
DCs (1 × 105cells/well/100 µl) were infected in triplicate with
25 ng p24/ml of R9Bal or R9Bal-C. After 24 h incubation,
DCs were thoroughly washed and cultured at 37◦C and 5
% CO2 for 15 days. For co-infection experiments, autologous
CD4+ T cells were added to washed DCs the day after HIV-
infection. After several days post-infection, supernatants were
taken and diluted 1:10 with 2% Igepal to lyse the virus. Productive
infection was determined by measuring p24 concentrations in
the supernatant.

Interferon-γ Elispot
SL9 clone 2, a HIV-specific CD8+ CTL clone, was derived from
an HIV-infected patient and recognizes the well-characterized
immune-dominant epitope of Gag p17 SLYNTVATL (SL9)
presented by HLA-A∗02:01 (23, 24). The human immune
response to the HLA-A∗02:01-restricted Gag77−85 SLYNTVATL
epitope is the most studied—SL9 is a highly immunogenic, help-
independent HIV-1 epitope and a strong negative association
was demonstrated between SL9-CTL levels and viral load
(25). DCs were co-cultured overnight with SL9-CTLs (2,500–
10,000 clones/well). As positive controls, DCs were incubated
with 1µg/ml of cognate peptide before washing and addition
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of the HIV-specific CTL clones overnight. IFN-γ production
was monitored in an Elispot assay as described (24). All
antibodies (Abs) used for the IFN-γ Elispot were purchased
fromMabtech.

Multicolor FACS Analyses
Differentiation and maturation of DCs exposed to Chlamydia
or LPS and HIV-1 were analyzed by using anti-human
CD11c-AlexaFluor488, HLA-DR-PerCP/Cy5.5, DC-SIGN-
PE (Biolegend), CD86-BV421, CD83-APC, CD169-PE (BD
Biosciences) on a FACS Verse flow cytometer (BD Biosciences).
Cell surface expression of receptors for HIV and HIV-C binding
was determined by flow cytometry as described using anti-
human CD11b-APC, CD4 PerCP/Cy5.5 and DC-SIGN-PE
(BioLegend). Data was analyzed using FACS DIVA software (BD
Biosciences) and R.

Statistical Analysis
Data were analyzed using GraphPad Prism software (GraphPad
Software Inc.). Statistical analyses were performed using two-way
ANOVA with Dunnett’s posttest for multiple comparisons.

RESULTS

Reduced Maturation of DCs During
Chlamydial Co-infection Compared to
Sequential Infection
We initially evaluated whether exposure to Chlamydia induced
maturation of DCs similarily to the positive control LPS.
Therefore, we analyzed cell surface expression of the specific
markers CD83, CD86 andHLA-DR after the different treatments.
We found that long-term exposure (24 h) of iDCs to Chlamydia
induced significant up-regulation of CD83, CD86, and HLA-DR
compared to untreated iDCs (Figure 1A). However, expression
levels of CD83, CD86, and HLA-DR on Chlam-DCs were lower
compared to LPS-stimulated DCs (LPS-DCs) in all donors
tested (Figure 1A, n = 6). Independent of DC stimulation, the
expression levels of DC-SIGN and the complement receptors
3 and 4 (CR3, CD11b/CD18; CR4, CD11c/CD18) were only
moderately changed and CD4 expression was slightly reduced
under all maturation conditions as also shown by Chen et al.
(26) (not shown). Exposure of such various matured DCs
(Chlam-DCs, LPS-DCs) to HIV-C did not change the expression
of up-regulated markers CD83 (Figure 1B, left panel), CD86
(Figure 1B, middle panel), and HLA-DR (Figure 1B, right
panel). In contrast, a reduced maturation of DCs was observed
upon co-infection with HIV-C and Chlamydia (HIV-C/Chlam-
DCs) and this maturation was comparable to that when iDCs
were exposed to HIV-C only (Figure 1B, CD83—left panel,
CD86—middle panel, HLA-DR—right panel). Expression of
all maturation and activation markers was significantly higher
on HIV-C- and HIV-C/Chlam-DCs compared to iDCs. We
demonstrated that stimulation of DCs with Chlamydia caused a
lower DC maturation compared to LPS and this maturation was
not increased due to additional HIV-C exposure.

Binding of HIV-C Depends on the DC
Maturation Status
Since expression of activation markers was shown to be different
on iDCs, Chlam- and LPS-DCs, we assessed whether this might
lead to differential binding of HIV-C to DCs. To characterize
binding of HIV-C co-cultures of various matured DCs and
HIV-C were incubated for 6 h at 4◦C (8). At 4◦C, DCs just
bind but do not internalize viral pathogens (8). HIV-C (25
ng p24/ml) was added to iDCs, Chlam- and LPS-DCs for 6 h
at 4◦C. Using the co-infection model, DCs were incubated
with simultaneously added HIV-C and Chlamydia under above
mentioned conditions. Cell-bound virus was determined after
thorough washing and lysing of DCs by quantification of
p24 protein. Similar amounts of HIV-C were attached to
iDCs and HIV-C/Chlam-DCs, while Chlam- and LPS-DCs
depicted a significantly increased binding of HIV-C (Figure 2A).
A similar binding pattern was analyzed for non-opsonized
HIV-1 (HIV, Figure S2A). Therefore, binding to DCs was
independent of the opsonization pattern, but was modulated by
DC maturation status.

DC Maturation Affects HIV-C
Internalization
To also see if internalization of HIV-C in iDCs, HIV-C/Chlam-,
Chlam-, and LPS-DCs differs, we incubated differentially
stimulated cells for 6 h at 37◦C. Virus was added as described
above and bound/internalized HIV-C was determined by p24
ELISA after washing and lysing the cells. These analyses revealed
that LPS-DCs show a ∼5-fold higher internalization compared
to iDCs and HIV-C/Chlam-DCs (Figure 2B). Internalization of
HIV-C into LPS-DCs was significantly higher compared to its
non-opsonized counterpart (Figure S2B, p= 0.005). Though the
internalization of HIV-C in Chlam-DCs was lower compared
to LPS-DCs, a significantly higher internalization of HIV-C
compared to both iDCs (p = 0.0030) and HIV-C/Chlam-
DCs (p = 0.0071) was identified (Figure 2B). The increase
in HIV-1 internalization upon DC maturation was observed
independent on whether the virus was opsonized (Figure 2B) or
not (Figure S2B).

DC Maturation Affects HIV-C Fusion
To further evaluate the impact of iDC maturation by the
different treatments on the interaction of cell and virions,
we analyzed virion fusion using Vpr-β-lactamase (Vpr-blam)-
containing HIV-C (Figure 2C) or HIV (Figure S2C). We found
that fusion was not inhibited in HIV-C/Chlam-DCs relative to
HIV-C-exposed iDC controls (Figure 2C). In contrast fusion was
significantly decreased in Chlam-DCs and LPS-DCs (Figure 2C).
It is notable that fusion was completely inhibited in the LPS-
DCs independent of the opsonization pattern of the virus
(Figure 2C and Figure S2C). iDCs and co-infection of DCs
with Chlamydia were associated with the highest fusion with
HIV-1, while sequential infection with Chlamydia displayed
significantly lower fusion levels with a complete inhibition of
fusion in LPS-DCs.

Frontiers in Immunology | www.frontiersin.org 4 May 2019 | Volume 10 | Article 1123

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Schönfeld et al. Timely Changes During HIV/Chlamydia Infection

FIGURE 1 | Chlamydia induces maturation of DCs in vitro. (A) Representative flow cytometric analysis of CD83, CD86, and HLA-DR expression on CD11c+ DCs

upon stimulation with Chlamydia or LPS for 24 h. Percentages+/-SD of double positive (CD83+/CD11c+, CD86+/CD11c+, HLA-DR+/CD11c+) DCs are indicated

for 6 independent donors. (B) CD83 (left), CD86 (middle) and HLA-DR (right panel) expression levels are not changed in co- or sequential infected cells. Levels of

HIV-C/Chlam-DCs and HIV-C-DCs are similar, while delayed addition of HIV-C to Chlam-DCs represents the maturation and activation status of Chlam-DCs. LPS-DCs

were used as positive controls. To simplify the graph, statistics are only depicted for differences between the co- and sequential infection model. Percentages+/-SD of

double positive (CD83+/CD11c+, CD86+/CD11c+, HLA-DR+/CD11c+) DCs are indicated for 3 donors. Statistical analysis was performed using 2way ANOVA and

Dunnett’s multiple comparisons test.

Siglec-1 Does Not Play a Role With
Respect to HIV-C Capture
Since Siglec-1 (CD169) was described—at least in vitro - to
exert a prominent role with respect to capture and transfer
of HIV-1 in LPS-stimulated mDCs (27–29), we analyzed co-
localization of this molecule with GFP-tagged HIV or HIV-
C in differently stimulated DCs. For this, we performed high
content screening of differentially stimulated and infected
DCs and analyzed the co-localization of GFP-tagged virus
with PE-labeled Siglec-1. We automatically analyzed two fields
á 100 cells for their co-localization of HIV-1 and Siglec-
1 using the HarmonyTM software (Perkin-Elmer) and mean
values of spots co-localizing within 100 cells are depicted in
Figure S3. These analyses revealed no significant differences
but only slightly higher Siglec-1/HIV-C co-localization in
Chlam-DCs compared to iDCs or HIV/Chlam-DCs and
compared to background fluorescence of non-infected cells,
which served as negative controls (Figure S3). As positive
controls, mature DCs (Chlam-DCs or LPS-DCs) infected
with non-opsonized HIV-1 (HIV) were used, which displayed
significantly higher co-localization compared to HIV-C-infected
DCs. the results suggest that a modulation of the interaction
of HIV-1 and Siglec-1 is not playing a major role in
viral capture.

HIV-C Localizes to HLA-DR-Containing
Compartments in Chlam- and LPS-DCs
To gain additional insights into potential differences in the
interaction of HIV-1 with iDCs matured by the different
treatments, we evaluated the intracellular localization of HIV-
C in iDCs, HIV/Chlam-, Chlam-, and LPS-DCs. To this
end, we infected the respective different DC populations
using fluorescently labeled HIV-C and analyzed viral particle
distribution of internalized HIV-C by high-content/high-
throughput (HC/HT) image analyses and confocal microscopy
(Figure 3, Figure S4). For these analyses, cells were additionally
labeled using a nuclear stain (Figure 3, Figure S4, Hoechst, blue)
and HLA-DR as marker for endosomal compartments including
virus containing compartments (VCCs) (Figure 3, Figure S4,
green). The analyses revealed significantly lower levels of
HIV-C-containing HLA-DR-containing compartments in iDCs
compared to HIV-C/Chlam-, Chlam-, and LPS-DCs (Figure 3,
left, histogram plot). Significantly higher HLA-DR-containing
compartment levels were detected in LPS-DCs compared to
both, HIV-C/Chlam- and Chlam-DCs (Figure 3, left, histogram
plot). The accumulation of the virus in HLA-DR-containing
compartments in LPS-DCs was confirmed using confocal
microscopic analyses (Figure 3, right)—these revealed vacuolar
and cytoplasmic distribution of HIV-C in iDCs (Figure 3, right,
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FIGURE 2 | Chlam- and LPS-DCs efficiently capture HIV-C. Binding at 4◦C (A) and internalization at 37◦C (B) were performed in triplicates using 25 ng/ml of

R5-tropic opsonized HIV-1. Bar graphs show means ± SD from three independent experiments. p24 levels within the cell lysates were determined by ELISA. Prior to

cell lysate preparation, cells were thoroughly washed to remove unbound virus. Statistical analysis shows 2-way ANOVA with Tukey’s multiple comparisons test. (C)

Fusion assays were performed after addition of HIV-C bearing the chimeric protein β-lactamase-Vpr to iDCs, Chlam-DCs, and LPS-DCs or after simultaneous

HIV-C-VprBlam/Chlamydia stimulation of iDCs (HIV-C/Chlam-DCs). The amount of fused virus was determined by flow cytometric analyses of cleaved CCF2 in the

cytoplasm. Percentages of cleaved CCF2-positive cells from three independent donors are depicted.

upper panel, Figure S4, left), while only HLA-DR-containing
compartments, but no cytoplasmic HIV-1, were detected in LPS-
DCs (Figure 3, right, lower panel, Figure S4, right). Figure 3
shows volume projections of maximal pixel intensity of all
layers analyzed and Figure S4 the respective 3D-rendered z-
stacks. Fusion and image analyses by HC/HT screening and
confocal microscopy revealed a high cytoplasmic distribution
of HIV-C in iDCs and under conditions of co-infection. The
cytoplasmic distribution was reduced in sequentially infected
DCs and completely abrogated in LPS-DCs. In contrast HIV-1-
containing vacuoles were mainly detected in LPS-exposed DCs,
to lower levels in Chlamydia-exposed DCs and only marginally
in iDCs.

DC Infection Is Enhanced by Chlamydia

Co- and Sequential Infection
We recently demonstrated that HIV-C overcomes restriction in
iDCs resulting in significantly higher productive DC infection,
improved antigen-presentation as well as humoral antiviral
immune responses (30). We analyzed productive DC infection
using HIV-C in co- (HIV+Chlam-) and sequential infection
(Chlam-) DC models as well as LPS-DCs. iDCs were used
as controls—again we found that non-opsonized HIV caused
a significantly lower productive infection of iDCs (Figure 4,
upper panel, dotted green line, HIV, vs. green line, HIV-C and

Figure S5) compared to HIV-C despite similar binding and
internalization (Figure 4, upper panel, and Figure S1). However,
neither HIV (not shown) nor HIV-C (Figure 4, upper and
lower panels) caused any productive infection in LPS-DCs.
Within the co-infection model, both HIV-C (Figure 4, upper
and lower panels) and HIV (Figure S5) exerted an enhanced
productive DC infection compared to iDCs (Figure S5)—
nevertheless, complement opsonization of HIV-1 still promoted
a significantly increased DC infection compared to its non-
opsonized counterpart (Figure S5). Although Chlam-DCs—
representing the sequential infection—showed a high maturation
and low viral fusion, they were infected to high levels with both
HIV-C (Figure 4) and HIV (Figure S5). These data suggest that
HIV-C facilitated productive infection in DCs during chlamydial
co- and sequential infection as well as a different maturation
status between LPS- and Chlamydia-matured DCs.

HIV-C/Chlamydia Co- but not Sequential
Infection of DCs Is Associated With
Reduced HIV Transfer
Lastly, we evaluated HIV-1 trans-infection from differently
matured DCs to autologous, stimulated CD4+ T cells as revealed
by a co-culture with T cells. In these studies, we found that
simultaneous stimulation of DCs with HIV-C and Chlamydia
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FIGURE 3 | HIV-C/Chlam-, Chlam-, and LPS-DCs show significantly higher levels of vacuolar HIV-C. Intracellular localization of HIV-C in LPS-DCs was investigated by

HC/HT screening and confocal microscopic analyses. The path of image analyses is illustrated in the upper panel. Briefly, nuclei (Hoechst) and cytoplasm (Brightfield)

of differentially matured and HIV-C-infected DCs were identified using the Harmony 4.6 software (Perkin Elmer). Within at least 50 to 100 scanned cells,

mCherry-labeled HIV-spots co-localizing with Alexa488-labeled HLA-DR were identified. Quantitative analyses of HIV-C-containing HLA-DR-positive vacuoles are

depicted in the lower left panel. Co-localization of HIV-C and HLA-DR in LPS-DCs was further confirmed using confocal microscopic analyses. iDCs show, besides

some compartmentalized HIV, randomly distributed cytoplasmic HIV-C (red) while LPS-DCs display solely concentrated HIV-C within cellular compartments.

resulted in similar infection rates to CD4+ T cells as HIV-
C-exposed iDCs. Compared to Chlam- and LPS-DCs, these
conditions illustrated significantly reduced trans-infection in co-
culture experiments (Figure 5). As demonstrated previously for
non-opsonized HIV (27, 31), LPS-matured DCs, too, transmitted
significantly more virus when complement-opsonized compared
to iDCs, HIV/Chlam- and Chlam-DCs (Figure 5). Therefore,
levels of transmitted HIV-C in Chlamydia-matured DCs differ
in co- and sequential infection models and transfer does not
correlate with Siglec-1 co-localization in the HIV-C model
(Figure S3).

Chlamydia Co-infection Promotes
Significant Activation of HIV-Specific CTLs,
While Reversing the Situation During
Sequential Infection
Bypassing of restriction mechanisms in iDCs and enhanced
productive infection using HIV-C rendered the cells capable to
activate highly specific anti-HIV-cellular and humoral immune
responses (9, 17). To determine the potential impact of
Chlamydia on cellular HIV responses, we evaluated the ability
of differently matured DCs (iDCs, HIV-C or HIV/Chlam-,
Chlam-DCs, and LPS-DCs) exposed to HIV-C (Figure 6) or
HIV (Figure S6) to stimulate HLA-matched HIV-specific CTLs.

While in the co-infection model, when Chlamydia and HIV-C
were added simultaneously, we detected a significantly higher
CTL stimulatory capacity compared to HIV-C-exposed iDCs
(Figure 6). Within the sequential infection model (Chlam-DCs,
LPS-DCs) a significantly abrogated potential to stimulate HIV-
specific CD8+ T cells was observed (Figure 6). SLYNTVATL-
exposed DCs were used as positive controls (Figure 6). The
CTL-stimulatory power of DCs was also drastically augmented
using co-infection of the cells with bacteria and non-opsonized
HIV-1 (Figure S6). As already observed during our earlier
work, HIV-loaded iDCs exerted a very weak CTL-stimulatory
capacity (Figure S6) (9, 18). These observations illustrate that co-
infection of DCs withChlamydia andHIV-C or HIV is associated
with induction of HIV-specific CTL responses, while sequential
infection results in increased hazard with respect to the weak
CTL-stimulatory capacity of DCs.

DISCUSSION

The studies presented here reveal that infection of the host
with Chlamydia and HIV-1 have both potential positive and
negative impact on HIV infection. Simultaneous infection of
DCs with Chlamydia and HIV might be beneficial for the
host as this triggers a higher HIV-specific CTL activation
and lower transfer of HIV to autologous CD4+ T cells. In
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FIGURE 4 | Enhanced productive infection of Chlam-DCs mediated by HIV-C.

DCs were infected with 25 ng p24/ml of HIV-C. The graph depicts an infection

course of DCs—p24 levels (means ± SD) within the supernatant were

analyzed on day 1-10-13 and 15 post-infection. Highest productive infection

was measured in supernatants from HIV-C-infected HIV-C/Chlam- (blue) and

Chlam-DCs (red) followed by HIV-C-exposed iDCs (green, solid line).

Non-opsonized HIV caused the already described low-productive infection in

DCs (green, dashed line) (9). No infection was detected in LPS-DCs

independent of the opsonization pattern of the virus (turquoise). The upper

panel shows the kinetics of one out of three representative assays including

technical triplicates, while in the lower panel all three donors were combined

and day 15 post infection is depicted.

contrast, sequential infection of DCs with Chlamydia and HIV,
which might be a common situation in the host, results in
detrimental outcomes as it is associated with higher productive
DC infection and viral transmission to susceptible CD4+ T
cells as well as poorer stimulation of HIV-1-specific CD8+ T
cell clones.

Upon simultaneous stimulation of DCs with Chlamydia and
either complement-opsonized HIV-1 or untreated control HIV,
a significantly improved CTL response was observed. This is
in contrast to the requirement for complement-opsonization
we previously reported in the absence of Chlamydia exposure
to act as an endogenous adjuvant for DC-mediated CTL
activation of iDC (16). We also find that HIV-exposed DCs
co-infected simultaneously with Chlamydia exerted a superior

FIGURE 5 | HIV-C is efficiently transferred from Chlam- and LPS-DCs. In

co-culture experiments differentially stimulated DCs (iDCs, green;

HIV/Chlam-DCs, blue; Chlam-DCs, red; LPS-DCs, turquoise) were infected

using HIV-C (25 ng p24/ml), thoroughly washed and autologous CD4+ T cells

were added. Significantly higher infectivity was measured in Chlam-DC- and

LPS-DC co-cultures compared to iDC- and HIV-C/Chlam-DC-CD4+ T cell

co-cultures. p24 ELISAs of differently stimulated DC/T cell co-cultures

performed in triplicates from two donors exposed to HIV-C are summarized

and statistical analyses were performed using two-way ANOVA with Dunnett’s

posttest for multiple comparisons.

FIGURE 6 | Enhanced stimulation of HIV-specific T cell clones at simultaneous

addition. IFNγ induction in CD8+ T cell clones by HIV-C-exposed iDCs and

HIV-C/Chlam-DCs was significantly stronger than that of non-opsonized

HIV-loaded DCs (HIV-DCs; p < 0.0001 for CD8+ T cell clones), or Chlam- and

LPS-DCs exposed to HIV-C (p < 0.0001 for all). As positive controls specific

peptide-loaded DCs for CD8+ T cell clones were used (iDCs/SLYNTVATL).

IFNγ Elispots of CD8+ T cell clones were repeated using HLA-matched and

differently stimulated DCs from three donors exposed to HIV-C, or HIV.

Statistical analyses were performed using two-way ANOVA with Dunnett’s

posttest for multiple comparisons.

CTL-stimulatory capacity of HIV-specific CD8+ T cell clones
compared to their HIV-iDC counterparts (9, 16, 18). As shown
recently in a murine vaginal co-infection model (32), chlamydial
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pre-infection protected the mice from subsequent Herpes
Simplex Virus (HSV)-2 challenges. This Chlamydia-mediated
protection was transient and only detectable in mice pre-
challenged with Chlamydia before, simultaneously with, or
shortly after infection with HSV-2 (32). These findings are
in accordance with our data, where co-infection of DCs
with Chlamydia and HIV or HIV-C resulted in significantly
higher CTL activation via DCs. In contrast, DC sequential
infection for 3 h or 24 h with Chlamydia followed by HIV-
C infection had detrimental outcomes (Figures 4, 5). Under
these conditions, sequentially infected DCs only had a poor
capacity to stimulate HIV-specific CTLs and allowed significantly
higher productive HIV infection (cis infection). In contrast,
no cis-infection was analyzed at all in DCs challenged
for 3 or 24 h with LPS prior infection with HIV-C. The
impact of pre-existing STIs on HIV immune responses was
studied by Sheung et al. (33) in high risk Kenyan female
sex workers. They found that mucosal Neisseria gonorrhoeae
co-infection during HIV-1 acquisition was associated with
substantially enhanced HIV-specific CD8+ T cell responses
(33). The enhanced CTL response was not seen in women
with Chlamydia co-infection, which correlates well with our
findings within the sequential infection model of DCs with
Chlamydia and HIV-1, which exerted a weak HIV-specific CTL
activation. However, to study the impact of simultaneous STI
on HIV immune responses is logistically impossible in the
human host.

LPS-DCs had the highest binding and internalization of HIV-
C followed by Chlam-DCs, while iDCs and HIV-C/Chlam-
DCs showed similar HIV-C up-take levels. As described earlier,
maturation of DCs—as seen in LPS- or Chlam-DCs—enhances
their virus capture and trans infection capacity while reducing
viral fusion events (34). HIV-C/Chlam-DCs are not as mature as
Chlam-DCs, when binding and internalization were measured.
Therefore, HIV-C/Chlam-DCs more act like iDCs, which show
less binding and internalization, but enhanced fusion. Consistent
with this interpretation, the highest levels of fusion were
measured in iDCs and HIV-C/Chlam-DCs, while Chlam- and
LPS-DCs demonstrated considerably reduced fusion levels (34).
Consistent with our fusion data, the accumulation of HIV-C in
HLA-DR-containing compartments was highest in LPS-DCs and
also Chlam-DCs showed significantly higher HIV-C-containing
compartments compared to iDCs. In macrophages, virus
containing compartments (VCCs) were described to resemble
late endosomes or multi-vesicular body (MVB) compartments
and to show enrichment of CD9, CD53, CD81, CD82, and
MHC class II (35, 36). We previously illustrated co-localization
of HIV-C with these markers (7). VCCs are non-acidic and
often express surface-connected tubular conduits to the plasma
membrane (35, 37, 38). VCC formation was demonstrated to
greatly facilitate trans-infection of HIV-1 from macrophages
to autologous CD4+ T cells (39). Accumulation of viral
particles within intracellular DC compartments was illustrated
to share multiple features with macrophage VCCs (30, 40, 41).
Concentration of non-opsonized HIV-1 particles in large sac-
like and tetraspanin-rich/MHC II compartments within LPS-
mDCs was shown by various imaging studies (27, 42, 43). We

also show a similar distribution of HIV-C in MHC II (HLA-
DR-) compartments particularly in Chlam- and LPS-matured
DCs. Transfer of such trapped viral particles, which were non-
opsonized, from mDCs to CD4+ T cells was highly effective
(44–46). Localization of internalized virus differs greatly in
endocytically active iDCs compared to mDCs—mDCs storing
intact HIV particles within large vesicles correlate with increased
trans-infection abilities (34). We here demonstrate (47), that
similar to non-opsonized HIV-1, mature DCs (i.e., LPS-DCs
and Chlam-DCs) retained HIV-C particles in an infectious
form and efficiently transmitted the virus particles to target
CD4+ T cells through trans infection. Despite co-infection
with Chlamydia, DCs displayed significantly higher amounts of
trapped virus particles compared to iDCs loaded with HIV-C.
Such co-infected DCs exerted superior antiviral functions as
increased HIV-specific CTL-stimulation and reduced transfer to
CD4+ T cells. These effects were likely a consequence of higher
viral fusion of HIV-C during co-infection compared to LPS-DCs
and the sequential infection model, where DCs were incubated
with Chlamydia for a prolonged period prior to addition
of HIV-C.

Siglec-1 was recently described to play a major role during
HIV-1 capture and transfer in LPS-mDCs. Here, we also analyzed
co-localization of GFP-tagged complement-opsonized HIV-1
and Siglec-1 in iDCs, HIV+Chlam-, Chlam-, and LPS-DCs.
We did not find any correlation between co-localization of
Siglec-1/HIV-C, the maturation status of DCs and transfer to
susceptible T cells. These findings are consistent with recent in
vivo studies by Martinez-Picado et al. where they demonstrated
that Siglec-1 protein truncation did not have ameasurable impact
onHIV-1 acquisition or AIDS outcomes in vivo (48). Themissing
correlation of Siglec-1/HIV-C and transfer from differently
matured DCs to target cells which was described in vitro for
non-opsonized HIV-1 by recent studies (41, 49–51) might rely
on the fact that C3 fragments covalently bind to the surface
of HIV-1 (52) potentially hampering interactions of Siglec-
1 with virus-incorporated host-cell-derived glycosphingolipid
GM3. GM3 was shown to allow capture by DCs, monocytes and
macrophages in vitro (51). In our analyses, we, too, found higher
co-localization of non-opsonized HIV with Siglec-1, in particular
in the sequential infection model, but also in LPS-mDCs. In vivo,
HIV-1 was found to be opsonized with complement fragments
or specific antibodies in all compartments tested so far (53–57).
Therefore, the findings by Martinez-Picado et al. that Siglec-
1 protein truncation did not correlate with HIV-1 acquisition
or AIDS outcomes in vivo could be explained by covalent
coating of the virus with C3. C3 bound to the viral particles
would mediate interactions with complement receptors 3 and 4
(CR3, CD11b/CD18; CR4, CD11c/CD18) abundantly expressed
by immature and mature DCs rather than allowing interactions
of GM3 with Siglec-1. We earlier found that the covalently linked
cloud of C3 fragments on the viral surface impaired interactions
of the HIV envelope glycoproteins with C-type lectins expressed
on iDCs (8).

The presented data shows that co- or sequential infection
of DCs with Chlamydia alters the progression of subsequent
HIV-1 infection with implications for HIV-1 processing into
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peptides for MHC presentation, transfer to target cells via
trans-infection and CTL responses (58, 59). STIs are an
important public health issue and in HIV-positive women,
STIs are associated not only with gynecological complications
but with increased risk of HIV transmission to HIV-negative
partners and newborns (60). We find that infection of DCs
with HIV-C (or HIV) and Chlamydia are associated with
mechanisms but only if added simultaneously. The mechanisms
are likely due to simultaneous stimulation of innate immune
mechanisms on DCs. One such trigger might be activation of
Toll-like receptors (TLRs), since Chlamydia was illustrated to
activate TLR2/6 (61). Therefore, within the chlamydial/HIV-C
co-infection model TLRs in concerted action with CR3/CR4
(HIV-C) or C-type lectins (HIV) could stimulate a more
robust DC activation compared to HIV-C- or HIV-DCs
alone. This would result in even higher stimulation of HIV-
specific CTLs and reduction of viral infectivity in the co-
infection model. Other host innate immune responses, which
might contribute to the higher anti-HIV-1 activity of co-
infected DCs comprise superior induction of pro-inflammatory
cytokines and/or antimicrobial peptides (62–64). However, the
sequential infection model, which probably occurs more often
in vivo compared to simultaneous DC stimulation with both
pathogens, was associated with harm to the host due to
significantly enhanced cis and trans infection with HIV-1 and
significantly reduced HIV-specific CTL-stimulation. In future
studies, we want to elucidate the mechanisms in DCs involved
in the observed differences in Chlamydia-mediated effects to
characterize factors associated with protection, which might be
applied as therapeutic interventions during STIs to lower the risk
of HIV-1 transmission and infection.
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Figure S1 | Flow cytometric analyses of DC profiles of iDCs and differentially

treated DCs. (Upper panel) Monocyte-derived iDCs are routinely checked for

characteristic markers CD11b, CD11c, and DC-SIGN, which are homogenously

expressed on day 5 iDCs. Characteristic maturation markers CD83 and HLA-DR

are not expressed or do show a low expression on day 5 iDCs dependent on the

donor. Representative histogram plots for the various markers are illustrated.

(Lower panel) Day 5 iDCs were treated for further 2 days with live (light green) or

heat-inactivated (dark green) Chlamydia or not (iDCs, red) and analyzed for

expression of characteristic maturation markers. A representative histogram plot

for CD83 is depicted.

Figure S2 | Chlam- and LPS-DCs efficiently capture HIV. Binding at 4◦C (A) and

internalization at 37◦C (B) were performed in triplicates using 25 ng/ml of

R5-tropic non-opsonized HIV-1. Bar graphs show means ± SD from three

independent experiments. p24 levels within the cell lysates were determined by

ELISA. Prior to cell lysate preparation, cells were thoroughly washed to remove

unbound virus. Statistical analysis shows 2-way ANOVA with Tukey’s multiple

comparisons test. Six donors are summarized. (C) Fusion assays were performed

by exposure of HIV/Chlam-DCs and LPS-DCs to HIV bearing the chimeric protein

β-lactamase-vpr. The amount of fused virus was determined by flow cytometric

analyses of cleaved CCF2 in the cytoplasm. Percentages of cleaved

CCF2-positive cells from three independent donors are depicted.

Figure S3 | Siglec-1-independent transfer of HIV-C. Enhanced transfer of HIV-C

from Chlam- and LPS-DCs was independent on Siglec-1 as analyzed by high

content screening as depicted (upper panel). Only low spots of

HIV-C/Siglec-1-co-localization were quantified in 2 fields of 100 cells each (lower

panel, right). The co-localization was compared to non-infected differentially

stimulated DCs, which represent background values (lower panel, left), and

HIV-infected differentially stimulated DCs (lower panel, middle). 200 cells were

analyzed in total.

Figure S4 | Localization of HIV-C in iDCs and LPS-DCs. For three-dimensional

reconstructions, confocal z stacks of iDCs and LPS-DCs exposed to HIV-C were

processed with Imaris software using surface reconstruction (Surpass, IMARIS

8.2). About 30 cells per condition were analyzed.

Figure S5 | Enhanced DC infection by HIV-C independent of stimulation. iDCs,

HIV/Chlam- and Chlam-DCs exerted a significantly enhanced infection using

HIV-C (gray) compared to HIV (white). Nevertheless, also productive DC infection

of HIV/Chlam-DCs was significantly increased compared to the low-level infection

of iDCs using non-opsonized HIV. Three independent donors were summarized in

the graph and means ± SD are shown.

Figure S6 | Enhanced CTL stimulation by HIV+Chlam DCs. IFNγ induction in

CD8+ T cell clones by DCs simultaneously exposed to HIV and Chlamydia was

significantly higher than that iDCs, Chlam-, and LPS-DCs exposed to HIV (p <

0.0001 for all). Means ± SD of three independent experiments

are illustrated.
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