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OBJECTIVES: Severe cases of COVID-19 pneumonia can lead to acute respira-
tory distress syndrome (ARDS). Release of interleukin (IL)-33, an epithelial-derived 
alarmin, and IL-33/ST2 pathway activation are linked with ARDS development in 
other viral infections. IL-22, a cytokine that modulates innate immunity through mul-
tiple regenerative and protective mechanisms in lung epithelial cells, is reduced in 
patients with ARDS. This study aimed to evaluate safety and efficacy of astego-
limab, a human immunoglobulin G2 monoclonal antibody that selectively inhibits 
the IL-33 receptor, ST2, or efmarodocokin alfa, a human IL-22 fusion protein that 
activates IL-22 signaling, for treatment of severe COVID-19 pneumonia.

DESIGN: Phase 2, double-blind, placebo-controlled study (COVID-astegolimab-IL).

SETTING: Hospitals.

PATIENTS: Hospitalized adults with severe COVID-19 pneumonia.

INTERVENTIONS: Patients were randomized to receive IV astegolimab, efma-
rodocokin alfa, or placebo, plus standard of care. The primary endpoint was time 
to recovery, defined as time to a score of 1 or 2 on a 7-category ordinal scale by 
day 28.

MEASUREMENTS AND MAIN RESULTS: The study randomized 396 patients. 
Median time to recovery was 11 days (hazard ratio [HR], 1.01 d; p = 0.93) and 10 
days (HR, 1.15 d; p = 0.38) for astegolimab and efmarodocokin alfa, respectively, 
versus 10 days for placebo. Key secondary endpoints (improved recovery, mor-
tality, or prevention of worsening) showed no treatment benefits. No new safety 
signals were observed and adverse events were similar across treatment arms. 
Biomarkers demonstrated that both drugs were pharmacologically active.

CONCLUSIONS: Treatment with astegolimab or efmarodocokin alfa did not im-
prove time to recovery in patients with severe COVID-19 pneumonia.

KEY WORDS: acute respiratory distress syndrome; biomarkers; COVID-19; 
interleukin-22; interleukin-33

In 2020, COVID-19 was the third leading cause of death in the United States. 
Most COVID-19–associated deaths are due to severe interstitial pneu-
monia, which progresses to acute respiratory distress syndrome (ARDS) 

and hypoxemic respiratory failure. ARDS, characterized by increased epithe-
lial and endothelial permeability leading to alveolar edema, has been observed 
in 16–42% of patients with severe COVID-19 (1–5). Hyperinflammatory 
responses, including elevated pro-inflammatory cytokines, are associated with 
increased mortality in patients with COVID-19 (4). COVID-19 treatment 
includes direct antiviral therapeutics and anti-inflammatory agents.

Interleukin (IL)-33, an alarmin released upon epithelial injury in response 
to allergens, irritants, and infections in the lung (6), binds the suppression of 
tumorigenicity 2 (ST2) (IL-1 receptor-like 1) receptor on multiple immune cell 
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types driving pulmonary inflammation, which triggers 
downstream cytokine release. Patients with ARDS have 
elevated serum IL-33 (7). IL-33 production increases 
with disease severity (8, 9) and independently predicts 
poor outcomes in COVID-19 (10). We hypothesized 
that astegolimab (MSTT1041A), a fully human immu-
noglobulin (Ig) G2 monoclonal antibody that binds 
ST2, blocks IL-33 signaling, and significantly reduces 
asthma exacerbations in patients with severe asthma 
(11), may reduce hyperinflammation during severe 
acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection.

IL-22, an IL-10 family cytokine, acts directly on ep-
ithelial tissue. By working through regenerative and 
protective mechanisms, IL-22 may protect and repair 
lung epithelial tissue from ventilation-induced damage 
(12) and acute lung injury (13) following viral infec-
tions (14, 15). Patients with ARDS show reduced IL-22 
levels in bronchoalveolar lavage fluid compared with 
mechanically ventilated patients without lung injury 
(14). Based on this, we hypothesized that efmarodo-
cokin alfa (UTTR1147A), a fusion of human IL-22 and 
the IgG4 crystallizable fragment (16), may promote 
lung recovery in SARS-CoV-2 infection. The COVID-
astegolimab-interleukin (COVASTIL) trial independ-
ently investigated the reduction in hyperinflammation 
via IL-33 blockade with astegolimab and prevention/

repair of lung damage by IL-22 pathway activation with 
efmarodocokin alfa in patients with severe COVID-19 
pneumonia.

MATERIALS AND METHODS

Trial Design and Oversight

This phase 2, randomized, double-blind, placebo-con-
trolled, multicenter study assessed efficacy and safety of 
the investigational drugs, astegolimab and efmarodo-
cokin alfa, compared with their respective placebos, 
in patients hospitalized with severe COVID-19 pneu-
monia (ClinicalTrials.gov: NCT04386616). Permitted 
standard-of-care (SOC) COVID-19 therapies included 
antiviral therapy (e.g., remdesivir), host-directed 
therapy (e.g., tocilizumab), systemic corticosteroids, 
and anticoagulants. Patients were recruited from the 
United States, Brazil, Mexico, and Spain.

The study consisted of a screening period followed 
by randomization (Fig. 1A); on day 1, patients re-
ceived either one IV infusion of 700 mg astegolimab, 
90 μg/kg efmarodocokin alfa, or matching placebos 
(2 and 5 mL vials of a sterile, clear solution to match 
astegolimab and efmarodocokin alfa, respectively, with 
diluent for efmarodocokin alfa supplied by Genentech 
for the matching placebo). If the patient remained hos-
pitalized and on supplemental oxygen, a second dose 
of 350 mg astegolimab, 90 μg/kg efmarodocokin alfa, 
or matching placebo was given on day 15. The primary 
endpoint was evaluated through day 28; the study 
completion visit was day 60.

Genentech‚ Inc. (South San Francisco‚ CA) developed 
the protocol and conducted the study in full conform-
ance with the International Council for Harmonisation 
(ICH) E6 guideline for Good Clinical Practice, the 
principles of the Declaration of Helsinki, or the laws/
regulations of the country where the research occurred, 
whichever provided better protection to the individual. 
The study complied with the ICH E2A guideline. Ethics 
Committees for each site (Supplementary Appendix, 
http://links.lww.com/CCM/H235) approved the pro-
tocol (Study number: GA42469; title: A phase II, ran-
domized, double-blind, placebo-controlled, multicenter 
study to evaluate the safety and efficacy of MSTT1041A 
or UTTR1147A in patients with severe COVID-19 pneu-
monia) on April 24, 2020 (United States), July 8, 2020 
(Mexico; local ethics committee approved at the first site 
on June 29, 2020), July 13, 2020 (Spain), and July 20, 2020 

 KEY POINTS

Question: We examined whether hospitalized 
patients with severe COVID-19 pneumonia ben-
efit from interleukin (IL)-33 receptor blockade to 
reduce hyperinflammation (astegolimab) or IL-22 
pathway activation to prevent/repair lung damage 
(efmarodocokin alfa).

Findings: This randomized, placebo-controlled 
phase 2 trial demonstrated that neither drug 
improved time to recovery in hospitalized COVID-
19 patients versus placebo (median times: 
astegolimab, 11 d; efmarodocokin alfa, 10 d; 
placebo, 10 d). Neither drug showed new safety 
signals; both drugs modulated pathway-specific 
biomarkers.

Meaning: Despite lack of clinical benefit, both 
drugs were safe and pharmacologically active.

http://links.lww.com/CCM/H235
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(Brazil). Patients, or their legally authorized representa-
tives, provided written, informed consent before study  
procedures.

Patients

Eligible patients were aged 18 years or older, hospital-
ized with COVID-19 pneumonia, verified by positive 
polymerase chain reaction assay, chest radiograph or 

computed tomography scan, and having peripheral 
capillary oxygen saturation (Spo2) less than or equal 
to 93% or Pao2/Fio2 less than or equal to 300 mm Hg 
or a requirement for supplemental oxygen to maintain 
Spo2 greater than 93%. Key exclusion criteria included 
likely progression to death within 24 hours; clinical ev-
idence of active or unstable cardiovascular disease; and 
Janus kinase inhibitor use within 30 days or five drug 
elimination half-lives before screening (full eligibility 
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A

Figure 1. COVID-astegolimab-interleukin study design and patient disposition. A, Study design. The second dose on day 15 (open triangles) 
was only given if the patient remained hospitalized and required supplemental oxygen. B, Patient disposition. aMatching placebo (PBO) groups 
for astegolimab and efmarodocokin alfa were pooled for all analyses. mITT = modified intent-to-treat, SOC = standard of care.
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criteria, Supplementary Appendix, http://links.lww.
com/CCM/H235).

Randomization and Blinding

Patients were assigned via an interactive voice or web-
based response system to treatment groups receiving 
astegolimab, efmarodocokin alfa, or their matching 
placebos at a 2:2:1:1 ratio using permuted-block ran-
domization. Randomization was stratified by invasive 
mechanical ventilation use and region. The proportion 
of patients needing invasive mechanical ventilation was 
capped at ~25%. See Supplementary Appendix (http://
links.lww.com/CCM/H235) for details on blinding.

Outcomes and Assessments

The primary efficacy endpoint was time to recovery, 
defined as time to a score of 1 or 2 on a 7-category or-
dinal scale (whichever occurred first): 1, discharged 
(or “ready for discharge” as evidenced by normal body 
temperature and respiratory rate, and stable oxygen 
saturation on ambient air or less than or equal to 2 L 
supplemental oxygen); 2, non-ICU hospital ward (or 
“ready for hospital ward”) not requiring supplemental 
oxygen; 3, non-ICU hospital ward (or “ready for hos-
pital ward”) requiring supplemental oxygen; 4, ICU or 
non-ICU hospital ward, requiring noninvasive ven-
tilation or high-flow oxygen; 5, ICU, requiring intu-
bation and mechanical ventilation; 6, ICU, requiring 
extracorporeal membrane oxygenation (ECMO) or 
mechanical ventilation and additional organ support 
(e.g., vasopressors, renal replacement therapy); 7, death 
(17). During the trial, the original primary endpoint, 
“Clinical status assessed using a 7-category ordinal 
scale at day 28” was changed because prior trials for 
COVID-19 pneumonia indicated that time to recovery 
was more clinically meaningful (18). The original pri-
mary endpoint is now a secondary endpoint (Table S2, 
http://links.lww.com/CCM/H235). Key secondary effi-
cacy endpoints included day 14 and day 28 mortality, 
time to hospital discharge or “ready for discharge,” ven-
tilator-free days, proportion of patients alive and free of 
respiratory failure at day 28, rate of invasive mechan-
ical ventilation or ECMO‚ and rate and duration of ICU 
stay. See Supplementary Appendix (http://links.lww.
com/CCM/H235) for additional secondary endpoints. 
Exploratory endpoints included changes in pharmaco-
dynamic biomarkers (circulating soluble ST2 [sST2], 
regenerating islet-derived protein 3A [REG3A], and 

C-reactive protein [CRP]) to demonstrate pharmaco-
logical activity and target engagement.

Safety assessments included frequency and severity 
(using Common Terminology Criteria for Adverse 
Events) of adverse events (AEs) and serious adverse 
events (SAEs), changes in vital signs, electrocardio-
grams, and clinical laboratory results. Pharmacokinetic 
assessments included serum concentration measure-
ments of astegolimab and efmarodocokin alfa.

Statistical Methods

Efficacy analyses were conducted on the modified 
intent-to-treat (mITT) population (all patients who 
received at least one dose of study drug), with patients 
grouped according to treatment assigned at randomi-
zation. Placebo-treated patients were pooled for out-
come analyses. Time to recovery was analyzed using 
the stratified log-rank test, adjusting for stratification 
factors. Hazard ratios (HRs) comparing astegolimab or 
efmarodocokin alfa with placebo, respectively, adjust-
ing for stratification factors, were estimated using a 
Cox proportional hazards regression model. For time-
to-recovery and time-to-improvement endpoints, 
patients who did not recover/improve or died before 
day 28 were censored at day 29.

The planned sample size of 390 patients provided 
~80% power using a log-rank test to detect a 7-day 
difference between treatment groups (astegolimab vs 
placebo; efmarodocokin alfa vs placebo) in time to re-
covery with a minimum detectable difference of 5.3 
days assuming the median time to improvement in the 
placebo group was 21 days (with 28 d of follow-up), 
using a one-sided 5% alpha.

See Supplementary Appendix (http://links.lww.
com/CCM/H235) for analysis details for secondary 
endpoints, safety, pharmacokinetics, immunogenicity, 
and biomarkers. Statistical analyses were conducted 
using R (https://www.R-project.org/) (19).

RESULTS

Patient Disposition and Baseline 
Characteristics

The COVASTIL study, conducted from June 2020 to 
March 2021, enrolled and randomized patients at 54 
investigator sites (Supplementary Appendix, http://
links.lww.com/CCM/H235). Of 463 patients screened, 
410 were randomized, and 396 received at least one 
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dose of study drug or placebo (313 patients [79%] re-
ceived one dose; 83 patients [21%] received two doses) 
and were included in the final analysis. Three-hundred 
thirty-two patients completed study assessments 
through day 28 (Fig. 1B), and 299 patients completed 
study assessments through day 60.

Treatment groups had similar demographic and 
baseline clinical characteristics (Table 1; and Table S1, 
http://links.lww.com/CCM/H235), including baseline 
ordinal scores of 3 (38.6%) or 4 (50%). This global study 
recruited a diverse population, including American 
Indian or Alaska Native (2%), Asian (4%), Black or 
African American (7%), Hispanic or Latino (55%), and 
White (68%) patients (Table S1, http://links.lww.com/
CCM/H235). Time since first COVID-19 symptoms 
or diagnosis, hospitalization duration, and baseline 
use and duration of mechanical ventilation were sim-
ilar between groups (Table 1). There were no significant 
differences between treatment groups in the propor-
tion of patients admitted to the ICU at baseline. Mean 
(± sd) baseline CRP values were elevated and compa-
rable between groups (79.7 ± 76.0 mg/L; upper limit of  
normal = 10 mg/L; n = 388), similar to other studies (20, 
21). Concomitant medication use was similar across 
study groups: 381 (96%) received steroids, 227 (57%) 
received remdesivir, and 47 (12%) received tocilizumab.

Primary and Secondary Efficacy Endpoints

Neither astegolimab nor efmarodocokin alfa showed a 
significant difference from placebo in the primary end-
point, time to recovery by day 28 (HRs: astegolimab, 
1.01, 95% CI: 0.75–1.36, p = 0.93; efmarodocokin alfa, 
1.15, 95% CI: 0.86–1.54, p = 0.36; Table  2; Fig. 2A). 
Median time to recovery was 10.0, 11.0, and 10.0 days 
for placebo, astegolimab, and efmarodocokin alfa, re-
spectively (Fig. 2A). Ninety-three patients (70%), 94 
patients (72%), and 100 patients (76%) in the placebo, 
astegolimab, and efmarodocokin alfa groups, respec-
tively, reached a clinical status of 1 or 2 (Fig. 2B). No 
treatment benefit was observed in key efficacy sub-
groups (stratification by baseline ordinal score, baseline 
body mass index, mechanical ventilation use, and base-
line CRP) relative to placebo (Fig. S1, http://links.lww.
com/CCM/H235). No significant differences occurred 
between placebo and either astegolimab or efmarodo-
cokin alfa groups in secondary endpoints (Table 2; and 
Table S2, http://links.lww.com/CCM/H235).

Safety

During the treatment period, AE rates were compa-
rable between groups (placebo, 87 [65%]; astegolimab, 
85 [65%]; efmarodocokin alfa, 95 [72%]; Table  3). 
AEs reported in 5% or more of patients overall were 
constipation, hypokalemia, anemia, hypotension, and 
COVID-19 pneumonia (Table S3, http://links.lww.
com/CCM/H235). SAE rates were comparable be-
tween groups (Table 3; and Supplementary Results, 
http://links.lww.com/CCM/H235). SAEs occurring 
in greater than 2% of patients were (worsening of) 
COVID-19 pneumonia (4.3%), septic shock (2.5%), 
and respiratory failure (2.8%) (Table S4, http://links.
lww.com/CCM/H235). There were more related SAEs 
in the astegolimab (2; 2%) and in the efmarodocokin 
alfa (three related SAEs in two patients, 2%) groups 
than in the placebo group (0). The overall number 
of SAEs was similar between the groups, and no 
major imbalances AEs of special interest occurred 
(Table 3; Table S4 [http://links.lww.com/CCM/H235]; 
and  Supplementary Results [http://links.lww.com/
CCM/H235]).

Sixty-seven deaths occurred during the study at 
similar rates between treatment groups (Table  3), 
largely attributable to progression of COVID-19 
pneumonia, respiratory failure, multiple organ system 
failure, or sepsis. No deaths were deemed related to 
study drugs.

Pharmacokinetics

Because the majority of patients (astegolimab, 103 
[79.2%]; efmarodocokin alfa, 107 [81.1%]) received 
only one dose, only pharmacokinetic parameters fol-
lowing the first doses of astegolimab and efmarodo-
cokin alfa were calculated (Table S5, http://links.lww.
com/CCM/H235). The cohort mean of the maximum 
serum concentration (Cmax) for astegolimab was 210 
µg/mL and for efmarodocokin alfa was 1,286 ng/
mL. The serum trough concentration (Ctrough_day 14) for 
astegolimab was 33.5 µg/mL and for efmarodocokin 
alfa was 81.8 ng/mL. Overall, pharmacokinetic expo-
sures showed high variability (30–73%) in patients. To 
understand potential effects of SARS-CoV-2 infection 
on astegolimab and efmarodocokin alfa exposure, Cmax 
and area under the curve from 0 to 14 days (AUC0–14) 
were plotted by baseline disease severity. Patients with 
higher baseline disease severity (ordinal score of 4 vs 3) 
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TABLE 1. 
Baseline Demographic and Clinical Characteristics

Characteristic
Placeboa  
(n = 134)

Astegolimab  
(n = 130)

Efmarodocokin Alfa  
(n = 132)

All Patients 
(n = 396)

Age

 Median (range), yr 57 (26–89) 58 (29–94) 57 (27–86) 57 (26–94)

Sex, n (%)

 Female 45 (34) 56 (43) 52 (39) 153 (39)

 Male 89 (66) 74 (57) 80 (61) 243 (61)

Clinical statusb, n (%)

 2 3 (2) 4 (3.08) 1 (0.76) 8 (2.02)

 3 47 (35) 49 (38) 57 (43) 153 (39)

 4 71 (53) 64 (49) 63 (48) 198 (50)

 5 10 (7) 8 (6) 8 (6) 26 (7)

 6 3 (2) 4 (3) 2 (2) 9 (2)

 Not available 0 1 (1) 1 (1) 2 (1)

Baseline mechanical ventilation, n (%)

 No 122 (91) 117 (90) 121 (92) 360 (91)

 Yes 12 (9) 13 (10) 11 (8) 36 (9)

Duration of hospitalization at randomization

 Mean (range), d 4.14 (1–15) 4.47 (1–16) 4.55 (1–20) 4.38 (1–20)

ICU admission, n (%)

 Admitted to ICU at randomization 63 (47) 58 (45) 47 (36) 168 (42)

 Not admitted to ICU at randomization 71 (53) 72 (55) 85 (64) 228 (58)

Duration of COVID-19 diagnosis at randomization

 n 133 130 132 395

 Mean (range), d 5.33 (1–16) 5.89 (1–15) 5.9 (1–19) 5.71 (1–19)

Duration of COVID-19 symptoms at randomization

 n 133 129 132 394

 Mean (range), d 11.59 (1–42) 11.38 (1–24) 11.58 (1–26) 11.52 (1–42)

C-reactive protein

 n 122 120 126 368

 mg/L, mean ± sd 79.9 ± 64.8 77.3 ± 90.1 81.7 ± 71.7 79.7 ± 76.0

Remdesivir treatment on study, n (%) 78 (58.2) 74 (56.9) 75 (56.8) 227 (57.3)

Tocilizumab treatment on study, n (%) 16 (11.9) 18 (13.8) 13 (9.8) 47 (11.9)

Steroid use on study, n (%) 126 (94.0) 129 (99.2) 126 (95.5) 381 (96.2)

a  Matching placebo groups for astegolimab and efmarodocokin alfa were pooled for all analyses.
b  Clinical status was defined by the 7-category ordinal scale: 1, discharged (or “ready for discharge” as evidenced by normal body tem-
perature and respiratory rate, and stable oxygen saturation on ambient air or ≤ 2 L supplemental oxygen); 2, non-ICU hospital ward (or 
“ready for hospital ward”) not requiring supplemental oxygen; 3, non-ICU hospital ward (or “ready for hospital ward”) requiring supple-
mental oxygen; 4, ICU or non-ICU hospital ward, requiring noninvasive ventilation or high-flow oxygen; 5, ICU, requiring intubation and 
mechanical ventilation; 6, ICU, requiring extracorporeal membrane oxygenation or mechanical ventilation and additional organ support 
(e.g., vasopressors, renal replacement therapy); 7, death.
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TABLE 2. 
Primary and Key Secondary Efficacy Endpoints

Endpoints
Placeboa  
(n = 134)

Astegolimab  
(n = 130)

Efmarodocokin Alfa 
(n = 132)

Primary efficacy endpoint

 Time to recovery, d (median)b 10.0 11.0 10.0

  HR (95% CI)  1.01 (0.75–1.36) 1.15 (0.86–1.54)

  p  0.93 0.36

Secondary efficacy endpoints

 Time to hospital discharge or “ready for  
discharge,” d (median)

10.0 11.0 10.0

  HR (95% CI)  1.11 (0.83–1.49) 1.16 (0.87–1.56)

  p  0.47 0.31

 Proportion of patients alive and free of  
respiratory failure, n (%)c

51 (38.1) 51 (39.2) 53 (40.2)

  Difference in rate (95% CI)  1.17 (–11.34 to 13.68) 2.09 (–10.39 to 14.57)

  OR (95% CI; p)  1.05 (0.64–1.72; 0.85) 1.09 (0.67–1.79; 0.73)

 Rate of invasive mechanical ventilation or  
extracorporeal membrane oxygenation, n (%)

33 (24.6) 37 (28.5) 32 (24.2)

  Difference in rate (95% CI)  3.83 (–7.57 to 15.24) –0.38 (–11.46 to 10.70)

  OR (95% CI; p)  1.22 (0.70–2.10; 0.48) 0.98 (0.56–1.71; 0.94)

 Ventilator-free days to day 28 (time to  
extubation), d (median)

28 28 28

  Difference in medians  0.0 0.0

  p (van Elteren test)  0.80 0.86

 Rate of ICU stay, n (%) 78 (58.2) 71 (54.6) 61 (46.2)

  Difference in rate (95% CI)  –3.59 (–16.31 to 9.12) –12.00 (–24.67 to 0.67)

  OR (95% CI; p)  0.85 (0.53–1.41; 0.56) 0.62 (0.38–1.00; 0.050)

 Duration of ICU stay (time to ICU discharge), d 
(median)

3.10 2.62 0.00

  Difference in medians  –0.48 –3.10

  p (van Elteren test)  0.48 0.057

 Mortality rate at day 14, n (%) 8 (6.0) 11 (8.5) 11 (8.3)

  Difference in rate (95% CI)  2.49 (–4.51 to 9.49) 2.36 (–4.58 to 9.31)

  OR (95% CI; p)  1.46 (0.57–3.74; 0.43) 1.42 (0.56–3.68; 0.45)

 Mortality rate at day 28 (n patients), n (%) 15 (11.2) 19 (14.6) 17 (12.9)

  Difference in rate (95% CI)  3.42 (–5.42 to 12.26) 1.68 (–6.89 to 10.26)

  OR (95% CI; p)  1.36 (0.66–2.80; 0.41) 1.17 (0.56–2.46; 0.67)

HR = hazard ratio, OR = odds ratio.
a  Matching placebo groups for astegolimab and efmarodocokin alfa were pooled for all analyses.
b  Defined as time (d) to score of 1 or 2 on the 7-category ordinal scale (whichever occurred first).
c  Requiring noninvasive ventilation, high-flow oxygen, mechanical ventilation, or extracorporeal membrane oxygenation at day 28.
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Figure 2. Primary endpoint (time to recovery) and clinical status. A, Time to recovery. B, Clinical status using the 7-category ordinal 
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hazard model. Both parameters were stratified by country and baseline mechanical ventilation. Eight patients had an ordinal score of 2 at 
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had lower astegolimab exposure, but baseline disease 
severity did not impact efmarodocokin alfa exposure 
(Fig. S2, http://links.lww.com/CCM/H235). The anti-
drug antibody rate after treatment with either drug 
was low (Supplementary Results, http://links.lww.com/
CCM/H235).

Biomarkers

Serum pharmacodynamic biomarkers for astegolimab 
and efmarodocokin alfa were measured throughout 
the study. Astegolimab binds sST2, a decoy receptor 
for ST2, allowing sST2 use as a surrogate for ST2 bind-
ing. Efmarodocokin alfa induces expression of both 
REG3A (a secreted antimicrobial protein produced 
by stomach, pancreas, and Paneth cells in the ileum) 
and CRP (an acute phase protein) (16, 22, 23). Sparse 
sample collection affected interpretability of day 15 
and 21 data (samples were only collected at these time-
points from patients who remained hospitalized).

Baseline serum sST2 in COVID-19 patients was 
increased (13.8–1,600 ng/mL; mean, 116 ng/mL; Table 
S6, http://links.lww.com/CCM/H235) compared with 
healthy volunteers (HVs) (24). Similar to other serum 
proteins (25), astegolimab binding is predicted to in-
crease the half-life of sST2, resulting in sST2 eleva-
tions. Absolute sST2 levels increased over time in 

astegolimab-treated patients but not in other treat-
ment groups (Fig. 3A).

Baseline levels of REG3A (3.15–172 ng/mL; mean, 
15.0 ng/mL; Table S6, http://links.lww.com/CCM/H235) 
and CRP (1–670 mg/L [nmol/L]; mean, 79.7 mg/L 
[nmol/L]; Table 1) were increased compared with HVs 
(23). Normalized REG3A levels increased for efmarodo-
cokin alfa-treated patients through day 7 (day 2: 95% ± 
70%; day 7: 264% ± 335%) compared with placebo (day 
2: 18% ± 45%; day 7: 103% ± 235%) (Fig. 3B). All treat-
ment groups exhibited increases in normalized REG3A 
levels by day 15, but increases in efmarodocokin alfa-
treated patients were more pronounced (492% ± 578%; 
astegolimab: 334% ± 791%; placebo: 325% ± 535%) and 
continued to increase through day 21 (1,378% ± 2,949%), 
while levels in the other groups decreased.

Normalized CRP levels peaked for efmarodocokin 
alfa-treated patients on day 2 (71% ± 120%), returned 
to baseline by day 7, and continued decreasing through 
day 28 (Fig. 3C). Normalized CRP increases in placebo 
and astegolimab groups peaked at day 21, returning to 
baseline by day 28 (Fig. 3C).

DISCUSSION

COVASTIL, a phase 2, double-blind, placebo-con-
trolled trial, is the first study to examine IL-33 and IL-22 

TABLE 3. 
Overview of Adverse Events

Safety Outcomes
Placeboa  
(n = 134)

Astegolimab  
(n = 130)

Efmarodocokin Alfa  
(n = 132)

All Patients 
(n = 396)

Number of patients with ≥ 1 AE, n (%) 87 (65) 85 (65) 95 (72) 267 (67)

Number of AEs 344 376 377 1,097

Number of deaths, n (%) 23 (17) 23 (17) 21 (16) 67 (17)

Number of patients withdrawn from study 
due to an AE, n (%)

1 (1) 1 (1) 0 2 (1)

Number of patients with ≥ 1 of the following events, n (%)

 Serious AE 38 (28) 38 (29) 34 (26) 110 (28)

 Serious AE leading to withdrawal from 
treatment

2 (2) 2 (2) 1 (1) 5 (1)

 Related serious AE 0 2 (2) 3 (2) 5 (1)

 AE leading to withdrawal from treatment 4 (3) 3 (2) 3 (2) 10 (3)

 Related AE 15 (11) 12 (9) 25 (19) 52 (13)

 Grade 3–5 AE 43 (32) 46 (35) 41 (31) 130 (33)

AE = adverse event.
a  Matching placebo groups for astegolimab and efmarodocokin alfa were pooled for all analyses.

http://links.lww.com/CCM/H235
http://links.lww.com/CCM/H235
http://links.lww.com/CCM/H235
http://links.lww.com/CCM/H235
http://links.lww.com/CCM/H235
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pathway modulation for treatment of hospitalized 
patients with COVID-19 pneumonia. Although both 
astegolimab and efmarodocokin alfa induced pharma-
codynamic activity and were safe and well tolerated 

in this patient population, neither drug showed a sig-
nificant difference from placebo in time to recovery, 
the primary endpoint, or in any of the secondary end-
points. The AEs, SAEs, and fatal events were consistent 
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with those expected in a study of patients hospitalized 
with severe COVID-19 and with previous studies of 
these drugs (11, 23). Although there were more related 
SAEs in the treatment groups compared with the pla-
cebo group, the small number of events precluded any 
definitive conclusions. We observed no new safety sig-
nals for either study drug.

Previously identified pharmacodynamic bio-
markers for astegolimab (sST2) and efmarodocokin 
alfa (REG3A, CRP) were measured in patients with 
COVID-19 pneumonia. Baseline serum levels of sST2 
were elevated, possibly reflecting an association be-
tween sST2 and the presence of tissue damage, as seen 
in cardiac disease and ARDS (26, 27). Serum sST2 
increased above baseline levels in the astegolimab arm 
compared with the other treatment arms‚ indicating 
target engagement and pharmacological activity.

Increases in REG3A following efmarodocokin 
alfa treatment indicated IL-22R engagement in these 
patients. The percent increase from baseline was lower 
compared with HVs (23), but elevated baseline REG3A 
levels may explain this finding. While REG3A has been 
detected in human lung fibrotic tissue (28), this is the 
first study demonstrating elevated levels of REG3A in 
the circulation of COVID-19 patients. Although the 
murine homolog of REG3A, REG3γ, is induced by 
IL-22 in lung epithelium (29) and has been shown to 
provide protection in lung infection models (30–33), 
in this study, REG3A increases were not correlated 
with clinical benefit.

As expected in patients with COVID-19 (20, 21, 34), 
baseline CRP levels were elevated. Similar to previous 
studies (23), efmarodocokin alfa treatment led to a sig-
nificant increase in CRP that was not seen in the other 
groups. Due to the timing of sample collection, we did 
not measure the expected CRP peak after the day 15 
dose. Although the early decrease of CRP as compared 
with the other treatment arms suggests efmarodocokin 
alfa treatment may promote resolution of inflamma-
tion, factors such as secondary bacterial infections and 
concomitant medications may have also contributed to 
elevated CRP levels.

There are four possible reasons for the apparent lack 
of efficacy of these drugs in patients with COVID-19 
pneumonia, despite evidence of their pharmacolog-
ical activity. First, while the IL-33 and IL-22 path-
ways may be involved in development of COVID-19 
pneumonia, redundancies may have been sufficient 

to prevent measuring the effects of modulating these 
pathways. Second, patients were heterogeneous for di-
sease presentation, comorbidities, and SOC treatment. 
During the study, COVID-19 treatment approaches 
were evolving and varied by region, and SOC in this 
study included steroids, remdesivir, and tocilizumab. 
In contrast to earlier studies (e.g., Adaptive COVID-
19 Treatment Trial-1 [18]), most patients in this trial 
received dexamethasone, which may have masked 
the effect of astegolimab. Overall, COVID-19 treat-
ment outcomes improved during the study, with the 
percentage of hospitalized patients admitted to ICUs 
and rates of mechanical ventilation decreasing signifi-
cantly (35, 36). Third, patients who were mechanically 
ventilated at time of randomization comprised 10% of 
the patient population, and inclusion of only a small 
number of these severely ill patients may have limited 
the opportunity to see a treatment effect.

Fourth, study drug exposure (dose and frequency) 
or timing may have been insufficient for efficacy in 
COVID-19 patients. However, a dose-ranging study 
would be needed to address this question, and this 
study tested astegolimab and efmarodocokin alfa at the 
highest safe doses based on previous studies (11, 23). 
Based on efmarodocokin alfa’s mechanism of action, 
Cmax or AUC could be drivers of efficacy. While the 
observed mean pharmacokinetic exposures were ex-
pected (similar to ulcerative colitis patients but lower 
than HVs), the exposure distribution was highly var-
iable in patients (Cmax, 73%; AUC0-14, 43%), possibly 
contributing to insufficient efficacy. For astegolimab, 
exposure (Cmax and AUC) was slightly lower than ex-
posure in HVs (unpublished data). In an exploratory 
analysis, patients with higher disease severity (ordinal 
score of 4 vs 3) tended to have lower exposure. Timing 
of presentation with COVID-19 is heterogeneous, 
and it is unclear which subset of patients might ben-
efit from either therapy with respect to timing of drug 
administration, number of doses of drug, and severity 
of COVID-19 pneumonia. In previous COVID-19 
trials examining drugs that target hyperinflamma-
tion (e.g., tocilizumab and baricitinib), clinical ben-
efit was only shown in patients with severe COVID-19 
pneumonia, especially those on supplemental oxygen, 
who were beginning to clinically worsen (37, 38). A 
follow-up study measuring later clinical and imaging 
outcomes is ongoing to evaluate long-term effects of 
both interventions.



Waters et al

114     www.ccmjournal.org January 2023 • Volume 51 • Number 1

CONCLUSIONS

Although neither astegolimab nor efmarodocokin alfa 
showed efficacy against COVID-19 pneumonia, this 
study confirmed that both drugs were safe and phar-
macologically active in patients with severe COVID-
19 pneumonia. Findings from COVID-19 pneumonia 
yield important insights but may not be generalizable 
to ARDS. Further nonclinical and clinical studies are 
needed to identify the subset of COVID-19 patients 
who may benefit from blockade in the inflammatory 
cascade or from stimulation of pathways that can pro-
mote healing of damaged lung tissue.
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